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Homework Assignment 3 Sample Solution

1. (10’) In most real applications, the (first-order) Lipschitz constant β is unknown. Fur-
thermore, we like to use a localized Lipschitz constant βk at iteration k such that

f(xk + αdk)− f(xk)−∇f(xk)T (αdk) ≤ βk

2
∥αdk∥2, (1)

where dk is the steepest descent direction −∇f(xk). The goal is to decide a step-size
α ≈ 1

βk .
Consider the following forward-backward tracking method. In the following, assume
that βk ≥ 1 and αmax ≥ 1/βk. Notice that if βk < 1, we can enforce it to satisfy our
assumption by replacing it with max{1, βk}.
Now start at a initial guess α > 0,

i) If α ≤ 2(f(xk)−f(xk+αdk))
∥dk∥2 , then doubling the step-size: α ← 2α, stop as soon as

the inequality is reversed or α > αmax(> 0), and select the latest α such that the
inequality (α ≤ 2(f(xk)−f(xk+αdk))

∥dk∥2 ) holds and α ≤ αmax.

ii) Otherwise halving the step-size: α ← α/2; stop as soon as α ≤ 2(f(xk)−f(xk+αdk))
∥dk∥2

and return it.

(a) (4’) Let ᾱ be a step-size generated by the scheme. Show that ᾱ ≥ 1
2βk .

(b) (3’) Prove that the above scheme will terminate in finite steps.
(c) (3’) Show that f(xk + ᾱdk) ≤ f(xk)− 1

4βk ∥dk∥22.

Solution:

(a) Based on the above definition, the procedure will only terminate in the following
two cases:

• Case I: 2ᾱ > αmax. In this case we clearly have ᾱ > 1
2
αmax and thus ᾱ ≥ 1

2βk

since αmax ≥ 1
βk as assumed.

• Case II: 2ᾱ > 2(f(xk)−f(xk+2ᾱdk))
∥dk∥2 . According to (1) it is the case that

f(xk)− f(xk + 2ᾱdk) ≥ 2ᾱ∥dk∥2 − 1

2
(2ᾱ)2βk∥dk∥2 = 2(ᾱ− βkᾱ2)∥dk∥2

Combining above two inequalities gives

2ᾱ > 4(ᾱ− βkᾱ2),

which implies ᾱ ≥ 1
2βk since ᾱ, βk > 0.



(b) Since the scheme is safeguarded above by αmax, it suffices to show that the in-
equality

α ≤ 2(f(xk)− f(xk + αdk))

∥dk∥2
(2)

holds for sufficiently small α. We claim that this inequality holds for any α ≤ 1
βk .

To see this, recall (1), which gives for any α > 0,

f(xk)− f(xk + αdk) ≥
(
α− βk

2
α2

)
∥dk∥2.

For α ≤ 1
βk we have βk ≤ 1

α
, and thus

f(xk)− f(xk + αdk) ≥
(
α− 1

2α
α2

)
∥dk∥2 = 1

2
α∥dk∥2,

which immediately implies the inequality α ≤ 2(f(xk)−f(xk+αdk))
∥dk∥2 .

(c) Based on the above definition, the ᾱ generated by the scheme always satisfies the
inequality (2). Combining (2) and the fact that ᾱ ≥ 1

2βk immediately tells that

f(xk + αdk)− f(xk) ≤ −1

2
ᾱ∥dk∥2 ≤ − 1

4βk
∥dk∥2.



2. (10’) (L2 Regularization and Logarithmic Barrier) Consider the optimization problem

minimizex1,x2 (x1 − x2 + 1)2

subject to x1 ≥ 0 x2 “free”.

Then we may combine the L2-regularization and barrier together, that is, for any
µ > 0, consider

minimizex1,x2 (x1 − x2 + 1)2 +
µ

2
(x2

1 + x2
2)− µ log(x1)

(a) (4’) Develop explicit path formula in terms of µ. What is the limit solution as
µ→ 0?

(b) (3’) Using µ = 1 and x0 = (1, 0), apply one step of SDM with step-size 1/5 to
compute the next iterate.

(c) (3’) Using µ = 1 and x0 = (1, 0), apply one step of Newton’s Method to compute
the next iterate.

Solution:

(a) Let f(x;µ) := (x1 − x2 + 1)2 + µ
2
(x2

1 + x2
2)− µ log(x1). Then the gradient of f is

∇xf(x;µ) =

[
2(x1 − x2 + 1) + µx1 − µ/x1

2(x2 − x1 − 1) + µx2

]
.

