Aamir Hamid Dar

博士后

电子邮件:
Research Fields: Time-frequency analysis, Wavelet analysis, Integral transformations and Signal processing
办公室:

简历

Dr. Aamir Hamid Dar is a Postdoc Research Scholar at Shanghai Institute for Mathematics and Interdisciplinary Sciences (SIMIS). Recently, he received his PhD in Mathematical Sciences from Islamic University of Science and Technology, Kashmir India.

Dr. Aamir’s current research interests mainly focus on Time-frequency analysis, Wavelet analysis, Integral transformations and Signal processing.

教育经历

  • 2019-2024  Islamic University of Science and Technology Kashmir, India 博士

工作经历

  • 2024- 上海数学与交叉学科研究院 博士后

荣誉和获奖

  • JK-SET awarded (2018)

期刊文章

  1. New Quadratic Phase Wigner Distribution and Ambiguity Function with Applications to LFM Signals; Journal of Pseudo-Differential Operators and Applications. Accepted (2024)
  2. Discrete Quaternion Quadratic Phase Fourier Transform; arXiv:2402.11311v1(2024)
  3. A Novel Wavelet Transform in the Quaternion Quadratic-Phase Domain; International Journal of wavelets, Multiresolution and Information Processing .}DOI:10.1142/S0219691324500024,(2024).
  4. Special Affine Stockwell Transform: Theory, Uncertainty Principles and Applications; International Journal of wavelets, Multiresolution and Information Processing . DOI:10.1142/S0219691323500571 ,(2023)
  5. Short-time free metaplectic transform: its relation to short-time Fourier transform in $L^2(\mathbb R ^n)$ and uncertainty principles; AIMS Mathematics. 8(12): 28951-28975. DOI: 10.3934/math.20231483(2023).
  6. On the Continuity of Linear Canonical Bessel Wavelet Transformations; Poincare Journal of Analysis and Applications. (Accepted)(2023).
  7. N-dimensional Wave Packet Transform and Associated Uncertainty Principles in the Free Metaplectic Transform Domain; Mathematical Methods in the Applied Sciences. DOI: 10.1002/mma.9723 (2023).
  8. Convolution based Quadratic-Phase Stockwell Transform: theory and uncertainty principles; Multimedia Tools and Applications . DOI:10.1007/s11042-023-16331-8(2023).
  9. Linear Canonical Hankel based Stockwell Transform and Associated Uncertainty Principle; The Journal of Analysis. DOI:10.1007/s41478-023-00624-0 (2023)
  10. Convolution, Correlation and Uncertainty Principle in One-Dimensional Quaternionic Quadratic-phase Fourier Transform Domain; Mathematics. DOI:10.3390/math11133002 (2023)
  11. Wigner-Ville Distribution and Ambiguity function of QPFT Signals; Annals of the University of Craiova – Mathematics and Computer Science Series. DOI:10.52846/ami.v50i2.1640 (2023).
  12. Generalized Wave packet Transform based on Convolution Operator in the Quaternion Quadratic-Phase Fourier Domain; Optik – International Journal for Light and Electron Optics.} 286 (2023) 171029.
  13. Quaternion Offset Linear Canonical Transform in One-dimensional Setting ; The Journal of Analysis. DOI:10.1007/s41478-023-00585-4, (2023).
  14. Quadratic Phase S-Transform: Properties and Uncertainty Principles; e-Prime – Advances in Electrical Engineering, Electronics and Energy . 4 (2023)100162.
  15. Octonion Special Affine Fourier Transform: Pitt’s Inequality and Uncertainty Principles; Fractal fractional, DOI:10.3390/fractalfract7050356,(2023).
  16. $k-$Ambiguity function in the framework of Offset Linear Canonical Transform ; International Journal of wavelets, Multiresolution and Information Processing .DOI:10.1142/S0219691323500133,(2023).
  17. Towards Quaternion Quadratic-Phase Fourier Transform ; Mathematical Methods in the Applied Sciences .DOI: 10.1002/mma.9126,(2023).
