Optimization Methods for Data Science, Machine Learning and Al
Prof. Yinyu Ye

Homework Assignment 2 Sample Solution

Individual Homework (110’):

1. (15’) Consider problem 5 of Homework Assignment 1 where the second-order cone is
replaced by the p-th order cone for p > 1:

minx 2%1 + X9 + X3
s.t. ZE1+JI2+ZE3:1,
z1 — [|(z2, @3)lp = 0.

(a) (5") Write out the conic dual problem.
(b) (5’) Compute the dual optimal solution (y*,s*).

(c¢) (57) Using the zero duality condition to compute the primal optimal solution x*.
Solution:

(a) Following lecture note 3, slide 19, the dual is
max y st yets=(21L1T, 51— (52 55)lly >0

or
max y st. (2—y)— (21 —y)1>0

1,1 _
Whereg+a—1.

(b) If y > 1, the constraint can be written as (2 —y) — 2%/9(y — 1) > 0 so that the
maximal value is

*

2 4 21/4
Y=

=Ty
which is indeed > 1. Hence there is no need to consider the other case when
y<1. And s* = (2—y*1—y1—y)T. Forp=1,y* =3/2; p=2, y* =2,
and for p = oo, y* = 4/3.

(¢) From the zero duality condition, we have 2z} + x5 + 2§ = y*, and together with
the constraints x7 + x5 + 23 = 1, we have
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so that it is feasible and, consequently, optimal.

This optimal solution is also unique, as we have
2l/q * * *, ok 1/q *, ok

o = o < e e o DIl = 247 a3 25)

by Holder’s inequality, which implies that

21/q

and the equality is obtained iff x5 = x5 = SEEIOR

2. (20’) Consider the distributionally robust optimization (DRO) problem

minimizexex [maxaco Y (Br + di)h(x,&)] 1)

where the distribution set D is now given by

N
D={d: > dy=0, |||’ <1/N, pp+dy >0, Vk.}

k=1
(a) (3’) What is the interpretation of D? Answer within 2 sentences.

(b) (4) Represent D in standard conic form. (Hint: one set of the slack variables are
in the second-order cone and the others are in the non-negative orthant cone.)

(¢) (77) Construct the conic dual of the inner max-problem.
(d) (6”) Replace the inner max-problem (1) by its dual, and simplify the DRO problem
as much as possible.
Solution:
(a) D denotes a set of bounded perturbations d (or slack variables) which keep the
resulting py := pr +di, Kk =1,..., N a probability vector.

(b) The conic representation of D is

N
{(do;d)idoz VN> di = 0,pr + di = pr,pr > 0, ||d| Sdo}
k=1



()

Denoting h := (h(x,&);...;h(x,&y)) and P := (P1;...;Pn), and ignoring the
constants Z]kvzl prh(x, &), the primal problem can be abbreviated as the following
CLP:

min — h’d
do;d;y

st. dy=1/VN,eld=0,d—y = —p
(do;d) € SOCNH! y >0

Suppose that Ag, A1, Ay are the multipliers for the corresponding equality con-
straints, then the dual problem is

min  \o/VN — Mp

A05A1,A2
s.t. Ao(1;0;0) 4 A1 (0;€50) + Ag(0; I; =) — (s0; 85 2) = (05 h;0)
(50;8) € SOCN*T 7z >0

or equivalently,

i A N — \'s
Jmin o/ VN = AJp

s.t. ||Adre+ A —h| < Ay
A2 <0
which can be further simplified to
min Are £ — h|[/VN - \lp
s.t. A <0

Replacing the inner-max problem with its dual in (c), we can reformulate the
DRO problem as follows:

min ~ p’h+ ||[Are + A — h||/VN = \Ip

z€X,A1,\2
S.t. )\2 S 0

where p and h are defined as in (¢). When x € X and Ay < 0 are fixed, \; can
be partially solved out as

1 = k T
A= ;(h(%fk) —A) =e (h—X)/N

and hence we finally arrive at
min  p"h+ || H,(h — X)||/VN — A]p
zeX, A2

s.t. )\2 S 0

66T

where H,, := I — — 1is the centralization matrix.