Setting the gradient to 0 (KKT conditions), we obtain that x2 =
2x1+2
2+µ

, and x1 =
µ+2
µ+4

. And as a result, we obtain that the path formula of x(µ) is

x(µ) =

[
(µ+ 2)/(µ+ 4)

(4µ+ 12)/(µ2 + 6µ+ 8)

]
.

Taking µ→ 0, we obtain that the limit solution is x1 = 1/2, x2 = 3/2.
(b) By definition of SDM, we have

x1 = x0 − 1

5
∇xf(x

0; 1) =

[
1/5

4/5

]
.

(c) By simple calculation, we have

∇2
xf(x;µ) =

[
2 + µ+ µ/x2

1 −2
−2 2 + µ

]
.

And so with x0 = (1, 0) and µ = 1, we have

∇2
xf((1, 0); 1) =

[
4 −2
−2 3

]
.

By definition of Newton’s method, we have

x1 = x0 −∇2
xf(x

0; 1)−1∇xf(x
0; 1) =

[
1/2

1

]
.



3. (20’) (L2 Path-Following) Consider a convex function f : Rn → R in C2 that is twice
continuously differentiable. Assume that its value is bounded from below and that
it has a minimizer. For any given positive parameter µ > 0, consider the regulated
minimization problem

minimize f(x) +
µ

2
∥x∥2. (3)

Prove the following claims:

(a) (2’) Write down the first-order optimality condition of (3). Is it sufficient for x

to be a minimizer?
(b) (5’) The minimizer, denoted by x(µ), of (3) is unique in µ.
(c) (5’) f(x(µ)) is an increasing function of µ (i.e., f(x(µ)) ≥ f(x(µ′)) if µ ≥ µ′ >

0 ), and ∥x(µ)∥ is a decreasing function of µ.
(d) (5’) As µ→ 0+ (i.e., µ decreases to 0 ), x(µ) converges to the minimizer of f(x)

with the minimal Euclidean norm.
(e) (3’) Consider the specific example

minimizex1,x2 (x1 − x2 − 1)2,

where the optimal solution set is unbounded. Write out the explicit path formula
of x(µ) = (x1(µ), . . . , xn(µ)) in terms of µ. What is the limit solution as µ→ 0?

Solution:

(a) The first-order optimality condition is ∇f(x)+µx = 0. Yes, because the problem
is convex, and hence KKT conditions are sufficient (with no other requirements).

(b) In the following, apart from proving the uniqueness (we only require you to prove
this in the homework), we also prove that x(µ) is continuous in µ, which is similar
to part of the proof in (d) below. The uniqueness is simply due to strict (actually
strong) convexity. To show continuity, notice that ∇f(x(µ)) + µx(µ) = 0 for any
µ > 0. Consider any µ, µ′ > 0. Then subtracting their optimality conditions, we
get

−µx(µ) + µ′x(µ′) = ∇f(x(µ))−∇f(x(µ′)).

Multiplying x(µ)− x(µ′) on both sides, we get

(x(µ)−x(µ′))T (−µx(µ)+µ′x(µ′)) ≥ (x(µ)−x(µ′))T (∇f(x(µ))−∇f(x(µ′))) ≥ 0

where the inequality comes from convexity of f(·). Hence we have

µ∥x(µ)− x(µ′)∥2 ≤ (µ′ − µ)(x(µ)− x(µ′))Tx(µ′).

Now we make use of the monotonicity to be established in (c) (which does not
depend on the result in (b) here), and observe that if we fix µ > 0, and assume that



|µ′−µ| ≤ C for some C > 0, then the monotonicity of ∥x(µ)∥ ensures that ∥x(µ′)∥
is bounded by some constant that may depend on µ (which is fixed now). Hence
by taking the limit µ′ → µ, we obtain that the RHS above converges to 0 (using
in addition that xTy ≤ ∥x∥∥y∥). Hence we conclude that ∥x(µ)− x(µ′)∥ → 0 as
µ′ → µ > 0. Notice again that µ is fixed.
Finally, since µ is arbitrary, we have proved that x(µ) is continuous in µ.

