Optimization Methods for Data Science, Machine Learning and Al
Prof. Yinyu Ye

Homework Assignment 4 Sample Solution

Reading. Read selected sections in Luenberger and Ye’s Linear and Nonlinear Programming
Fourth Edition Chapters 5, 6, 8, 10 and 14.

1. Recall that the (local) second-order (SO), concordant second-order (CSO) and scaled
concordant second-order (SCSO) Lipschitz conditions (LC) are defined as follows:

SOLC : |[Vf(x+d)— Vf(x) — V2f(x)d| < B|/d|*>, where ||d|| < C for some C' > 0

CSOLC : |V f(x+d)-Vf(x)-V2f(x)d| < B|d'V*f(x)d|, where ||d|| < C for some C > 0,
and

SCSOLC : [ X(Vf(x +d) = VF(x) = V3£ ()d)]| < #dTV f(x)d].
where || X 'd| < C for some C > 0,

and X = diag(x > 0). Here we have implicitly assumed/required that x and x +d are
in the domain of f. Here the constant C' should be independent of x.

For each of the following scalar functions, find the Lipschitz parameter § value of
(SOLC), (CSOLC) and (SCSOLC). You can provide an upper bound on § or state

that it doesn’t exist.
(a) flz)=32"+z,2>0
(b) f(x) = —log(x), x > 0.
(¢) f(x) ==xlog(x), >0

Solution: Basic comments:

o The (local) here actually only means for a bounded region of d instead of arbitrary
d. But it’s global in terms of . But we are accepting solutions that talks about
local constants for z. Although in general, proving non-existence in global sense
(for x) is also not that difficult.



By saying that you can provide an upper bound on (3, we just mean that you

don’t need to provide the tightest 5.

The solution below is talking about global constants for x.

(a)

fl@)=32® +a, 2> 0.

Note that f'(z) = 2> + 1, f"(x) = 2x.

The SOLC condition holds for § = 1. To see this, we observe that for all x > 0,
and d such that x +d > 0,

(@ +d) = f(z) = f"(x) - d] = d&*

Hence f(z) is 1-SOLC.

The CSOLC does not hold for any . To see this, simply notice that the LHS is
still d?, while the RHS becomes 2|z|3d?. By taking x — 0, we see that no 3 will
satisfy the CSOLC.

The SCSOLC holds for g = 1/2. For all x > 0, and d such that z + d > 0, we
have that

2(f'(z +d) = ['(z) = f'(2) - d)| = ad® = %\de"($)|
Hence f(z) is 1/2-SCSOLC.
f(x) = —log(zx), z > 0.
Note that f'(z) = —27 !, f”(z) = 72, and that
/ / 1" . d?
|f(x+d) = f(z) = [ (z)d| = 2atd)

The SOLC does not hold for any § > 0. To see this, simply notice that for any

d > 0 (no matter how small it is), by taking x — 0+, the LHS goes to +oco while
the RHS d? remains finite, and hence no 3 satisfies this inequality.

The CSOLC does not hold for any 5 > 0. To see this, simply notice that the RHS
is fd*/x?, and hence LHS < RHS = 1/(z + d) < 3. By taking both z and d
going to 0, we see that § can not be finite.

The SCSOLC holds for 8 = 2 if [z~ *d| < 1. To see that, for all z > 0 and d such

that [27'd| < 1/2, we have 1+ ¢ > 1. It follows that
P P &
! d — / — " d frd = < 2_ — 2 d " .
[2(f'(x +d) — f'(z) — [(z)d)| wwtd 24D |d” f" ()]

Hence f is 2-SCSOLC provided |z7'd| < 1.




()

f(z) = zlog(x), z > 0.
Note that f'(x) = 1+logz, f’(z) = 1/x, and that for any d such that x+d > 0,

F+d) = (@)~ ()] = ~log (1 + g) |

Recall that = < log(1+z) <z for all z > —1.
The SOLC does not hold for any 3 > 0. To see this, notice that by the L'Hospital

rule, we have for any fixed z > 0,

et d) = fie) = [a)d])
g & T 2%

which is unbounded as x goes to 0.

The CSOLC does not hold for any 5 > 0. To see this, again notice that by the
L’Hospital rule, we have for any fixed z > 0,

e d) )~ )l 1
d—0 d?/x 21

which is again unbounded as x goes to 0.

