Optimization Methods for Data Science, Machine Learning and Al
Prof. Yinyu Ye

Homework Assignment 0 Sample Solutions

This is a diagnostic homework that covers prerequisite materials that you should be familiar with.

This homework will not be graded and will not be counted towards the final grade.

Solve the following problems:

1. Consider the iterative process
1 a
Thi1==|op+ —
k1= 5 ( k+ xk> )
where a > 0. Assuming the process converges, to what does it converge?

Solution: Taking the limit, we have

Solve this equation, we have x* = +./a. It’s obvious that the iterations don’t change the
signs of x, so we have 1) if xg > 0, then x; — /a; 2) if 29 < 0, then 2 — —/a. O

2. Let {(aj, ¢;)}" be a given dataset where a; € R", ¢; € {£1}.

(a) Compute the gradient of the following log-logistic-loss function,
f(x,z0) Z log (1 + exp( —alx — z0)) + Z log (1 + exp(al'x + 0))
tei=1 ici=—1
where x € R" and z¢ € R.

(b) Consider the following data set
a; = (0;0), az = (1;0), a3=(0;1), as=(0;0), as=(=1;0), ag=(0;—1),
with label
co=cgo=c3=1, cqg=c5=cg=—1,
show that there is no solution for V f(x, z¢) = 0.

Solution:

(a) (Here we treat the gradient vector as a row vector.) For ¢; = 1,

T
exp(—a; x — ) T
Viog (1 + ex —a;-rx—:p = —a;, —1);
g( p( 0)) 1+ exp(— a x—xo)( ¢ )




and for For ¢; =1,

T
exp(a; x + o) T
Vlog (14 exp(—al'x — z¢)) = L a;, 1).
g( ! ! 0)) 1 +exp(agx+xo)( ! )

Thus, the gradient vector V f(x, zg) is

Z exp(—alx — zo) (—al, 1)+ Z exp(al'x + zo) (@l 1)

LI+ exp(—alx — z) L1+ exp(alx + zo) v

1,c,= 1,Ci=—

(b) We show by contradiction that a (finite) solution does not exist. Firstly, notice that the
objective is non-negative, and hence 0 is a lower bound. Then, looking at the problem
data, we see that by choosing x = (¢,¢)T and zg = 0, taking t — oo leads to f(x;zo) — 0.
Hence 0 is the infimum of the objective function. Nevertheless, for any finite x and xg,
obviously the objective is strictly positive. Hence we conclude that the problem has no

(finite) solution. O

3. Given a symmetric matrix A € R™*"™ s.t. A has eigenvalues \; > Ay > .-+ > \,, show that

for every k =1,2,--- ,n, we have:
xT Ax
Ar = max {min{ T ‘X ceUx# O} |U is a linear subspace of R" of dimension kz} (1)
U X XX

TA
= mUin {max{x T X‘x eUx# 0} |U is a linear subspace of R" of dimension n — k + 1}
x x!'x
(2)

Solution: This result is known as the Courant-Fischer Minimaxr Theorem. See Theorem
8.1.2 of [GVL13] for a sample proof.

Here we sketch the proof for (1). Let {vy}}_, denote a set of orthonormal eigenbasis of
A, with Avy, = A\gvp. Moreover, A = >, )\kvkv;{. When k& = 1, the expression reduces
to A1 = max,- %, which is true for symmetric matrices, with one maximizer U' being
spanned by v;. Now suppose for the sake of induction that we have shown (1) for some k and
that the maximizer U¥ can be taken to be the span of the first k eigenvectors, and we need
to show it holds for k + 1. We show that a maximizer for Ay, q is U! := UF U span(vpy1).

To see this, note that

) o 2T Ax
k41 = min
T vk 2Tg

so that Ap11 < RHS. On the other hand, for any subspace U of dimension k + 1 that is not
spanned by the first k£ + 1 eigenvectors of A, minimization in RHS will choose an eigenvector

corresponding to an eigenvalue smaller than A, 1.