(c) Let 0 < µ′ < µ. Then by the optimality of the solutions, we have

f(x(µ′)) + µ′/2∥x(µ′)∥2 ≤ f(x(µ)) + µ′/2∥x(µ)∥2

and
f(x(µ)) + µ/2∥x(µ)∥2 ≤ f(x(µ′)) + µ/2∥x(µ′)∥2.

Adding the above inequalities, we see that

µ− µ′

2
∥x(µ′)∥2 ≥ µ− µ′

2
∥x(µ)∥2.

Since µ−µ′ > 0, we have ∥x(µ′)∥2 ≥ ∥x(µ)∥2, showing that ∥x(µ)∥ is a decreasing
function of µ. Finally, using any one of the first inequality above, we see that
f(x(µ′)) ≤ f(x(µ)) + µ′/2(∥x(µ)∥2 − ∥x(µ′)∥2) ≤ f(x(µ)), and hence f(x(µ)) is
an increasing function of µ.

(d) Let x∗ be an arbitrary minimizer of f(x). Then we have∇f(x∗) = 0, and together
with the fact that ∇f(x(µ)) + µx(µ) = 0, we obtain that

∇f(x(µ))−∇f(x∗) + µx(µ) = 0.

Similar to (b), multiplying both sides with x(µ)− x∗, we have by convexity of f
that

−µ(x(µ)− x∗)Tx(µ) = (x(µ)− x∗)T∇f(x(µ)) ≥ 0.

Hence we have that ∥x(µ)∥2 ≤ x(µ)Tx∗ ≤ ∥x∗∥∥x(µ)∥, which proves that ∥x(µ)∥ ≤
∥x∗∥ (for any µ > 0).
Now notice that to prove the claim in the question, we only need to show that for
any sequence µk → 0+, x(µk) converges to a minimizer x̄ of f(x) with minimal
Euclidean norm.
To see this, firstly notice that {x(µk)}∞k=1 is bounded, and hence it has a limit
point, i.e. there exists x̄ s.t. ∃ a subsequence ki with x(µki) → x̄. Moreover, for
any limit point x̄′ of x(µk), since f is C2, ∇f(·) is continuous, and hence we have
∇f(x̄′) = limi→∞∇f(x(µli)) = − limi→∞ µlix(µli) = 0 for some subsequence li.
The last equality comes from the fact that x(µli) is bounded and µli → 0+. Hence
we see that any limit point of x(µk) is an optimal solution. In addition, it also
comes with minimum Euclidean norm since ∥x(µ)∥ ≤ ∥x∗∥ for any minimizer x∗,



which implies that ∥x̄′∥ ≤ ∥x∗∥ also holds and hence x̄′ is a minimal Euclidean
norm minimizer of f(x).
Finally, it’s easy to show that the minimal norm solution is unique. To see
this, simply notice that if there are two minimal norm solutions x1 ̸= x2, then
(x1 + x2)/2 is also a minimizer of f(x) but has a smaller norm (unless x1 = x2),
which is a contradiction. Hence we see that any limit point of x(µk) is the same
minimal norm minimizer x̄, and since µk is an arbitrary sequence with µk → 0+,
we conclude that as µ → 0+, x(µ) converges to the unique minimizer of f(x)

with the minimal Euclidean norm.
(e) By the first-order optimality conditions, we have x1 = −x2 =

2
µ+4

. As µ→ 0, the
limit solution is x1 = −x2 =

1
2
.



4. (15’) (Affine-Scaling Interior-Point SD) Consider the conic constrained optimization
problem

min
x

f(x) s.t. x ≥ 0 (4)

where we assume the objective function f is first-order β-Lipschitz. Starting from
x0 = e > 0, consider the affine-scaling interior-point method as follows: at iterate
xk > 0 let diagonal scaling matrix D be

Dii = min{1, xk
i }

and
xk+1 = xk − αkD2∇f(xk),

with step-size
αk = min

{
1

β
,

1

2∥D∇f(xk)∥∞

}
. (5)

(a) (3’) Show that D2∇f(xk) is a descent direction.
(b) (3’) Show that xk+1 > 0 for all k = 0, 1, ....
(c) (6’) Show that

f(xk+1)− f(xk) ≤ min

{
− 1

2β
∥D∇f(xk)∥2∞,−1

4
∥D∇f(xk)∥∞

}
(d) (3’) Derive a iterative complexity bound for ∥D∇f(xk)∥∞ ≤ ϵ.

Solution: Here we treat the gradient vector as a column vector.