The SCSOLC holds for = 2 if |z~ *d| < 1. To see this, notice that when |z7d| <
1/2, we have

[2llf'(z +d) — f'(x) - f(2)d] _ d/x —log(1+d/z) _,
d?/x d?/z? -

2. Consider the following questions:

(a)

Let ¢(y), where y € R™, be (regular) S-second-order (SO) Lipschitz and be J-
strongly convex, that is, for all y in the domain of ¢, the smallest eigenvalue of

V2¢(y) is bounded below by § > 0. Prove that the function

f(x) = o(Ax),

where A € R™ "™ n > m, is a constant coefficient matrix with rank m, is
concordant second-order Lipschitz for all x € R™ such that y = Ax is in the

domain of ¢.

Find the concordant Lipschitz bounds « for the following three functions (or show

that a global constant doesn’t exist):

— f(x) = 5(x1 +22)°



_ f(X) — e¥1tx2

— f(x) = (z1 + x2) log(z1 + x3) where x1 + x5 > 0.

Solution:

(a)

The key is to notice that Vf(x) = ATV¢(Ax) and V2f(x) = ATV?¢(Ax)A.
Then since ¢(x) is second-order Lipschitz, we have that for all x,d such that
Az, A(z + d) in the domain of ¢,

IVo(Az + Ad) — Vo(Az) — V2p(Ax) Ad|| < B Ad|]?, where [[Ad] < O(1)

Hence

IVf(z+d) = V() = Vf(z)d|
= [[AT(Vo(Az + Ad) — V(Ax) — VZo(Az)Ad)|| < [|AT[|25] Ad|*.

Because ¢ is strongly convex, we have that for all x,
A"V f(2)d] = |(Ad)"V?¢(Ax)(Ad)| > 8| Ad]*
It follows that
IVf(z+d) = Vf(z) - V2 f(2)d] < ||AT||2§(dTV2f(l’)d), where [|Ad|| < O(1)

Because A is of full row rank, it is equivalent to say ||d|] < O(1). Hence the
Concordant second-order Lipschitz holds for f.

Although it’s not that difficult to talk about global constants in terms of x as in
problem 1, we show how to make use of part (a) to obtain local constants. In
particular, we notice that changing 5 and § to local constants 5(y) and d(y) leads
to the same result (with 8 and 0 changed to local ones, i.e. [(y) and §(y), of

course).
— f(z) = (z1 + 12)%/2. In this case, AT = [1,1], and hence ||AT|| = V2,
Furthermore, 6 = 1 and § = 0. Hence we can set a = 0.
— f(z) = em1**2_ In this case, again A” = [1,1] and ||A”|| = v/2. Furthermore,
d(y) = e¥ and B(y) = O(e¥). Hence we can set a = O(1). Notice that here

we used the local version of (a) (see the comment above at the beginning of

(b)) to obtain a global constant c.



— f(z) = (21 + 29)log(z1 + x9), where 7y + x5 > 0. Once again, AT = [1,1]
and hence ||A|| = v/2. Furthermore, § = 1/y and 3(y) = O(1/4?), and hence
we can choose o = O(1/(z1 + z3)).

Remark: Globally, by computing the LHS and RHS exactly, we can easily
see that it’s not CSOLC by taking =1 + x5 — oo.

3. Prove the logarithmic approximation lemma for SDP. Let D € S™ and |D|, < 1.
Then,

|DP?

Tr(D) > logdet(I + D) > Tr(D) — 2(1—|D])

where for any given symmetric matrix D, | D|? is the sum of all its squared eigenvalues,

and |D| is its largest absolute eigenvalue.

Hint: det(/ + D) equals the product of the eigenvalues of I + D. Then the proof

follows from Taylor’s expansion.
Solution:

Suppose that the eigenvalues of D are A;, j = 1,...,n. Then we have

n

log det(I + D) Zlog (1+ X)) Z A; = trace(D) (1)
and
|DP? - 2= - ~_ N
trace(D) — ———— =) \; — <)Y N-—y —L— (2)
2(1 — [Dls) ; 7 2(1 — max; |Ay]) ; ! ;2(1— A1)

2

Hence it suffices to prove that V|x| < 1, we have log(l + z) > = — TEmEE

To see this, simply notice that by Taylor’s series, we have 10g(1+x) =x—x?/2+23/3—
x'/4+42°/5—.... On the other hand, we also have W C (|| +|zP .. =
222+ |z )24 |x|t/2+ - > 2?/2—2*/3+ 2" /4 — . ... Comparing term by term, we

immediately see that log(1 + x) > = — which completes our proof.

_x?
2(1—[z])”



