A stochastic preconditioned Douglas-Rachford splitting method for saddle-point problems

Speaker: 孙鸿鹏 (中国人民大学)

Time: 2025 Jul.11th 16:00-17:00
Location: R1610, SIMIS

Abstract:
In this article, we propose and study a stochastic and relaxed preconditioned Douglas Rachford splitting method to solve saddle-point problems that have separable dual variables. We prove the almost sure convergence of the iteration sequences in Hilbert spaces for a class of convex-concave and nonsmooth saddle-point problems. We also provide the sublinear convergence rate for the ergodic sequence concerning the expectation of the restricted primal-dual gap functions. Numerical experiments show the high efficiency of the proposed stochastic and relaxed preconditioned Douglas–Rachford splitting methods. This is a joint work with Yakun Dong and Kristian Bredies.


About Speaker:
孙鸿鹏,中国人民大学教授,博导。2012年博士毕业于中国科学院数学与系统科学研究院,2012-2014奥地利格拉茨大学博后,研究方向反问题和图像处理。现主持国家自然科学基金面上项目、北京市自然科学基金重点项目子课题、曾主持德国洪堡基金等项目。在相关领域期刊发表论文多篇,包括权威期刊如SIAM J. Numer. Anal., IP, SIAM SISC, SIAM MMS等。

zh_CN简体中文
Scroll to Top