(a) Denote dk = −D2∇f(xk). By definition of D and the fact that xk > 0 one clearly
have D ≻ 0, and thus D2 ≻ 0. Hence dT

k∇f(xk) = −∇f(xk)D2∇f(xk) < 0 if
∇f(xk) ̸= 0. Hence dk is a descent direction if ∇f(xk) ̸= 0.

(b) We will prove the fact that xk > 0 for all k = 0, 1, . . . by induction. Clearly for
k = 0 one have x0 = e > 0 by assumption. Assume this fact holds for k, i.e.,
xk > 0, consider the (k + 1)-th iteration. It follows that the i-th component of
xk+1 satisfies

xk+1
i = xk

i −αk(D2∇f(xk))i ≥ xk
i −αk|(D2∇f(xk))i| = xk

i −αk(Dii)|(D∇f(xk))i|

Since Dii = min{1, xk
i } one have Dii ≤ xk

i , and thus

xk
i − αk(Dii)|(D∇f(xk))i| ≥ xk

i − αkxk
i |(D∇f(xk))i| = xk

i (1− αk(D∇f(xk))i|)

Note that Dii|∇f(xk)|i ≤ ∥D∇f(xk)∥∞, by definition of αk we obtain αkDii|∇f(xk)|i ≤
1
2
. Combining these results above yields xk+1

i ≥ 1
2
xk
i > 0. This concludes the in-

duction.



(c)(d) Since the function is first-order β-Lipschitz, for each step,

f(xk+1) ≤ f(xk)− (αkD2∇f(xk))T∇f(xk) +
β

2
(αk)2∥D2∇f(xk)∥22

= f(xk)− αk∥D∇f(xk)∥22 +
β

2
(αk)2∥D2∇f(xk)∥22

Since Dii ≤ 1 we have ∥D2∇f(xk)∥22 ≤ ∥D∇f(xk)∥22, and therefore

f(xk+1) ≤ f(xk)− αk∥D∇f(xk)∥22 +
β

2
(αk)2∥D∇f(xk)∥22

= f(xk)−
(
αk − β

2
(αk)2

)
∥D∇f(xk)∥22

(6)

Note that ∥D∇f(xk)∥22 ≥ ∥D∇f(xk)∥2∞. According to the scheme, the inequality
0 ≤ αk ≤ 1

β
always holds, which implies αk − β

2
(αk)2 ∈ [0, 1

2β
]. Therefore

f(xk+1) ≤ f(xk)−
(
αk − β

2
(αk)2

)
∥D∇f(xk)∥2∞ (7)

According to the step-size scheme (5), there are two cases:
• Case I: αk = 1

β
≤ 1

2∥D∇f(xk)∥∞ . In this case (according to (7)),

f(xk+1) ≤ f(xk)− 1

2β
∥D∇f(xk)∥2∞ (8)

• Case II: αk = 1
2∥D∇f(xk)∥∞ ≤

1
β
. In this case (according to (7)),

f(xk+1) ≤ f(xk)−
(
1− β

2
αk

)
1

2∥D∇f(xk)∥∞
∥D∇f(xk)∥2∞

= f(xk)− 1

2

(
1− β

2
αk

)
∥D∇f(xk)∥∞

≤ f(xk)− 1

4
∥D∇f(xk)∥∞

(9)

where in the last inequality we used the fact that αk ≤ 1
β
.

Combining the two cases immediately tells that the method will identify an xk

such that ∥D∇f(xk)∥∞ ≤ ε within max
{

4(f(x0)−f∗)
ε

, 2β(f(x
0)−f∗)
ε2

}
steps.



Computational Homework:

5. (10’) There is a simple nonlinear least squares approach for Sensor Network Localiza-
tion:

min
∑

(ij)∈Nx

(
∥xi − xj∥2 − d2ij

)2
+
∑

(kj)∈Na

(
∥ak − xj∥2 − d2kj

)2 (10)

which is an unconstrained nonlinear minimization problem.

(a) (5’) Apply the Steepest Descent Method, starting with either the origin or a
random solution as the initial solution for model (10), to solve few selected SNL
instances you created in HW1. Does it work?

(b) (5’) Apply the same Steepest Descent Method, starting from the SOCP or SDP
solution (which may not have errors) as the initial solution for model (10), to
solve the same instances in (a). Does it work? Does the SOCP or SDP initial
solution make a difference?

