Optimization Methods for Data Science, Machine Learning and Al
Prof. Yinyu Ye

Homework Assignment 2

Individual Homework (110’):

1. (15’) Consider problem 5 of Homework Assignment 1 where the second-order cone is
replaced by the p-th order cone for p > 1:

minx 2%1 + X9 + X3
s.t. T1+ Tg+ X3 = 1,
z1 — [|(z2, @3)lp = 0.
(a) (5") Write out the conic dual problem.
(b) (5’) Compute the dual optimal solution (y*,s*).

(c¢) (57) Using the zero duality condition to compute the primal optimal solution x*.

2. (20%) Consider the distributionally robust optimization (DRO) problem

minimizexey [Maxgep Zgﬂ(ﬁkerk)h(X, &c)] (1)

where the distribution set D is now given by

N
D={d: > dy=0, ||d|> <1/N, pp+dy >0, Vk.}
k=1

(a) (3") What is the interpretation of D7 Answer within 2 sentences.

(b) (4’) Represent D in standard conic form. (Hint: one set of the slack variables are
in the second-order cone and the others are in the non-negative orthant cone.)

(¢) (7’) Construct the conic dual of the inner max-problem.

(d) (6’) Replace the inner max-problem (1) by its dual, and simplify the DRO problem
as much as possible.

3. (10%) Consider the SOCP relaxation in problem 8 of Homework Assignment 1:

miny 0"x
st x—a* <d?, i=1,2,3,

where x € R2.



(a) (47) Write down the first-order KKT optimality conditions.

(b) (3’) Interpret (with no more than 2 sentences) the three optimal multipliers when
the true position of the sensor is inside the convex hull of the three anchors.

(c) (3’) Could the true position x € R? of the sensor satisfy the optimality conditions
if it is outside the convex hull of the three anchors? What would be the multiplier
values?

4. (10’) Consider the following parametric QCQP problem for a parameter £ > 0:

min (2 — 1)% + 23

st —o 42 >0
(a) (57) Is x = 0 a first-order KKT solution?
(b) (5") Is x = 0 a second-order KKT necessary or sufficient solution for some value
of K7
5. (207) (Central-Path and Potential) Given standard LP problem
minimizexcge ¢l X
subject to Ax=b, x>0.

The Analytic Center of the primal feasible region F, := {x : Ax = b,x > 0} is
defined as the solution of the following linear-constrained convex optimization problem:

(LP)

minimizeyegn  — Z log Zj,
2 (PB)

subject to Ax=b, x>0.

The Central Path x(u) of (LP) is defined as the solution of the following Barrier LP
problem (where p > 0 is a parameter):

e T
minimizexepgn € X — - Z log x;,
(BLP)
subject to Ax=b, x>0.

Part I Now consider the following example:
minimizeycgs 1 + To,
subject to 1 4+ 19 + x3 =1, (2)
(1,29, 23) > 0.

Y

(4’) What is the analytic center of the primal feasible region in (2)?
(b) (4’) Find the central path x(u) = (z1(p), z2(p), x3(p)) for (2).
(4

)
)
") Show that as p decreases to 0, x(u) converges to the unique optimal solution
of (2).



Part II Consider another example with different objective but the same feasible
region:
minimizeyecgs T
subject to @1 + a2+ 23 =1 (3)

(21, 29,23) >0

(d) (4) Find the central path x(u) = (z1(p), x2(p), x3(1)) for (3).
(e) (47) Which point does the central path converge to now (as u — 0+)?

6. (15") Consider the following SVM problem, where p > 0 is a prescribed constant:

min 3+ pl/x|?

st. alx+xo+ B> 1, Vi,
bix+xo—f < —1, Y,
B> 0.

(a) (8”) Write out the Lagrangian dual problem of the SVM problem. Write it as
explicit as possible (at least remove the inner minimization). (Hint: You may
want to consider two separate cases: =0 and p > 0)

(b) (7’) Suppose that we have 6 training data in R?: a; = (0;0), as = (1;0), a3 =
(0;1) and by = (0;0), by = (—1;0), b3 = (0; —1). Use the optimality conditions
(or any approach you want) to find optimal solutions for g = 0 and p = 107,
respectively. Are the two optimal solutions unique for the given u? Prove your
claim.

7. (20") Consider a generalized Arrow—Debreu equilibrium problem in which the mar-
ket has n agents and m goods. Agent ¢, ¢ = 1,...,n, has a bundle amount of w; =
(w1, Wig, .+, Wi) € R™' goods initially and has a linear utility function whose coef-
ficients are u; = (w1, w2, ..., Uim) > 0 € R™. The goal is to price each good so that
the market clears. Note that, given the price vector p = (p1,p2,...,Pm) > 0, agent i’s
utility maximization problem is:

maximize ulx;
subject to p’x; < ptw;

(a) (57) For a given p € R™, write down the optimality conditions for agent i’s utility
maximization problem. Without loss of generality, you may fix p,, = 1 since the
budget constraints are homogeneous in p.



(b) (5") Suppose that p € R™ and x; € R™ satisfy the constraints:

p=>0,
X; Z 0, V1.

Show that p is then an equilibrium price vector.

(c) (5”) For simplicity, assume that all u;; are positive so that all p; are positive.
By introducing new variables y; = log(p;) for j = 1,...,m, the conditions can be
written as follows:

min 0

st DL XK= 0 W

xij Z 07 VZ,]

Show that this problem is convex in z;; and y;. (Hint: Use the fact that
log (37", wie¥) is a convex function in the yj’s.)