  18. Donoho-Stark’s and Hardy uncertainty principles for the short-time quaternion offset linear canonical transform; Filomat.DOI:10.2298/FIL2314467D, (2023).
  19. An interplay of Wigner-Ville Distribution and 2D Hyper-complex Quadratic-phase Fourier Transform; Fractal fractional ,DOI:10.3390/fractalfract7020159,(2023).
  20. Vector-valued Nonuniform Multiresolution Analysis Associated with Linear Canonical Transform Domain; Filomat. DOI:10.2298/FIL2316165B,(2023
  21. Quadratic-Phase Scaled Wigner Distribution: Convolution and Correlation; Signal, Image and Video Processing. DOI: 10.1007/s11760-023-02495-1, (2023
  22. The Two-Sided Short-time Quaternionic Offset Linear Canonical Transform and associated Convolution and Correlation; Mathematical Methods in the Applied Sciences .DOI: 10.1002/mma.8994,(2023).
  23. Uncertainty Principles for the Two-sided Quaternion Windowed Quadratic-phase Fourier Transform; Symmetry. Doi: 10.3390/sym14122650,(2022
  24. Wigner Distribution and associated uncertainty principles in the framework of Octonion Linear Canonical Transform; Optik – International Journal for Light and Electron Optics. 272(2022).
  25. Wigner-Ville Distribution and Ambiguity function Associated with the Quaternion Offset Linear Canonical Transform; Demonstratio Mathematica. DOI: 10.1515/dema-2022-0175,(2022).
  26. Quaternion Linear Canonical S-Transform and associated uncertainty principles; International Journal of wavelets, Multiresolution and Information Processing. DOI: 10.1142/S0219691322500357,(2022).
  27. Scaled Ambiguity function and Scaled Wigner Distribution for LCT Signals ; Optik – International Journal for Light and Electron Optics. 267 (2022) 169678.
  28. Sampling Techniques and Error Estimation for Linear Canonical S Transform Using MRA Approach; Symmetry.Doi:10.3390/sym1407,(2022).
  29. Scaled Wigner Distribution in the Offset Linear Canonical Domain ; Optik – International Journal for Light and Electron Optics. DOI: 10.1016/j.ijleo.2022.169286,(2022).
  30. The 2-D Hyper-Complex Quadratic-Phase Fourier Transform and Uncertainty Principles; The Journal of Analysis.DOI:10.1007/s41478-022-00445-7,(2022).
  31. Octonion spectrum of 3D short-time LCT signals ; Optik – International Journal for Light and Electron Optics.261 (2022) 169156.
  32. Fractional vector-valued nonuniform MRA and associated wavelet packets on $L^2(\mathbf R^2,C^M)$; Fractional calculus and applied analysis.25, 687–719 (2022).
  33. Quadratic-Phase wavepacket transform; Optik – International Journal for Light and Electron Optics. 261 (2022) 169120.
  34. Convolution and Correlation Theorems for Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform; Signal, Image and Video Processing. DOI:10.1007/s11760-021-02074-2,(2021).
  35. The Algebra of 2D Gabor Quaternion Offset Linear Canonical Transform and Uncertainty Principles; The Journal of Analysis. DOI:10.1007/s41478-021-00364-z,(2021).
  36. Multiresolution Analysis for Linear Canonical S Transform; Advances in Operator Theory. 6(68) (2021).
  37. Nonuniform Dual Wavelets Associated with Linear Canonical Transform; Caspian Journal of Mathematical Sciences. DOI: 10.22080/CJMS.2022.21790.1588, (2021).
  38. Wavelet Packets Associated with Linear Canonical Transform on Spectrum; International Journal of Wavelets, Multiresolution and Information Process.19, (6) 2150030,(2021).
  39. Wavelet Frames Associated with Linear Canonical Transform on Spectrum, International Journal of Nonlinear Analysis and Applications. DOI: 10.22075/ijnaa.2021.22872.2426, (2021).

出版书籍

  1. Scaled Ambiguity Function Associated with Quadratic-Phase Fourier Transform; IntechOpen, DOI: 10.5772/intechopen.108668.
zh_CN简体中文
Scroll to Top