Solution:

(a) 1 For the data from HW2, we obtain the following result:

Case# Iteration# ∥g∥ ∥x− x∗∥

0 95 7.02937300001e-07 1.31526462014
1 96 8.49323630054e-07 0.4132505402
2 66 7.91874506287e-07 2.06534769155
3 46 7.36718181322e-07 0.41958131873
4 211 8.77641007091e-07 0.932793325729
5 2692 9.97830126784e-07 0.176389149702
6 91 7.82269895272e-07 1.23784084017
7 227 9.45751060917e-07 1.18611529159
8 61 7.82206062276e-07 1.21552072733
9 308 9.77360601169e-07 1.4142135577e-08
10 41 6.78613735484e-07 0.175096086606
11 209 9.99876636385e-07 0.806543186885
12 357 9.99499535795e-07 0.575181360423
13 1039 9.76516842978e-07 0.219059563814
14 104 8.72745816205e-07 0.849779558494
15 293 9.5217523952e-07 6.32455531876e-08
16 24 5.27755778653e-07 0.982261236774
17 2965 9.95270899503e-07 2.23606798625e-08

1Adapted from student solutions last year. Thanks to Kailai Xu and Vivienne Liu.



18 65 7.77092719272e-07 3.51732255203
19 27 9.54216094557e-07 0.815901373748
20 378 9.87688019158e-07 1.99999999895e-08
21 195 8.62342659222e-07 0.724194649238
22 1552 9.91882305809e-07 2.99999999287e-08
23 285 9.97067679627e-07 1.12545484854
24 89 9.75161710255e-07 1.59704634344
25 147 9.72828975705e-07 0.740145519253
26 99 8.13831949701e-07 1.50224641879
27 309 9.79323149256e-07 1.02081475561
28 226 9.2885990418e-07 0.721344277403
29 654 9.79829401167e-07 5.99999999684e-08
30 988 9.94532217468e-07 0.109547519934
31 364 9.68201976257e-07 0.590655437691
32 510 9.93023652421e-07 0.490007256859
33 77 9.07378070571e-07 0.61726817244
34 2134 9.95071239091e-07 0.0630439420689
35 2390 9.92962934133e-07 0.309758188886
36 163 9.82627021908e-07 0.0
37 516 9.84861710495e-07 4.12310563018e-08
38 204 9.48124819317e-07 0.282016214286
39 215 9.18247954374e-07 0.880287444236
40 190 9.99061485568e-07 0.153819671152
41 519 9.54957321284e-07 0.246353191122
42 53 6.69096706371e-07 1.02024518653
43 98 8.84224787798e-07 5.00000000292e-08
44 66 8.19316713216e-07 1.1314524184
45 160 9.58536768051e-07 0.449272985057
46 666 9.74917392674e-07 3.16227766509e-08
47 181 9.27183274439e-07 0.323240948876
48 67 9.77719512522e-07 1.22810067024
49 53 8.86323005847e-07 9.99999993923e-09

We can see from the table:
– The algorithm do converge for all the cases.
– The average iteration number is larger in the latter case (HW2).
– However, the algorithm do not necessarily converge to the real

location. Only in a few cases(those in RED) turn out to be exact.
This depends on the locality of the original problem.

(b) Starting from the solutions of SOCP/SDP relaxation obtained from CVX as we



did in HW2, we see that if SOCP/SDP has already (almost) exactly recovered
the true solution, then the SDM applied to the unconstrained problem here does
improve the accuracy further. Also, starting from SDP tends to give more accu-
rate results (and also more cases where we can refine the solution, because SDP
exact recovery is more common than SOCP, as we have seen in HW2 problem 9).
However, if SOCP/SDP already fails miserably, then SDM also doesn’t help at
all. This is expected as we first used a more accurate method (CVX solvers, which
are typically second-order algorithms) and then try to refine it with a first-order
solver SDM. The code is listed in Appendix.
Remark. We will accept any reasonable solutions showing sufficient efforts, and
the results above are just for references.



6. (30’) (Multi-Block ADMM)

Part I Implement the ADMM to solve the divergence example:

minimize 0 · x1 + 0 · x2 + 0 · x3

subjectto

1 1 1

1 1 2

1 2 2

x1

x2

x3

 = 0

(a) (5’) Try β = 0.1, β = 1, and β = 10, respectively. Does the choice of β make a
difference?

(b) (5’) Add the objective function to minimize

0.5(x2
1 + x2

2 + x2
3)

to the problem, and retry β = 0.1, β = 1, and β = 10, respectively. Does the
choice of β make a difference?

