Optimization Methods for Data Science, Machine Learning and Al
Prof. Yinyu Ye

Homework 1 Sample Solutions

1. (15”) Show the followings:

(a) (5”) Consider the set
F:={xeR": Ax=Db, x>0},

where data matrix A € R™*™ and vector b € R™. Prove that I is a convex set.
(b) (5’) Fix data matrix A and consider the b-data set for F' defined in part (a):

B:={b e R™: F is not empty}.

Prove that B is a convex set.
(¢) (5’) Fix data matrix A and consider the linearly constrained convex minimization problem

z(b) :=max f(x)
st. Ax=b, x>0

where f(x) is a concave function, and the maximal value function z(b) is an implicit function of

b. Prove that z(b) is a concave function of b € B, where B is defined in part (b).
Sample Solution:

(a) Take any two points a’,2” € F, that is, Az’ = b2’ > 0 and Az” = b,2”" > 0. Then, for any

a € [0 1] (a is so defined through out this homework) we must have
azr’ + (1 —a)z” > 0.
Moreover,
Alax' + (1 —a)2") = adAz’ + (1 — a)Az”" = ab+ (1 —a)b=0b.
Thus, oz’ + (1 — a)z” € F.

(b) Take any two points ¥’,b” € B. Then we must have 2’ > 0 and z” > 0 such that Az’ =V and
Az"” =V". Now we like to prove that the convex combination ab’+ (1 —a)b” is also in B. Consider

the convex combination z = az’ + (1 — a)z”. Obviously, z > 0. Furthermore,
Az = Alax’ + (1 — a)z”) = adz’ + (1 — a)Az” = o’ + (1 —)b,

which give the desired proof.

(c) Take any two points V',b” € B, and let 2/ and 2’ be two minimizers for b = ¥ and b = V",
respectively. That is, z(b') = f(2’) and z(b") = f(2”). Then, consider z(abd' + (1 — a)b”). Since
ar’'+(1—a)z” > 0and A(ar’' + (1 —a)z”) = ab + (1 —a)b”, ax’ + (1 —a)a” is a feasible solution

for problem with b = ab’ + (1 — «)b”. Thus, the maximum value must be greater or equal to a

feasible solution function value, that is,
z(ab + (1= a)b) = flaa’ + (1 = a)a”) Z af(@’) + (1 =) f(2") = az(V)) + (1 — a)z(b"),
where the second inequality is from f is a concave function.
2. (10’) Show that the dual cone of the n-dimensional nonnegative orthant cone R} is itself, that is,
(RY) = RL.
(Hint: show that R} C (R)* and (R7})* C R%.)

Sample Solution: Prove R C (R"%)*: Let any y € R. Then 27y = >, z;y; > 0 for any = € R

since each of the product in the sum is nonnegative.

Prove (R.)* C R: Suppose this is not true, that is, there is a y € (R7)* but y € R’. Then at least

one entry of y is negative, w.l.o.g., say y1 < 0. Now select e; = (1;0;...;0) € R’ we have
efy =1y <0
which contradicts that y € (R)*.
3. (10’) Let g1, ..., gm be a collection of concave functions on R"™ such that
S={x:¢i(x)>0fori=1,...,m} #0.

Show that for any positive constant ;1 and any convex function f on R", the function (called Barrier

function)
m
h(x) = f(x) — pY _log(gi(x))
i=1
is convex over S. (Hint: directly apply the convex/concave function definition or analyze the Hessian
of h(z).)
Sample Solution: It is easy to verify that S is convex. We know that the positively weighted sum

of convex functions having a common domain is convex on that domain. The given conditions imply

that the function

m

h(z) = f(a) = nY log(oi(x))

is a positively weighted sum of the convex functions. To see this, one can prove that a nondecreasing
concave function of a concave function is concave, that is, log g;(z) is a concave function. To prove it,

take any two points =’ and z” in S, then for each i
gi(az’ + (1 —a)z") > agi(z’) + (1 — a)gi(z").
Since log is nondecreasing,
log(gi(aa’ + (1 — a)z”)) > log(agi(z') + (1 — a)gi(z")).
Moreover, log is a concave function, so that

log(gi(ea’ + (1 — a)a")) = log(agi(z’) + (1 — a)gi(z")) = alog(gi(z")) + (1 — &) log(gi(z")),

which complete the proof. Hence its negative —log g;(z) is convex. Thus, we see that

m

h(z) = f(z) +) [u(~log gi(x))]

=1

is convex on S.
4. (10’) (Lipschitz Functions) Prove the following two implication inequalities:

(a) (5”) Assume f is a first-order -Lipschitz function, namely there is a positive number 3 such that
for any x,y € R™:
IVf(x) = Vi)l < Blx =yl

then for any x,y € R",
169~ 1(y) = V) e~ y)l < D~y

(b) (5’) Assume f is a second-order S-Lipschitz function, namely there is a positive number 8 such

that for any x,y € R™:

IVf(x) = V)= V) (x—yll <Blx -yl
then for any x,y € R",

1f(x) = fly) - V¥ (x—y) - %(X -V f(y)(x—y)| < gl\x — vy

Solution: The key tool is Taylor’s formula with integral remainder (cf., https://en.wikipedia.org/

wiki/Taylor%27s_theorem#Derivation_for_the_integral_form_of_the_remainder).

