Optimization Course Project VI:

Optimization in Sensor Network Localization

1 Introduction

Sensor Network Localization (SNL) is a major topic in Data Science and Machine Learning. It is also
closely related to Data Dimensionality Reduction, Phase Retrieval, Molecular Confirmation, and Graph
Realization. The SNL problem is: Given possible anchors a;, € R, distance information dij, (i,j) € Ny,
and dyj, (k,j) € N, find x; € R for all i such that

i = ;1> = dfy, ¥ (i,5) € N, i <,
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||ak, - Xj”2 = di], v (ka]) € N(l7

where (i,7) € N, ((k,j) € N,) connects points x; and x; (a and x;) with an edge whose Euclidean length
is dy; (dkj). N, and N, denote the pairs of points whose distances are known. This system of quadratic

equations are difficult to solve in general.

1.1 Global Optimization Model
There is a simple nonlinear least squares approach to solve (1):
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M1y, Z(i,j)em (Hxi —x;? - d?j) + Z(k,j)eNa (”ak —x;]* - dij) (2)

which is an unconstrained nonlinear and non-convex minimization problem with potentially many local

minimum solutions.



1.2 SOCP Relaxation Model

One can develop an SOCP relaxation for solving (1): Find vectors x; to solve the feasibility problem:

ming, Y. 07x;
s.t. x; —x;]I> < d?j, Y (i,5) € Ny, i< j, (3)
law — 12 < &2, ¥ (k. j) € N
This becomes a convex optimization problem, in particular, a second-order cone linear optimization problem

described in the class.

1.3 SDP Relaxation Model

One also establish an SDP relaxation for solving (1): Find a symmetric matrix Z € S+ such that

miny 0e/
s.t. Zi.g1:a =1,

(0;e; —e;)(0se; —e))T @ Z=d?, Vi, jeN,, i<j (4)
(ag; —e;)(ax; —e;)T o Z = J%j, V k,j€ Ng,

Z = 0.

Note that Zi.41.¢4 = I € S¢ can be realized through d(d + 1)/2 linear equations. For example, if d = 2, we
have Z11 = ]., Z22 = ].7 and Zlg =0.

The SDP relaxation model with possible noisy distance data can be formulated to minimize the L;
norm of the total distance errors:

miny s s 50 2gyen, (5 +055) + 20 jen, (g + 0z)

s.t. Zl:d,l:d = I,
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5. 8" 5/ 5// > 0.

In this case, the SDP solution from the relaxation
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often may not be rank d so that X € R**™ cannot be the best possible localization of the n sensors.

This project is to develop efficient computational algorithms to solve the problem. You may randomly

generated problems in 2D with 3 or more anchors, respectively, and many sensors to test your approaches.



You may set up a threshold radius such that the distance, with some possible noise, between any two points

can be measured and it is known when the distance is below the threshold.

2 DPossible Approaches

Below are suggested approaches for solving the problem

2.1 Unconstrained Nonlinear Optimization Search Approaches

Directly solve the global optimization model (2) using:

e First-order methods: gradient, conjugate-gradient, stochastic gradient, etc.
¢ Second-order methods: BFGS, trust-region, etc.

o Dimension-Reduced Second-Order Method (DRSOM) described in the class or [5].

2.2 Convex-Relaxation-First and Gradient-Second Approaches

Use the SOCP or SDP relaxation solution X = [X1, X2, ..., X,] of (5) as the initial solution for solving
model (2) by the Methods listed earlier. Are you able to estimate the position of the sensors well? Compare

this approach to using Steepest Descent on (2) with random initialization.

2.3 Steepest Descent and Projection Method for SDP Relaxations

Unfortunately, the current available SDP solvers are still too time consuming for solving large-scale SDP
problems. In this part, you are asked to implement one of the first-order SDP methods described in class to

solve the SDP relaxation problem for SNL.

The SNL problem can be casted as
1
min f(X) = 5||AX —b|?s.t. X =0,

where
Al o X

AX = , ATy =) A, and V(X)) = AT(AX —b).
A0 X =t



The SDM projection method described in class is to compute
1

Xk+1 — Xk _ vi(Xk)’

then project X*+1 back to the cone. One way for the projection is to use the eigendecomposition Xkl =

VAVT, where V are the eigenvectors and A the eigenvalues, and let
X = Proj g (X*+1) = V max{0, A}V7.

The drawback is that the eigendecomposition may be costly in each iteration.

e Try just computing the few largest eigenpairs, say six largest A; with corresponding eigenvectors v;
and let: ]
Xkt = ZmaX{O, Niyvivl.
i=1

Typically, a few extreme eigenvalues of a symmetric matrix can be computed more efficiently. Here,
we assume that the problem has only one anchor at the origin. One can find the true position later

using two more anchor information.

e Any possible theoretical analysis of the projection algorithm?

2.4 ADMM Method for Sensor Network Localization

Another speed-up may be using ADMM approach. One can reformulate the nonlinear least squares model
(2) as
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For fixed y’s, the objective function is a linear square function of x’s; and for fixed x’s, the objective function

is a linear square function of y’s.

Develop an ADMM method to minimize the objective function by treating xs and ys as two blocks
of variables so that each block optimization problem within any ADMM iteration is a convex quadratic

minimization problem.

3 Project Goals

You may explore this new approach by generating large-scale noisy SNL problems up to 10,000 sensors and

1,000 anchors (2). The key questions are: what are the best approaches to efficiently estimate the positions



of sensors? What are the differences among different methods? The comparison can include aspects such as

algorithm design, theoretical analysis, computation time, and the approximation error of different algorithms.
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