(c) (5’) Set β = 1 and apply the randomly permuted updating-order of x (discussed
in class) to solving each of the two problems in (a) and (b). Does the iterate
converge?

Part II Generate some (feasible) convex QP problems with linear equality con-
straints, say 30 variables and 10 constraints (i.e., A ∈ R10×30),

minimize 1
2
xTQx

subject to Ax = b, x ≥ 0.

(d) (5’) Divide the variables of x into 5 blocks and apply the ADMM with β = 1. Does
it converge? (You may construct 5 different blocks and conduct the experiments.)

(e) (5’) Apply the randomly permuted updating-order of the 5 blocks in each iteration
of the ADMM. Does it converge? Convergence performance?

(f) (5’) Consider the following scheme – random-sample-without-replacement: in
each iteration of ADMM, randomly sample 6 variables for update, and then ran-
domly select 6 variables from the remaining 24 variable for update, and... , till all
30 variables are updated; then update the multipliers as usual. Does it converge?
Convergence performance?

Solution: First of all, we would like to comment that since for each sub-step, the
minimization problem is a convex QP, and hence we can simply solve it by taking the
gradient and setting it to 0, which reduces to the problem to solving a linear system.
Hence in this problem, either you apply a gradient step to the sub-problem or solve it
directly, you never need to use some other general optimization solvers.



(a) We Implement the ADMM to solve the divergence example in Lecture 15. As
shown in figure 1, the choice of β doesn’t really make a difference. For all three
choices of β, the procedure diverges, especially they diverge in a very similar
geometric rate.

1 rng (1) ; A = [ 1 , 1 , 1 ; 1 , 1 , 2 ; 1 , 2 , 2 ] ; LA = t r i l (A^2) ; UA = LA-A^2;
2 f i gu re () ;
3 f o r beta = [ 0 . 1 , 1 , 1 0 ]
4 M_lhs = [LA∗beta , zeros (3 ,3) ;A∗beta , eye (3) ] ; M_rhs = [UA∗beta , A; ...

zeros (3 ,3) , eye (3) ] ;
5 M = inv (M_lhs)∗M_rhs ; x = rand (3 ,1) ; y = rand (3 ,1) ; xnorm = [ ] ;
6 f o r time = 1:1000
7 xynew = M∗[ x ; y ] ; x = xynew (1 :3 ) ; y = xynew (4 :6 ) ; xnorm = [ xnorm , norm(x) ] ;
8 end
9 semilogy (xnorm) ; hold on

10 end
11 legend ( '\beta = 0.1 ' , ' \beta = 1 ' , ' \beta = 10 ' ) ;
12 xlabe l ( ' I t e ra t i ons ' ) ; y labe l ( 'x Norm ' ) ; y labe l ( 'x Norm ' ) ;
13 t = t i t l e ( 'ADMM: divergence example in Lecture 15 ' ) ;

Figure 1: ADMM (a): the divergence example in Lecture 15



(b) After we add 0.5(x2
1 + x2

2 + x2
3) to the objective function, the choice of β makes

a difference. In figure 2, it appears that the procedure diverges for β = 10, and
converges for β = 0.1 and β = 1. This time the procedure can converge for
some β and hence, to a certain extent, better than the previous one in (a). It is
because the objective function becomes strictly convex. The step size corresponds
to β = 10 is too large so that the procedure does not converge. At the same time,
β = 0.1 corresponds to a much smaller step size, making the convergence rate not
as good as the β = 1 one. Still, both cases converge geometrically.

1 rng (1) ; A = [ 1 , 1 , 1 ; 1 , 1 , 2 ; 1 , 2 , 2 ] ; LA = t r i l (A^2) ; UA = LA-A^2;
2 f i gu re () ;
3 f o r beta = [ 0 . 1 , 1 , 1 0 ]
4 M_lhs = [LA∗beta + eye (3) , zeros (3 ,3) ;A∗beta , eye (3) ] ; M_rhs = [UA∗beta , A; ...

zeros (3 ,3) , eye (3) ] ;
5 M = inv (M_lhs)∗M_rhs ; x = rand (3 ,1) ; y = rand (3 ,1) ; xnorm = [ ] ;
6 f o r time = 1:1000
7 xynew = M∗[ x ; y ] ; x = xynew (1 :3 ) ; y = xynew (4 :6 ) ; xnorm = [ xnorm , norm(x) ] ;
8 end
9 semilogy (xnorm) ; hold on

10 end
11 legend ( '\beta = 0.1 ' , ' \beta = 1 ' , ' \beta = 10 ' ) ; x labe l ( ' I t e ra t i ons ' ) ; y labe l ( 'x ...