4. Given symmetric matrices A, B,C € R™*"™ s.t. A has eigenvalues a1 > as > -+ > a,, B has
eigenvalues b1 > by > --- > b, and C has eigenvalues ¢; > co > -+ > ¢,, if A= B+ C, show

that for every k =1,2,--- ,n, we have:
b +cn < ap < by +c1. (3)

Solution: We show that ap < by + ¢1. The other inequality is similar. According to (1),
define Uy to be the dim-k linear subspace such that

TA
ak:min{XTx‘erk,x#O} 4)
x| xTx

and let x* be the minimizer of miny {XXTT]iX |x €Uy, x # 0}. It follows that

T(B+C)x x*T(B + C)x*
X X X" X
TR T
< min X X}erk,x;&O + max XCX‘XER",X#O (6)
x xTx x xTx

. xT Bx . x'Cx n
< m&mx{m}:n{ Tx x € U,x# O} |dim(U) = k‘} —|—ij{ T |x € R", x # O} (7)
= bk +c1, (8)
completing the proof.

5. Let A € R™" be a positive-semidefinite matrix with Schur decomposition A = QAQT, where
Q = [a1] - - - |]qn] is an orthogonal matrix, A = diag{\1,..., A\, } satisfies \; > Ao > --- )\, > 0.
Show that for any k =1,...,n,

win _ A= Bll2 = |4 = Agllz = Aess, (9)

rank(B)

and

min A= Blr=4-Aklr=
rank(B)=

Zn: A%, (10)

j=k+1

where Ay, is defined as

k
Ay = Z )\jqjqu. (11)
j=1
Here || - ||2 stands for the spectrum (Lg) norm and || - ||z stands for the Frobenius norm.

Solution: This result is a special case of the Fckhart- Young Theorem. See Theorem 2.4.8 of

[GVL13] for a sample proof for the general case. We give a sketch of the special case here.

We first show (9). Let B be any rank k matrix. By rank-nullity theorem we can find

orthonormal vectors x1,...,x,_; that span the null space of B. In dimension n, the null



k+1

space of B which is n — k dimensional, and the span of {¢;};";,

which is k + 1 dimensional,

have non-empty intersection. Let z be a unit norm vector in this intersection. We then have

1A= Bl > (A= B)z|)3 = || Az|3
k+1
= Z)\’LZ(Q?Z)Q 2 )‘%+1
i=1

where in the last inequality we have used that Zfill(q;f 2)2 = ||z||*> = 1, since z is in the span
of g1, .\ qr+1-
For (10), we use the identity that
ICl7 = Tr(C"C)
n
=Tr(CTC Z vjva)
j=1
n n
=Y (0] CTCuj) =Y ||Cv)?
3=1 J=1

for any orthonormal basis {v;}7_; and write

n

1A= Bl =) (A~ B

J=1

n—k n
=> 1Az I>+ D (A= Byl
j=1

j=k+1
n—k
>3 Az
7=1

where again we assume x1,...,2,—t span the null space of B. Finally, E?:_lk |Az;|? >
> ik 14g; 1?2 = D ikt )\JQ«. This identity says that projections onto any n — k dimensional
subspace (LHS) is bounded below by the projection onto the n — k dimensional subspace
spanned by {g; };L:k +1 (RHS). Equivalently, {g; }§:1 span the best fit k-dimensional subspace
for A, in the sense that

k k
D Az < Il Agyl?
i=1 j=1

for any orthonormal system {z; };‘?:1.

To prove Z?Zl |Az;]12 < Z?Zl | Ag;||?, we use the important fact that ¢; € arg MaXy | span(qy,....qj—1) | Av]|?,

that is the j-th unit eigenvector of A maximizes ||Av||> among all unit vectors that are not



in the span of the first j — 1 eigenvectors. Clearly the inequality holds for £ = 1. Suppose for

the sake of induction we have shown it for some k. Let {y]}kJrl be a solution to

k+1

Z 1Az;*

orthonormal {z;}

Without loss of generality we can let yiy1 be orthogonal to the span of {q]} Then

[ Ayk41]|* < || Agrs1]?, so that

j=1-

k+1 k+1

DIy 7 <Y 1 Ag)?
j=1 j=1

completing the induction step.
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