Sen Hu


Email: shu _at_
Research Fields: Mathematical Physics, Theoretical Physics
Office No.:


Sen Hu is a Professor and Vice President at Shanghai Institute for Mathematics and Interdisciplinary Sciences (SIMIS). Prior to joining SIMIS, he served as a Professor at University of Science and Technology of China. He obtained his Ph.D in Mathematics at Princeton University in 1990.

Professor Hu is currently working on mathematical problems related to quantum field theory and string theory. He works on the correspondence between gravitational field and gauge field, algebraic characterization of space and time, Chern-Simons matrix model and applications to superconductor and superfluid mechanism. His research has been published in leading journals, including Transactions of the American Mathematical Society, Communications in Mathematical Physics, Journal of High Energy Physics, Physical Review, Physics Letters, and Modern Physics Letters.

Education Experience

  • 1986-1990  Princeton University    Mathematics    Doctor
  • 1983-1986  Chinese Academy of Sciences   Mathematics   Master
  • 1978-1983  University of Science and Technology of China    Mathematics    Bachelor

Work Experience

  • 2024-           SIMIS    Professor
  • 2009-2010   Havard University    Visiting Scholar
  • 2001-2023   University of Science and Technology of China    Professor
  • 1997-2001   Princeton University    Visiting Scholar
  • 1996-1997   City University of New York    Visiting Scholar
  • 1994-1996   Princeton University    Visiting Scholar
  • 1993-1994   Institute for Advanced Study, Princeton    Member
  • 1992-1993   Ecole Polytechnique    Research Fellow
  • 1990-1992   Northwestern University    Visiting Assistant Professor