Norm ' ) ;
12 t = t i t l e ( 'ADMM: Adding 0 .5(x_1^2 + x_2^2 + x_3^2) to object ive ' ) ;

Figure 2: ADMM (b): add 0.5(x2
1 + x2

2 + x2
3) to objective



(c) See figure 3 and figure 4 After randomly permuting the updating-order of x, for
both problems in (a) and (b), the iterates converge. The one corresponds to (a)
converges slower than the that to (b), as the problem is more ”convex” for (b).
Both converge in roughly a geometric rate.

1 A = [ 1 , 1 , 1 ; 1 , 1 , 2 ; 1 , 2 , 2 ] ; beta = 1;
2 x = rand (3 ,1) ; y = rand (3 ,1) ; xnorm = [ ] ;
3
4 f o r time = 1:1000
5 r_index = randperm (3) ;
6 A_2 = A^2; LA = t r i l (A_2( r_index , r_index ) ) ;
7 [ t , r_rank ] = sort ( r_index ) ;
8 LA = LA(r_rank , r_rank) ; UA = LA-A^2;
9 M_lhs = [LA∗beta , zeros (3 ,3) ;A∗beta , eye (3) ] ;

10 M_rhs = [UA∗beta , A; zeros (3 ,3) , eye (3) ] ;
11 M = inv (M_lhs)∗M_rhs ;
12 xynew = M∗[ x ; y ] ; x = xynew (1 :3 ) ; y = xynew (4 :6 ) ;
13 xnorm = [ xnorm , norm(x) ] ;
14 end
15 f i gu re () ;
16 semilogy (xnorm) ; legend ( '\beta = 1 ' ) ; x labe l ( ' I t e ra t i ons ' ) ; y labe l ( 'x Norm ' ) ;
17 t = t i t l e ( 'ADMM: randomly permuted updating - order - (a) ' ) ;
18
19 A = [ 1 , 1 , 1 ; 1 , 1 , 2 ; 1 , 2 , 2 ] ; beta = 1;
20 x = rand (3 ,1) ; y = rand (3 ,1) ; xnorm = [ ] ;
21 f o r time = 1:1000
22 r_index = randperm (3) ;
23 A_2 = A^2; LA = t r i l (A_2( r_index , r_index ) ) ;
24 [ t , r_rank ] = sort ( r_index ) ;
25 LA = LA(r_rank , r_rank) ; UA = LA-A^2; LA = LA+eye (3) ;
26 M_lhs = [LA∗beta , zeros (3 ,3) ;A∗beta , eye (3) ] ;
27 M_rhs = [UA∗beta , A; zeros (3 ,3) , eye (3) ] ;
28 M = inv (M_lhs)∗M_rhs ;
29 xynew = M∗[ x ; y ] ; x = xynew (1 :3 ) ; y = xynew (4 :6 ) ;
30 xnorm = [ xnorm , norm(x) ] ;
31 end
32 f i gu re () ;
33 semilogy (xnorm) ; legend ( '\beta = 1 ' ) ; x labe l ( ' I t e ra t i ons ' ) ; y labe l ( 'x Norm ' ) ;
34 t = t i t l e ( 'ADMM: randomly permuted updating - order - (b) ' ) ;



Figure 3: ADMM (c): randomly permuting the updating-order

Figure 4: ADMM (c): randomly permuting the updating-order



(d)-(f) In figure 5, we consider three procedures. We’ll refer to them as procedure 1,2,3
respectively.
1. Divide the variables of x into 5 blocks and apply the ADMM with β = 1. The
procedure does converge.
2. Apply the randomly permuted updating-order of the 5 blocks in each iteration
of the ADMM. The procedure also does converge.
3. new scheme random-sample-without-replacement: in each iteration of ADMM,
randomly sample 6 variables for update, and then randomly select 6 variables from
the remaining 24 variable for update, and... , till all 30 variables are updated;
then update the multipliers as usual. The procedure also converges.
All of the three converge in geometric rate. The new scheme-random-sample-
without-replacement appears to converge the fastest, followed by no permutation
.
Note that the yellow line doesn’t appear to move after 350 iterations, this may
be due to that the ”true value” of x we used is not perfectly accurate.