3. (10") Consider the SOCP relaxation in problem 8 of Homework Assignment 1:

miny 07x
st lx—al? < d?, i=1,2,3,

where x € R2.

(a) (47) Write down the first-order KKT optimality conditions.

(b) (3’) Interpret (with no more than 2 sentences) the three optimal multipliers when

the true position of the sensor is inside the convex hull of the three anchors.

(c) (3") Could the true position x € R? of the sensor satisfy the optimality conditions

if it is outside the convex hull of the three anchors? What would be the multiplier

values?

Solution: Let the Lagrangian or dual multipliers be y; < 0,7 = 1,2, 3.

(a) Then, writing down the (first-order) KKT conditions, the optimal solution would

satisfy
Zyi(x —a;) =0,

and complementarity

yi(d — ||x —a;|*) =0, i =1,2,3.

(b) When the true position x € R? is inside the convex hull, then y; represents a force

pulling X from a;. The three forces balance at X as the conditions indicated. In

— Yiai1tysaz+ysas

particular, when y;’s are not all zero, then we have x
Yy1+y2+ys3

Moreover, if all the forces are nonzero, then we find the correct solution. This

is because the complementarity conditions then indicate that each constraint is

tight, that is,
d? —||x —a*=0, Vi=1,2,3

which mean that you find the x that satisfies all the original equality constraints.

In this case, the relaxation is exact.

(c) It still satisfies the optimality conditions. But all multipliers must have 0 values,

— Y1ai1tysaz+ysas

since otherwise we will have x
y1+y2+y3

with y; < 0, which is a point inside

the convex hull. This leads to a contradiction. In this case, the x you find may

not have all the constraints active, i.e.
&} —|lx —al* =0, Vi=1,2,3

may not all hold.



4. (10’) Consider the following parametric QCQP problem for a parameter £ > 0:
min (2 — 1)% + 23
st —o 42> 0

(a) (5) Is x = 0 a first-order KKT solution?

(b) (5") Is x = 0 a second-order KKT necessary or sufficient solution for some value
of K7

Solution: Define f(z) := (1 — 1)? + 23, c¢(z) = —x; + % Then the Lagrangian
function for this problem is

22
Lo = f(0) = eli) = (a1 = 1P+ 3 =y (= + 2]y 20
(a) Firstly, z = 0 is feasible with ¢(z) = 0. Moreover,

Vf(0) = (=2 0), Ve(0)= (=1 0)

Thus y = 2 makes V f(0) = 2V¢(0) so that z = 0 is a first-order KKT solution.

(b) Since the constraint is active, the tangent space is
T={d: de R* (-1, 0)d=0}.
The second-order necessary condition implies that for all d € T'

d'V2L(z,5)d > 0,

2 0
V2L(0,2) =
02-4

Thus, when s > 2, the Hessian matrix of the Lagrangian is PSD so that x = 0 is

where

a second-order KKT solution. Otherwise, x = 0 cannot be a local minimizer.
5. (20’) (Central-Path and Potential) Given standard LP problem

minimizexepn ¢l x

(LP)
subject to Ax=b, x>0.

The Analytic Center of the primal feasible region F, := {x : Ax = b,x > 0} is
defined as the solution of the following linear-constrained convex optimization problem:

minimizeycge  — Z log z;,
= (PB)

subject to Ax=b, x>0.



The Central Path x(u) of (LP) is defined as the solution of the following Barrier LP
problem (where p > 0 is a parameter):

. T
minimizeyegn € X — W0 - E log x;,
= (BLP)

subject to Ax=b, x>0.

Part I Now consider the following example:
minimizeyecps T1 + X2,
subject to  x; + 29 + 23 = 1, (2)
(1,29, 23) > 0.