(d) (5") Consider the Fisher example on Lecture Note with two agents and two goods,
where the utility coefficients are given by

w =(2;1) and uy=(3; 1),
while now there are no fixed budgets. Rather, let
wy; = (1; 0) and wy=(0; 1)

that is, agent 1 brings in one unit good x and agent brings in one unit of good y.
Find the Arrow-Debreu equilibrium prices, where you may assume p, = 1.

8. (Optional:) Consider the dual problem of an SDP,
A by
subject to Ay +S =C
S =0,

where A, C' € 83 is given. If A is not zero and the above problem is solvable, show that
it has a solution (y, S) satisfies rank(S) < 2. (Hint: apply Caratheodory’s theorem)



Groupwork (30°) (group of 1-4 people):

9. (5") Let {(a;,¢;)}™, be a given dataset where a; € R", ¢; € {£1}. In Logistic Regres-

11.

sion (LR), we determine 2y € R and x € R" by maximizing

I1 : 11 1
at l+exp(-alx—m) | \ 1 1+explalx+z) |

which is equivalent to maximizing the log-likelihood probability

- Z log (1 + exp(—a; x — z)) — Z log (1 + exp(a] x + o)) .

1,ci=1 1,ci=—1

In this problem, we consider the quadratic regularized log-logistic-loss function

f(x, ) = Z log (1 + exp(—a] x — zg) )+ Z log (1 + exp(a] x + o)) +0.001-||x][3.

ici=1 iei=—1
Consider the following data set
=(0;0), apz=(1;0), azg=(0;1), ay =(0;0), as=(—1;0), ag=(0;—1),
with label
co=co=c3=1, cy=c5=c5g=—1

use the KKT conditions to find a solution of min f(x,xy). You can either solve it
numerically (e.g., using MATLAB fsolve) or analytically (represent the solution by a
solution of a simpler (1D) nonlinear equation).

(15”) Consider standard LP problem

minimizegegn ¢! X,
(LP)
subject to Ax=b, x>0.
with its dual .
maximizeyecgm segn by,
yeER™ seR y (LD)

subject to ATy +s=c, s>0.
For any x € int 7, :== {x € R": Ax =b,x >0} and s € int F;:={s € R" : s =

c— ATy, s >0,y € R™}, the Primal-Dual Potential Function is defined by

Vnip(X,8) := (n+ p)log(x"s) Zlog X;S;)

where p > 0 is a parameter.



10.

Task: for two LP examples in Problem 5, namely (2) and (3), draw x part of the
primal-dual potential function level sets

Ye(x,8) <0 and w(x,s8) < —10,

and
P12(x,8) <0 and ¢a(x,8) < —10;

respectively in int F, (on a plane).

Hint: To plot the x part of the level set of the potential function, say 14(x,s) < 0,
you plot
int : i < 0}.
{x €int F, JJoin Ye(x,8) <0}
This can be approximately done by sampling as follows. You randomly generate N
primal points {x’})_, from int F,, and N primal points of {s?}}_, from int F,. For
each primal point x?, you find if it is true that

Then, you plot those x” who give an ”yes” answer.

(10’) Recall the Fisher’s Equilibrium prices problem (discussed in Lecture Note 6),
which we describe here again for reference. Let B be the set of buyers and G be the
set of goods. Each buyer ¢ € B has a budget w; > 0, and utility coefficients u;; > 0
for each good j € G. Under price p, buyer ¢ € B’s optimal purchase quantity x}(p) is
the solution of the following optimization problem:

X/ (p) € argmax ulx; = Zuijxij
jeG
T
s.t. P X = ijﬂfij < W,
jea

Suppose each good j € G has a supply level 5;. We call a price vector p* an equilib-
rium price vector if the market clears, namely for all j € G,

>t (p)iy =55
1€EB

In the lecture, we discussed how to compute the equilibrium price p* and buyers’
activities {x}(p*) }icp under the equilibrium price based on utility coefficients {u;};cp,
budgets {w;}iep and supplies s:

({uitien, {witien,s) = (P*, {x; (P") }ieB) (4)



In this question, we consider the inverse problem of (4): suppose the market does not
know the “private information” of each buyer, namely the utility {u;};cp and the bud-
gets {w; }iep, but instead you observe the equilibrium prices {p**®}£ and their cor-
responding realized activities {Xf(k)}szl under K different supply levels sV, ... %),
The query is to infer buyers’ utility coefficients {u;};cp and their budgets {w; };cp. We
assume that the utility function is ¢;-normalized, namely ||u;||; = 1 for i € B.

Hint: Mathematically, the query is to find {u;};cp (s.t. w; > 0 and ||u;||; = 1) and
{w;}iep (s.t. w; > 0) such that for alli € B,and k =1,... K,

X:(k) = arg max u?xi
s.t. (p*(k))TXi < w;
X Z 0

Question: Now consider the following 2-buyer 2-good example and solve this inverse
problem. Let B = {1,2} and G = {1,2}. Suppose we observe the following 5 scenarios:

s =33 K = 1g) 6" = (0:9);
« P = (21), 7 = (1;0), 7 = (0;1);
¢ P = (11), x5 = (20), 7 = (0;1);
« P = (551, W = (4:0), Y = (0;1);
-0 = (59, X = (550,57 = (5:1)

Use any approach to find {u;}iep (sit. w; > 0 and [ju;||; = 1) and {w;}iep (s.t.
w; > 0). Describe your approach and report the result.