Honors and Awards



  1. Quantum Algebra of Chern-Simons Matrix Model and Large N Limit. Sen Hu, Si Li, Dongheng Ye, Yehao Zhou. Preprint. arXiv:2308.14046
  2. A Graphical Calculus for Semi-Groupal Categories, Lu, Xuexing; Ye, Yu; Hu, Sen, Applied Categorical Structures, 2019, 27(2): 163-197.
  3. Geometric aspect of three-dimensional Chern-Simons-like gravity, Hu, Sen; Hu, Zhi, Journal of Geometry and Physics, 2019, 145: 0-UNSP 103482.
  4. Entanglement entropy of AdS(5) x S-5 with massless flavors at nonzero temperature, Hu Sen; Wu Guozhen, International Journal of Modern Physics A, 2018, 33(7): 0-1850033.
  5. Entanglement Entropy of $AdS_{5} \times S^{5}$ with massive flavors, Sen Hu; Guozhen Wu, MODERN PHYSICS LETTERS A, 2018, 33(1): 0-1850008.
  6. Feynman geometry, Hu Sen; Andrey Losev, Proceedings of 60 Years of Yang-Mills Gauge Field Theories at Nanyang Institute of Technology, 2015.
  7. Kauffman Polynomial from a Generalized Yang-Yang Function, Hu Sen; Liu Peng, Annales Henri Poincare, 2016, 17(5): 1145-1179.
  8. HOMFLY Polynomial from a Generalized Yang–Yang Function, Sen Hu, Peng Liu, Communications in Mathematics and Statistics, 2015, 3(3): 329–352.
  9. On geometry of the (generalized) G(2)-manifolds, Hu, Sen; Hu, Zhi, International Journal of Modern Physics A, 2015, 30(20): 0-1550112.
  11. CLASSICAL AND QUANTUM ASPECTS OF FIVE-DIMENSIONAL CHERN-SIMONS GAUGE THEORY, Hu, Sen; Hu, Zhi, International Journal of Modern Physics A, 2014, 29(1): 0-1450003.
  12. On Hodge theory for the generalized geometry (I), Hu, Sen; Hu, Zhi; Lan, Guitang, JOURNAL OF GEOMETRY AND PHYSICS, Vol. 70, 172-184, 2013, DOI: 10.1016/j.geomphys.2013.02.011.
  13. SCHWARZSCHILD-DE SITTER METRIC AND INERTIAL BELTRAMI COORDINATES, Sun, Li-Feng; Yan, Mu-Lin; Deng, Ya; Huang, Wei; Hu, Sen, Modern Physics Letters A, Vol. 28(29), 2013, DOI: 10.1142/S0217732313501149.
  14. ON DETERMINATION OF THE GEOMETRIC COSMOLOGICAL CONSTANT FROM THE OPERA EXPERIMENT OF SUPERLUMINAL NEUTRINOS, Yan, Mu-Lin; Hu, Sen; Huang, Wei; Xiao, Neng-Chao, Modern Physics Letters A, 2012, 27(11): 0-1250041.
  15. Superluminal Neutrinos from Special Relativity with de Sitter Space-time Symmetry, Mu-Lin Yan, Neng-Chao Xiao, Wei Huang, Sen Hu, Mod. Phys. Lett. A, Vol. 27, No. 14 1250076 (2012).
  16. CONSTRUCTION OF LAGRANGIAN SUBMANIFOLDS IN CPn, Chen, Qing; Hu, Sen; Xu, Xiaowei, Pacific Journal of Mathematics, 2012, 258(1): 31-49.
  17. ON SL(2, R) AND AdS GRAVITY, Hu, Sen; Hu, Zhi; Zhang, Ruoran, INTERNATIONAL JOURNAL OF MODERN PHYSICS A, Vol. 27(23), 2012, DOI: 10.1142/S0217751X12501382.
  18. The ghost” symmetry of the BKP hierarchy. Cheng, Jipeng; He, Jingsong; Hu, Sen, J. Math. Phys. 51 (2010), no. 5, 053514, 19 pp.
  19. Generalized Ricci flow and supergravity vacuum solutions, Hu, Sen; Hu, Zhi; Zhang, Ruoran, International Journal of Modern Physics A, 2010, 25(12): 2535. SCI.
  20. Realization of Fine Tip Tilting by 16-Step Line Tilting, Ding Lu; Chen Ying-Tian; Hu Sen; Zhang Yang, Communications in Theoretical Physics, 2010, 54(1): 175-180.
  21. N=2 SCVA’s FROM A GENERALIZED CALABI-YAU MANIFOLD AND MIRROR SYMMETRY, Hu Sen; Ma Wenye; Qiu Jingpei, Acta Mathematica Scientia, 2009, 29(4): 961-972.
  22. On special geometry of the moduli space of string vacua with fluxes, Hu Sen; Hou Boyu; Yang Yanhong, International Congress of Chinese Mathematicians, 2006, Zhejiang University, Hangzhou, 2006-8.
  23. Generalized Ricci flow I: Local existence and uniqueness, Chun-lei He, Sen Hu, De-Xing Kong, Kefeng Liu, Proceedings of Nankai International Conference in Memory of Xiao-Song Lin, 27-31 July 2007.
  24. Stripe formation driven by space noncommutativity in quantum Hall systems, Liu, GZ; Hu, S, Physics Letters A, 2006, 354(5-6): 482-486.
  25. Effective cosmological constant in brane cosmology, Hu, Sen; Wang, Jing-Rong, International Journal of Modern Physics D, 2006, 15(6): 895-903
  26. Intersecting branes and adding flavors to the Maldacena-Nunez background, Hu Sen; Wang Xiaojun, JHEP, 2003, 017.
  27. Green Functions of N=1 SYM and Radial/Energy-Scale Relation, Hu Sen; Wang Xiaojun, Physical Review D, 2003, 67: 105012.
  28. Gauge/Gravity Duality, Green Functions of N=2 SYM and Radial/Energy-Scale Relation, Hu Sen; Wang Xiaojun, JHEP 0210 (2002) 005.
  29. Sen Hu, Lecture notes on Chern-Simons-Witten theory. With a preface by E. Witten. World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
  30. A variational principle associated to positive tilt maps. Sen Hu, Comm. Math. Phys. 191 (1998), no. 3, 627–639.
  31. A proof of C1 stability conjecture for three-dimensional flows. Sen Hu, Trans. Amer. Math. Soc. 342 (1994), no. 2, 753–772.
Scroll to Top