Y

(4’) What is the analytic center of the primal feasible region in (2)?
(b) (4’) Find the central path x(u) = (z1(p), z2(p), x3(p)) for (2).

(4’) Show that as p decreases to 0, x(u1) converges to the unique optimal solution
of (2).

Part II Consider another example with different objective but the same feasible
region:
minimizeyecgs 1

subject to x1 + 23+ 23 =1 (3)

(.CEl, T, 513'3) Z 0

(d) (4) Find the central path x(u) = (z1(p), x2(p), x3(1)) for (3).
(e) (4’) Which point does the central path converge to now (as u — 0+)7

Solution:

(a) The analytic center is the vector that minimizes the potential function:

3
— Z log z;
j=1

and satisfies 25:1 x; =1, x > 0. Thus the analytic center is (1/3,1/3,1/3).
(b) From the central path condition we derive a quadratic equation for z:

Taking the non-negative root gives

31— /9?12

T 1 .

Other conditions give o = 1 and 3 =1 — 2.




(c) The set of optimal solution is a singleton (0;0;1). When u decreases to zero,
we know from the expression that z1(u) = z2(p) — 0. Also, since ), z1 =1
always holds, we know that x3 — 1. We know that (0,0, 1) is going to be the
optimal solution, because f(z) = x1 + xzo > 0, and (0,0, 1) attains the value 0.
The uniqueness is easily proved: to attain optimal value, z1, x5 has to be zero, so
x3 have to be 1, because of the equality constraint.

Thus, as p goes to zero, x(u) converges to the unique optimal solution.
(d)(e) Just repeat the above stuff. The only thing to be noted is that now the optimal

solution to the original problem is not unique, so the problem description in (c)
needs to be slightly changed. But everything else is the same.

6. (15") Consider the following SVM problem, where p > 0 is a prescribed constant:

min 4 pl|x|?

st. alx+xo+ B> 1, Vi,
bix+xo—f < —1, Y,
B> 0.

(a) (8’) Write out the Lagrangian dual problem of the SVM problem. Write it as
explicit as possible (at least remove the inner minimization). (Hint: You may
want to consider two separate cases: =0 and p > 0)

(b) (7’) Suppose that we have 6 training data in R?: a; = (0;0), as = (1;0), a3 =
(0;1) and by = (0;0), by = (—1;0), b3 = (0; —1). Use the optimality conditions
(or any approach you want) to find optimal solutions for g = 0 and p = 107,
respectively. Are the two optimal solutions unique for the given u? Prove your
claim.

Solution:

(a) Let the multipliers for a; constraints be y¢ > 0 and those for b; constraints be
yé’ <0, and B3>0 be y® > 0. Then, the Lagrangian function is

L(x, w0, 8,y%, 4", y") = Bullel’ =D i (o] v4zo+B—1) =Y y}(b] w+wo—p+1)—y’B.
i J

The dual must have constraint
SUEDIIEY
7 J

and

L=y => yi+> =0,
i J



since otherwise the primal can choose xy or 8 to make the Lagrangian function
unbounded from below.

1) If =0, then we also have
E yia; + E y?bj:(),
( J

since otherwise the primal can choose x to make the Lagrangian function un-
bounded from below.

The dual problem is thusly

max Ziyzq_zj‘y?7

st Yyt Yy =0,
L—yf =37yt + 32,42 =0,
Zz‘ yi'a; + Zj ygbj =0,
y* >0, 4" <0, y? > 0.

2) For p > 0, the primal minimization of the Lagrangian function would be § = 0

2ur = nyai + Z y?bj.
( J

and

Thus,
oo y) = —iu}jyfai YR T )

and the dual problem is

max  ¢(y*, ", y”)

st Yyt =0,
L—y? =350 + 247 =0,
y* >0, 4" <0, y? >0.