Let A := y — 2 and ¢(¢) = f(z + tA) where ¢ is a scalar variable. Then we have ¢(0) = f(z) and
o(1) = f(z+ A) = f(y). Moreover,

1 1
flo+8) = o) =o(1) = 9(0) = [dolt) = [ATV + ea)
0 0
For the first implication inequality, noting ATV f(x) = fol ATV f(z)dt, we have

@+ A) — f(z) — V(x)TA| = / AT (V(x +tA) — Vi (x)) dt

< [167 (Vste +12) - VsG] a

< /01 AV f(x +tA) = Vf(z)||dt (Cauchy-Schwartz inequality)
= lai [9SG+ 18) - V@) de

2N /0 "BlAIdt (the first-order Lipschitz condition)

L Buape
= lagaial | = Al

https://en.wikipedia.org/wiki/Taylor%27s_theorem#Derivation_for_the_integral_form_of_the_remainder
https://en.wikipedia.org/wiki/Taylor%27s_theorem#Derivation_for_the_integral_form_of_the_remainder

1
For the second implication inequality, further noting iATVQ fl2)A = ATV f(2)A fol tdt, we have

F+ A) — f(&) = Vi@)TA ~ SATVf(2)A

_ /1 AT (Vf(x +1A) — Vf(z) — V2f(2)(tA)) dt

0

1
< / |AT (Vf(z+tA) = Vf(z) — V2 f(2)(tA))| dt
0
1
< / AV f(z 4+ tA) = Vf(z) — V2f(x)(tA)||dt (Cauchy-Schwartz inequality)
0
1
= Al / IVf(z +tA) = Vf(x) - V2f(x)(tA)||dt
0
1
<Al / B|[tAl|*dt (the second-order Lipschitz condition)
0
! B
= gAI° [far = Al
0
This completes our proof. O

5. (10’) Counsider the following SOCP problem:

min 2x1; + x2 + 73

st. 14+ x2+23=1,
i — VTR0,
(a) (5”) Show that the feasible region is a convex set.

(b) (5’) Try to find a minimizer of the problem and “argue” i why it is a minimizer.

Sample Solution:

o It is clear that the plane set {z : eTx = 1} is a convex set. Let 2_; = (22;23;...;2,). Then we

like to prove that

{z: Jloal <@}

is a convex set. Consider any two points 2’ and z in the set. For any a € [0 1], we have, by

triangle inequality,
laa’y + (1 —a)a?y || < flaa’y || +11(1 = a)2”y || = afla”y [+ (1 — e)la”4 ||
But ||2”_4|| <z} and ||2” || < ¥, so that
loa”y + (1=)2y || < ax + (1 - a)at;

that is, the convex combination point is also in the set. This implies that the set is a convex set.

The feasible region is the intersection of two convex sets, so that it is also a convex set.

1We recommend to prove this directly, namely without using duality argument which will be introduced in the following

lectures.

e The problem can be treated as

min 27

st. T4+ x4+ 123=1,
T — \/xg—l—x% > 0;

which is as the same as
max I+ I3

st mytmz+ /i +a2i <1

For any fixed positive value of x5 + x3, \/;vg + x% would be minimized when zo = x3. Thus, we

consider the case xo2 = x3: which is as the same as

max 2o
st 2xo + V220 < 1.

That is, 9 = Tlx/i Thus, the minimal value of the original problem might be 2 — 2z, = /2.

6. (10”) Prove that the set {Ax: x>0 € R"} is a closed and convex cone. (Hint: apply Carathéodory’s

theorem in Lecture Note to prove the closedness.)
Sample Solution: Let C' = {Az: = >0¢€ R"}.

It is easy to see that C is a cone. Take any b € (', then b = Ax for some x > 0. Now consider £b for
any > 0. But 8b = 8(Az) = A(Bz) and Bz > 0, so that b € C.

The convexity is easy to prove. Take b* € C' and b?> € C. Then we must have 2! > 0 and 22 > 0 such
that b* = Az! and b = Az?. Then for any « € [0 1],

ab! + (1 — a)b? = a(Az') + (1 — a)(Az?) = A(az' + (1 — a)z?).

since az! + (1 — a)2? > 0, we have ab' + (1 — a)b? € C.

