Dynamical Systems seminar: A Poincaré Section for the Littlewood Conjecture 

Speaker – Bohan Yang, SIMIS

Time: 25.8.25, 11:00 AM,
Location: R1710, SIMIS
Zoom Meeting ID: 844 0594 7424 (password: 076895)

Abstract:
The Littlewood conjecture is a central open problem in Diophantine approximation and homogeneous dynamics. One well-known result toward this conjecture states that the set of counterexamples has Hausdorff dimension zero. Nevertheless, for many explicit pairs, such as $(\theta_1,\theta_2)=(\sqrt{2},\sqrt{3})$, it remains unknown whether the conjecture holds. In this talk, I will describe the construction of a Poincaré section naturally associated with the problem and present a method for computing the corresponding return map.

zh_CN简体中文
Scroll to Top