Firstly, we show that for the set of a;,b; given in this problem, any feasible
satisfies f > 1. To see this, suppose on the contrary that § < 1. Then for
a; = by, we have

alx+z0>1—8>0> 148> blx+ x,

which is a contradiction. Hence the optimal value S+ pu/||z||? of the primal objective
function is at least 1. Moreover, it can always be achieved by simply setting 5 = 1,
x = 0 and xy = 0. Hence we know that the optimal value is always 1 no matter
whether = 0 or not.

1) For = 0, any point of the form g = 1, x = ({;t), o0 = 0 with ¢ > 0
is optimal, as the objective value is 1 and the constraints are satisfied. So the
optimal solution is not unique.



2) For p > 0, a point is optimal iff § = 1 and x = 0, since otherwise we will have
B+ pl|z]|* > B > 1. In this case, we need xq > 0 > 19, and hence zy = 0. Hence
we obtain a unique optimal solution § =1, x =0 and 2y = 0.

7. (20") Consider a generalized Arrow—Debreu equilibrium problem in which the mar-
ket has n agents and m goods. Agent ¢, i = 1,...,n, has a bundle amount of w; =
(Wi, Wiz, . . ., Wi) € R goods initially and has a linear utility function whose coef-
ficients are u; = (w1, U2, - .., Uim) > 0 € R™. The goal is to price each good so that
the market clears. Note that, given the price vector p = (p1,p2, ..., pm) > 0, agent i’s
utility maximization problem is:

maximize ulx;
subject to p’x; < p’'w;

XZEO

(a) (5”) For a given p € R™, write down the optimality conditions for agent i’s utility
maximization problem. Without loss of generality, you may fix p,, = 1 since the
budget constraints are homogeneous in p.

(b) (5") Suppose that p € R™ and x; € R™ satisfy the constraints:

n n
E X; = E Wi,
i=1 i=1

T

u; X; .
pTWipj Z Uy, \V/l,],
p >0,
X; > 0, V.

Show that p is then an equilibrium price vector.

(c) (5”) For simplicity, assume that all u;; are positive so that all p; are positive.
By introducing new variables y; = log(p;) for j = 1,...,m, the conditions can be
written as follows:

min 0
st Y XK= W
log(ulx;) — log (O")L, wire¥) +y; > log(uy;) Vi, j
xi; > 0, Vi, j
Show that this problem is convex in z;; and y;. (Hint: Use the fact that
log (3,2, wire¥*) is a convex function in the y;’s.)

(d) (") Consider the Fisher example on Lecture Note with two agents and two goods,
where the utility coefficients are given by

w = (2;1) and uy=(3; 1),



while now there are no fixed budgets. Rather, let
w; = (1; 0) and wy=(0; 1)

that is, agent 1 brings in one unit good x and agent brings in one unit of good y.
Find the Arrow-Debreu equilibrium prices, where you may assume p, = 1.

Solution:

(a)

Notice that here p is fixed, and hence the problem is simply an LP. Writing down
the primal feasibility, dual feasibility and zero duality gap conditions, we obtain:

w, < Np, N>0, N-plwi=ulz, x>0, plz; <plw.

Alternative solution: write down the KKT conditions — the zero duality gap
condition \; - pTw; = u;[:cZ will be replaced by the zero gradient condition for the
Lagrangian. Notice that these are equivalent.

This proof is identical to the Lecture Note #5 for Fisher equilibrium where scalar
w; is substituted by p’w;.

In particular, we simply check that x; are all optimal for the given p in their own
utility maximization LPs, i.e. we check that the optimality conditions in (a) are
all satisfied.