1 %%construct the problem
2 A = rand (10 ,30) ; Q_half = rand (30 ,30) ;
3 x_0 = rand (30 ,1) ; b = A∗x_0; Q = Q_half '∗ Q_half ; LU = Q + A'∗A;
4 %%use cvx to f ind the true value
5 cvx_begin quiet
6 var iab le x_true (30)
7 minimize ( x_true '∗Q∗x_true )
8 subject to
9 A∗x_true == b

10 cvx_end
11
12 a=ones (6 ,6) ; n=5;
13 AA=repmat(a , n , 1 ) ; BB=mat2cell (AA,6∗ ones (1 ,n) ,6) ;
14 Diagonal_B=blkdiag (BB{:}) ; lower_B = t r i l ( ones (30 ,30) ) + tr iu (Diagonal_B , 1 ) ;
15
16 %%Without random permutation
17 beta = 1; x = rand (30 ,1) ; y = rand (10 ,1) ; xnorm1 = [ ] ;
18 f o r time = 1:1000
19 LA = lower_B .∗LU; UA = LA-LU;
20 M_lhs = [LA, zeros (30 ,10) ;A, eye (10) ] ;
21 M_rhs = [UA, A' ; zeros (10 ,30) , eye (10) ] ;
22 M_b = [A'∗b ; b ] ;
23 xynew = inv (M_lhs) ∗(M_rhs∗ [ x ; y]+M_b) ; x = xynew(1 :30) ; y = xynew(31:40) ;
24 xnorm1 = [ xnorm1 , norm(x - x_true ) ] ;
25 end
26
27 %%With random permutation of block
28 x = rand (30 ,1) ; y = rand (10 ,1) ; xnorm2 = [ ] ;
29 f o r time = 1:1000
30 group_index = randperm (5) ;
31 r_index = reshape (6∗repmat( group_index ,6 ,1 ) + repmat ( ( 0 : 5 ) ' ,1 ,5) -5 ,1 ,30) ;
32
33 LA = lower_B . ∗ (LU( r_index , r_index ) ) ; [ t , r_rank ] = sort ( r_index ) ;
34 LA = LA(r_rank , r_rank) ; UA = LA-LU;
35
36 M_lhs = [LA, zeros (30 ,10) ;A, eye (10) ] ;



37 M_rhs = [UA, A' ; zeros (10 ,30) , eye (10) ] ;
38 M_b = [A'∗b ; b ] ;
39
40 xynew = inv (M_lhs) ∗(M_rhs∗ [ x ; y]+M_b) ; x = xynew(1 :30) ; y = xynew(31:40) ;
41 xnorm2 = [ xnorm2 , norm(x - x_true ) ] ;
42 end
43
44 %%new scheme random- sample - without - replacement
45
46 x = rand (30 ,1) ; y = rand (10 ,1) ; xnorm3 = [ ] ;
47
48 f o r time = 1:1000
49 r_index = randperm(30) ;
50
51 LA = lower_B . ∗ (LU( r_index , r_index ) ) ;
52 [ t , r_rank ] = sort ( r_index ) ; LA = LA(r_rank , r_rank) ; UA = LA-LU;
53
54 M_lhs = [LA, zeros (30 ,10) ;A, eye (10) ] ;
55 M_rhs = [UA, A' ; zeros (10 ,30) , eye (10) ] ;
56 M_b = [A'∗b ; b ] ;
57
58 xynew = inv (M_lhs) ∗(M_rhs∗ [ x ; y]+M_b) ; x = xynew(1 :30) ; y = xynew(31:40) ;
59 xnorm3 = [ xnorm3 , norm(x - x_true ) ] ;
60 end
61
62 %%plot
63 f i gu re () ; semilogy (xnorm1) ; hold on
64 semilogy (xnorm2) ; hold on
65 semilogy (xnorm3) ;
66
67 legend ( 'No random permutation ' , 'Random permutation of blocks ' , 'New scheme : ...

random- sample - without - replacement ' ) ;
68 xlabe l ( ' I t e ra t i ons ' ) ; y labe l ( ' | | x -x_0 | | ' ) ;
69 t = t i t l e ( 'ADMM: With and without random permutations ' ) ;



Figure 5: ADMM: Comparison of convergence speed


