
Optimization Methods for Data Science, Machine Learning and AI
Prof. Yinyu Ye

Homework Assignment 0 Sample Solutions

This is a diagnostic homework that covers prerequisite materials that you should be familiar with.
This homework will not be graded and will not be counted towards the final grade.

Solve the following problems:

1. Consider the iterative process
xk+1 =

1

2

(
xk +

a

xk

)
,

where a > 0. Assuming the process converges, to what does it converge?

Solution: Taking the limit, we have

x∗ =
1

2
(x∗ +

a

x∗
)

Solve this equation, we have x∗ = ±
√
a. It’s obvious that the iterations don’t change the

signs of xk, so we have 1) if x0 > 0, then xk →
√
a; 2) if x0 < 0, then xk → −

√
a.

2. Let {(ai, ci)}mi=1 be a given dataset where ai ∈ Rn, ci ∈ {±1}.

(a) Compute the gradient of the following log-logistic-loss function,

f(x, x0) =
∑
i:ci=1

log
(
1 + exp(−aTi x− x0)

)
+

∑
i:ci=−1

log
(
1 + exp(aTi x+ x0)

)
,

where x ∈ Rn and x0 ∈ R.

(b) Consider the following data set

a1 = (0; 0), a2 = (1; 0), a3 = (0; 1), a4 = (0; 0), a5 = (−1; 0), a6 = (0;−1),

with label
c1 = c2 = c3 = 1, c4 = c5 = c6 = −1,

show that there is no solution for ∇f(x, x0) = 0.

Solution:

(a) (Here we treat the gradient vector as a row vector.) For ci = 1,

∇ log
(
1 + exp(−aTi x− x0)

)
=

exp(−aTi x− x0)

1 + exp(−aTi x− x0)
(−aTi , −1);



and for For ci = 1,

∇ log
(
1 + exp(−aTi x− x0)

)
=

exp(aTi x+ x0)

1 + exp(aTi x+ x0)
(aTi , 1).

Thus, the gradient vector ∇f(x, x0) is∑
i,ci=1

exp(−aTi x− x0)

1 + exp(−aTi x− x0)
(−aTi , −1) +

∑
i,ci=−1

exp(aTi x+ x0)

1 + exp(aTi x+ x0)
(aTi , 1)

(b) We show by contradiction that a (finite) solution does not exist. Firstly, notice that the
objective is non-negative, and hence 0 is a lower bound. Then, looking at the problem
data, we see that by choosing x = (t, t)T and x0 = 0, taking t → ∞ leads to f(x;x0) → 0.
Hence 0 is the infimum of the objective function. Nevertheless, for any finite x and x0,
obviously the objective is strictly positive. Hence we conclude that the problem has no
(finite) solution.

3. Given a symmetric matrix A ∈ Rn×n s.t. A has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, show that
for every k = 1, 2, · · · , n, we have:

λk = max
U

{
min
x

{
xTAx

xTx

∣∣x ∈ U,x ̸= 0

} ∣∣U is a linear subspace of Rn of dimension k

}
(1)

= min
U

{
max
x

{
xTAx

xTx

∣∣x ∈ U,x ̸= 0

} ∣∣U is a linear subspace of Rn of dimension n− k + 1

}
(2)

Solution: This result is known as the Courant-Fischer Minimax Theorem. See Theorem
8.1.2 of [GVL13] for a sample proof.

Here we sketch the proof for (1). Let {vk}nk=1 denote a set of orthonormal eigenbasis of
A, with Avk = λkvk. Moreover, A =

∑n
k=1 λkvkv

T
k . When k = 1, the expression reduces

to λ1 = maxx ̸=0
xTAx
xT x

, which is true for symmetric matrices, with one maximizer U1 being
spanned by v1. Now suppose for the sake of induction that we have shown (1) for some k and
that the maximizer Uk can be taken to be the span of the first k eigenvectors, and we need
to show it holds for k + 1. We show that a maximizer for λk+1 is Uk+1 := Uk ∪ span(vk+1).
To see this, note that

λk+1 = min
x∈Uk+1

xTAx

xTx

so that λk+1 ≤ RHS. On the other hand, for any subspace U of dimension k + 1 that is not
spanned by the first k+1 eigenvectors of A, minimization in RHS will choose an eigenvector
corresponding to an eigenvalue smaller than λk+1.