Firstly, define \; := ;L;Z; Then obviously we have A; > 0 and \;p > u; by the
second set of constraints in (b). Moreover, by definition, we have A\jpTw; = u’ z;,

and x; > 0 is satisfied automatically by the third set of constraints in (b).
It remains to check that pz; < pTw;. To see this, multiply both sides of the first

set of constraints in (b) by p’, we have

n n

S e = 30t

i=1 1=1

On the other hand, multiplying both sides of the second set of constraints in (b)
by z; and sum over j, we have
ul'x;

1 vt T T
pTw»p Ty 2> U X
(2

and since u; > 0 by assumption, we have Z%T—;i, p; both strictly large than 0 (since
otherwise the second set of constraints in (b) would be violated). In particular, we
have ulx; > 0, and hence we can divide it on both sides of the above inequality,
and obtain that p’z; > p"w;. Combining this with the fact that Y .  p'a; =
S plw;, we conclude that pw; = p"x; > p'a;, which finishes our proof. [



(c) We first observe that the function log(u?z;) is concave in z;, and that the function
g : R™ — R given by g(y) = log (> -, wike? ) is convex in y. The former is
obvious. To establish the latter, we compute:

ag wij eYi

m
= — where S = E wye¥*

8yj S —1
%9 Swie¥ gy — wijwipe’ elr
Yk 52

(Optional) We show that the Hessian matrix V2g(y) is positive semidefinite by
showing that it is symmetric diagonally dominant, and that its diagonal entries

are non—negative. The symmetry of V?¢(y) is obvious. Now, for all j =1,...,m,
we have:
) 2 7 (2 2 1 7
kikAj Oyjye| S kikAj S dy;
i.e. V3¢g(y) is diagonally dominant. Moreover, since w; > 0 for all i = 1,...,n,
we have:
g 1

1
(Sw;je? — w?jezyj) =% Z wie? >0
kik#£j
for all j = 1,...,m. It follows that V2g(y) = 0, which in turn implies that g is
convex. Hence, we conclude that the inequalities:

a2~ S

log <Z wikey’“> — log (u;fa;l) —vy; < —log(u;j) Vi, j
k=1

define a convex set. As the remaining constraints and the objective function are
linear, we conclude that the problem is a convex minimization problem.

(d) The problem reduces to finding p,, =1, y1, z2,y2 > 0 with p, = 1, such that:

T+ a9 =1
y1+y2=1

21+

Dz
21+

Pz
3T + Yo

Dy
3T + Y2

Py

> 2

r

py =1

Dz > 3

py =1



Then, you will find (either by taking a guess from the numerical solutions, or
follow some case-by-case analysis arguments that we will elaborate on in the
coming problem session on Feb. 16):

px:27 py:17 1’1:1/2, y1:17 1'2:1/2’ y2:0

8. First, we reformulate this problem in a standard SDP form. Since A = {a;;}?,_, is not
a zero matrix, we first assume a1 # 0. Then, the dual problem can be reformulated
as

min(S — C, bey;)
s.t. <S — C, a11€e1r — aijeij/alﬁ = O, V1 <1< j < 37
S =0,

where e;; is a matrix with value 1 at (4, j) entry and zero otherwise. Here, the first
constraint comes from Ay + S = C. Next, we apply Caratheodory’s theorem to draw
the conclusion. Notice that the condition is satisfies automatically when i = j = 1.
We eliminate this constraint, and this new SDP problem only has 5 constraints. By
Caratheodory’s theorem, the rank r of one optimal solution satisfies

r(r+1) <10,

which implies r < 2.

Moreover, the location of the non-zero entry of A will not affect the following proof.
Thus, we finish the proof.



Groupwork (40’) (group of 1-4 people):

9. (5") Let {(a;,¢;)}™, be a given dataset where a; € R", ¢; € {£1}. In Logistic Regres-
sion (LR), we determine 2y € R and x € R™ by maximizing

11 ; 11 1
oo L+exp(—ajx—m) ) \ 1 1+exp(alx+az) |

which is equivalent to maximizing the log-likelihood probability

— Z log (1 + exp(—a; x — x¢)) — Z log (1 + exp(a] x + z9)) .

i,ci=1 1,ci=—1

In this problem, we consider the quadratic regularized log-logistic-loss function
f(x,x0) = Z log (1 + exp(—a; x — z9))+ Z log (1 + exp(a; x + z))+0.001-[|x||3.
ici=1 ici=—1
Consider the following data set
a; = (0;0), a;=(1;0), a3 =(0;1), a; = (0;0), as=(—1;0), ag = (0;—1),
with label
co=cp=c3=1, cy=c5=c5=—1

use the KKT conditions to find a solution of min f(x,xy). You can either solve it
numerically (e.g., using MATLAB fsolve) or analytically (represent the solution by a
solution of a simpler (1D) nonlinear equation).

Solution:

Since the problem is unconstrained, the KKT condition is nothing but setting V f (x, )
to zero. Let x = (x1;23), the KKT condition can be written coordinate-wise as

-1 -1 -1 1 1 1

= + + + + +
1+exp(zg) 1+4+exp(xzo+xz1) 1+exp(zo+ax2) 1+4+exp(—z0) 1+4+exp(—z0+xz1) 1+ exp(—zo+ x2)
1 1
0=— - + 0.002z
1+exp(zo+21) 14 exp(—zo+z1) '
1 1
0=— — + 0.002z2

1+ exp(xo + z2) 1+ exp(—xo + z2)
4)

Note that if xy = 0 then the first equation of (4) automatically holds. Assuming
xo = 0, the last two equations becomes
1000 1000

= ITy=-——
YT 1+ exp(m) 27 1+ exp(m2)

Hence it suffices to set ;1 = x5 to be the (unique) solution of nonlinear equation
2(1 4+ €*) = 1000. The approximate solution of this nonlinear equation is 5.2452.
Consequently a KKT solution is

x* & (5.2452;5.2452),  xt = 0.



Remark: You can also numerically solve (4) using your favorite solvers (e.g., MATLAB
function fsolve).

10. (15") Consider standard LP problem

minimizegegn ¢! X,
(LP)
subject to Ax=b, x>0.
with its dual .
maximizeyecgm scgn by,
yER™ sER y (LD)

subject to ATy +s=c, s>0.

For any x € int 7, :== {x € R": Ax =b,x > 0} and s € int F;:={s € R" : s =
c— ATy, s >0,y € R™}, the Primal-Dual Potential Function is defined by

Vnip(X,8) = (n + p)log(x"s) Zlog X;S;)

where p > 0 is a parameter.

Task: for two LP examples in Problem 5, namely (2) and (3), draw x part of the
primal-dual potential function level sets

Ye(x,8) <0 and wg(x,s) < —10,
and
Y12(x,8) <0 and  Pa(x,8) < —10;

respectively in int F, (on a plane).

Hint: To plot the x part of the level set of the potential function, say ¥s(x,s) < 0,
you plot
int <0
{x €int F,: serlrgtm]__d e(x,8) < 0}.
This can be approximately done by sampling as follows. You randomly generate N
primal points {x’})", from int F,, and N primal points of {s?}}_, from int F,. For
each primal point x?, you find if it is true that

1 P g9} < (.
DDy Yol =0

Then, you plot those x” who give an ”yes” answer.

Solution: Sample Matlab code:

1
2 function levelset(n, level, numpoints)
3



4 h = figure;

5 hold on;

6

7 % generate primal feasible solution in the outer 2 loops
8

9 for i= 0:1/numpoints:1

10 x1l = i;

11 for j = 0:1/numpoints:1-x1,

12 X2 = j;

13 x3 =1 - x2 - x2;

14 % generate dual feasible solution
15 for k = 0:-1/numpoints:-15,

16 y = k;

17 sl =1 - y;

18 s2 = sl;

19 s3 = -y;

20 % check level set condition
21 if (n * log(x1*sl4x2*xs24x3%s3) - log(xlxx2xx3xsl*s2xs3) < level)
22 plot(x1l, x2, 'r.");

23 break;

24 end

25 end

26 end

27 end

28

20 axis([0 1 0 1]);

30 %save figure

31 print(h, '-dpdf', sprintf( 'n\%ulev\%d.pdf', n, level));
32 close(h);

First, by sampling, it is very hard to plot {¢s(z,s) < —10}, because here s = (1 +
y,1+vy,y) > 0, so we need y > 0. But ¢s(x,s) > 3log(zs) + 3log3 = 3log(xy + o +
y) + 3log 3. Hence {¢g(x,s) < —10} is too harsh for sampled points to survive.
Notice that when n + p is larger, more primal points survive, and when we look at
lower level set {1) < —10}, even though fewer points survive, but they converge to the
optimal solution (as we lower the level set again and again).