4. Given symmetric matrices A,B,C ∈ Rn×n s.t. A has eigenvalues a1 ≥ a2 ≥ · · · ≥ an, B has
eigenvalues b1 ≥ b2 ≥ · · · ≥ bn and C has eigenvalues c1 ≥ c2 ≥ · · · ≥ cn, if A = B + C, show
that for every k = 1, 2, · · · , n, we have:

bk + cn ≤ ak ≤ bk + c1. (3)

Solution: We show that ak ≤ bk + c1. The other inequality is similar. According to (1),
define Uk to be the dim-k linear subspace such that

ak = min
x

{
xTAx

xTx

∣∣x ∈ Uk,x ̸= 0

}
(4)

and let x∗ be the minimizer of minx

{
xTBx
xTx

∣∣x ∈ Uk,x ̸= 0
}

. It follows that

ak = min
x

{
xT (B + C)x

xTx

∣∣x ∈ Uk,x ̸= 0

}
≤ x∗T (B + C)x∗

x∗Tx∗ (5)

≤ min
x

{
xTBx

xTx

∣∣x ∈ Uk,x ̸= 0

}
+max

x

{
xTCx

xTx

∣∣x ∈ Rn,x ̸= 0

}
(6)

≤ max
U

{
min
x

{
xTBx

xTx

∣∣x ∈ U,x ̸= 0

}
|dim(U) = k

}
+max

x

{
xTCx

xTx

∣∣x ∈ Rn,x ̸= 0

}
(7)

= bk + c1, (8)

completing the proof.

5. Let A ∈ Rn×n be a positive-semidefinite matrix with Schur decomposition A = QΛQT , where
Q = [q1| · · · |qn] is an orthogonal matrix, Λ = diag{λ1, . . . , λn} satisfies λ1 ≥ λ2 ≥ · · ·λn ≥ 0.
Show that for any k = 1, . . . , n,

min
rank(B)=k

∥A−B∥2 = ∥A−Ak∥2 = λk+1, (9)

and

min
rank(B)=k

∥A−B∥F = ∥A−Ak∥F =

√√√√ n∑
j=k+1

λ2
j , (10)

where Ak is defined as

Ak :=

k∑
j=1

λjqjq
T
j . (11)

Here ∥ · ∥2 stands for the spectrum (L2) norm and ∥ · ∥F stands for the Frobenius norm.

Solution: This result is a special case of the Eckhart-Young Theorem. See Theorem 2.4.8 of
[GVL13] for a sample proof for the general case. We give a sketch of the special case here.

We first show (9). Let B be any rank k matrix. By rank-nullity theorem we can find
orthonormal vectors x1, . . . , xn−k that span the null space of B. In dimension n, the null



space of B which is n− k dimensional, and the span of {qi}k+1
i=1 , which is k + 1 dimensional,

have non-empty intersection. Let z be a unit norm vector in this intersection. We then have

∥A−B∥22 ≥ ∥(A−B)z∥22 = ∥Az∥22

=
k+1∑
i=1

λ2
i (q

T
i z)

2 ≥ λ2
k+1

where in the last inequality we have used that
∑k+1

i=1 (q
T
i z)

2 = ∥z∥2 = 1, since z is in the span
of q1, . . . , qk+1.

For (10), we use the identity that

∥C∥2F = Tr(CTC)

= Tr(CTC

n∑
j=1

vjv
T
j )

=
n∑

j=1

(vTj C
TCvj) =

n∑
j=1

∥Cvj∥2

for any orthonormal basis {vj}nj=1 and write

∥A−B∥2F =
n∑

j=1

∥(A−B)xj∥2

=

n−k∑
j=1

∥Axj∥2 +
n∑

j=k+1

∥(A−B)xj∥2

≥
n−k∑
j=1

∥Axj∥2

where again we assume x1, . . . , xn−k span the null space of B. Finally,
∑n−k

j=1 ∥Axj∥2 ≥∑n
j=k+1 ∥Aqj∥2 =

∑n
j=k+1 λ

2
j . This identity says that projections onto any n− k dimensional

subspace (LHS) is bounded below by the projection onto the n − k dimensional subspace
spanned by {qj}nj=k+1 (RHS). Equivalently, {qj}kj=1 span the best fit k-dimensional subspace
for A, in the sense that

k∑
j=1

∥Axj∥2 ≤
k∑

j=1

∥Aqj∥2

for any orthonormal system {xj}kj=1.

To prove
∑k

j=1 ∥Axj∥2 ≤
∑k

j=1 ∥Aqj∥2, we use the important fact that qj ∈ argmaxv⊥span(q1,...,qj−1) ∥Av∥2,
that is the j-th unit eigenvector of A maximizes ∥Av∥2 among all unit vectors that are not



in the span of the first j− 1 eigenvectors. Clearly the inequality holds for k = 1. Suppose for
the sake of induction we have shown it for some k. Let {yj}k+1

j=1 be a solution to

max
orthonormal {xj}

k+1∑
j=1

∥Axj∥2

Without loss of generality we can let yk+1 be orthogonal to the span of {qj}kj=1. Then
∥Ayk+1∥2 ≤ ∥Aqk+1∥2, so that

k+1∑
j=1

∥Ayj∥2 ≤
k+1∑
j=1

∥Aqj∥2

completing the induction step.
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