Here is how we do the analysis: we sample 1000 feasible x in the F,, which satisfy
the conditions ) . z; = 1,z; > 0 and for each x, we sample 20 feasible s, where
s=[1—-vy,1—y,—yl, and for s to > 0, we sample y = —rand(1). Then we follow the
determine rule in hint, and analyze whether min,_; _y 16(x?,s?) < 0. or not.
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Figure 3: ¢12(x, s) <0, x part

the x part, wn(x,s)g [}




11.

Remark. Alternatively, you can use optimization solvers like MOSEK, or fmincon.m
in MATLAB, to solve the feasibility problems directly by looping over a grid of = (or
uniformly sampling x) and solving the partial feasibility problem in terms of s. If the
solver returns infeasibility, then x is not feasible. Otherwise, x is feasible. Similarly,
for any sampled/chosen x that needs to be checked, we can simply minimize over s
and conclude that z is feasible iff the optimal value of 9,4 ,(x, -) is non-positive.

(10’) Recall the Fisher’s Equilibrium prices problem (discussed in Lecture Note 6),
which we describe here again for reference. Let B be the set of buyers and G be the
set of goods. Each buyer ¢ € B has a budget w; > 0, and utility coefficients u;; > 0
for each good j € G. Under price p, buyer i € B’s optimal purchase quantity x}(p) is
the solution of the following optimization problem:

X/ (p) € argmax ulx; = Zuijxij
jed
T N
st. p X i= ijxij < w;,
je@
X; Z 0

Suppose each good j € G has a supply level 5;,. We call a price vector p* an equilib-
rium price vector if the market clears, namely for all j € G,

> 2 (p)y =5

i€B

In the lecture, we discussed how to compute the equilibrium price p* and buyers’
activities {x}(p*)}icp under the equilibrium price based on utility coefficients {u;};cp,
budgets {w;}icp and supplies s:

({Wi}ien, {witien,8) = (P*, {x; (P") }ien) (5)

In this question, we consider the inverse problem of (5): suppose the market does not
know the “private information” of each buyer, namely the utility {u;};cp and the bud-
gets {w; }iep, but instead you observe the equilibrium prices {p**®} | and their cor-
responding realized activities {X:(k)}le under K different supply levels sV, ... §().
The query is to infer buyers’ utility coefficients {u;};cp and their budgets {w; };cp. We
assume that the utility function is ¢;-normalized, namely ||w;||; = 1 for i € B.

Hint: Mathematically, the query is to find {u;};cp (s.t. w; > 0 and ||u;||; = 1) and
{w;}iep (s.t. w; > 0) such that foralli € B, and k =1,..., K,

*(k
X( ) = arg max uZTXZ

7
Xi

st (P Tx; < wy



Question: Now consider the following 2-buyer 2-good example and solve this inverse

problem. Let B = {1,2} and G = {1,2}. Suppose we observe the following 5 scenarios:

Use

* *(1 *(1
P = (353), 1 = (1), x5 = (0:5);
p (’)7X1 (7)7X2 (7);
p® = (1;1), ;¥ = (2,0), ¥ = (0;1);
p*(4) — (%, 1)7 X’{(‘L) (470)7 X;(4) _ (O, 1>;
* *(5 *(5
P9 = (3:9), X7 = (0, 57 = (3:1)

any approach to find {u;}icp (st. w; > 0 and ||wll; = 1) and {w;}iep (s.t.

w; > 0). Describe your approach and report the result.

Solution: Solve the system of KKT conditions: u; = (3/4;1/4), uy = (1/3;2/3),
w1 = 2, Wo = 1.