Now let b* = Az* z* >0, k = 1,..., be a bounded and convergent sequence and let its limit points
be b. We would like to prove b € C. From Carathéodory’s theorem, we can assume that z* is a basic
feasible solution, that is, for some basis B* C [n], we have Aka’fSk = b*, and the rest of entries in z*
are all zeros. Then, z* is bounded for all k¥ = 1,.... Thus, there must be a subsequence of zF > 0,
k € K := {k1,ko,...}, that is convergent. Let its limit to be Z. We have Z > 0. Now consider the
subsequence b*, k € IC, that is, b* = Az*, 2¥ >0, k € K. Thus, it is a convergent sequence with limit

AZ € C. But the limit of any convergent subsequence of b* is b, so that b = Az € C.

7. (15’) Farkas’ lemma can be used to derive many other (named) theorems of the alternative. This
problem concerns a few of these pairs of systems. Using Farkas’s lemma, prove each of the following
results.

(a) (5’) Gordan’s Theorem. Exactly one of the following systems has a solution:

(i) Ax>0
(i) yTA=0, y>0, y#0.

(b) (5’) Stiemke’s Theorem. Exactly one of the following systems has a solution:

(i) Ax>0, Ax#0
i) yT'A=0, y>0

(¢) (5’) Gale’s Theorem. Exactly one of the following systems has a solution:

(i) Ax<b
i) y'A=0, y'b<0, y=>0

Solution: (a) Gordan’s Theorem. Let b denote a positive vector. Then, (i) is equivalent to Az > b

and it can be written as
Ar' — Ax" — 2z =0, (2';2";2) >0

By Farkas’ lemma, it is alternative system is
yT(A7 _A7 _I) S 07 yTb =1

which is equivalent to (ii).

(b) Stiemke’s Theorem. Let b denote a positive vector. Then, (i) is equivalent to Az > 0, bT Az =1

and it can be written as:

A -A -1 0
(A —bTA 0)(fﬂ’;x”;z)= () >, (z;2";2) =2 0

By Farkas’ lemma, its alternative system is on (y’;7) such that:

A —A T
(y’;T)T< A —bTA 0 > <0, (¥;1)"(0;1) =1

Let y =y' + 7 - b. Then, it is a solution to (ii).

(c) Gale’s Theorem. Note that (i) can be written as:
Al —Ax" + 2 =10, (2';2";2) >0
By Farkas’ lemma, its alternative system is
yT(A, —A, 1) <0, y'b=1

Then, —y is a solution to (ii).

8. (20”) Consider the sensor localization problem on plane R? with one sensor x and three anchors
a; = (1;0), ay = (—1;0) and az = (0;2). Suppose the Euclidean distances from the sensor to the
three anchors are di, dy and ds respectively and known to us.Then, from the anchor and distance

information, we can locate the second by finding x € R? such that

I — 2y = d, i =1,2,3.
Do the following numerical experiments using CVX (or cvxpy, convex.jl) or MOSEK and answer the
questions:

(a) (10’) Generate any sensor point in the convex hull of the three anchors, compute its distances

to three anchors d;, i = 1,2, 3, respectively. Then solve the SOCP relaxation problem
[x —a;||* <d?, i=1,2,3.

Did you find the correct location? What about if the sensor point was in the outside of the

convex hull? Try a few different locations of the sensor and identify the pattern.

(b) (10’) Now try the SDP relaxation

I I
(a;—1)(a;—1)" o (T) > =dj, =123 (T) > z0es,
X y X y

which can be written in the standard form

(1;0;0)(1;0;0)T ¢ Z =1,
(0:1;0)(0:1:0)7 ¢ Z =1,
(1:1;0)(LL0) ez =2,
(a;;—1)(a;;—1)TeZ =d?,i=1,2,3,

Z =0¢e 83,

Did you find the correct location everywhere on the plane? Try a few different locations of the

sensor and identify the pattern.

You can use CVX (or cvxpy, convex.jl) to solve these numerical problems.

Sample Solution: Both the SOCP and SDP relaxations exactly find the sensor location if the sensor

is contained in the convex hull of the anchor points.

However, when the sensor is located outside of the convex hull, the SOCP relaxation will fail to find
the sensor correctly. This is due to the relaxed ||z — a;|| < d; constraint, which allows regions of the
convex hull to be feasible even if z* is outside of the convex hull. Thus the SOCP relaxation will tend
to return solutions within the convex hull. On the other hand, the SDP relaxation is always exact

since it strictly requires that ||z — a;|| = d;.

Experimental code is given below:

1 %% MRXE 311 /CME 307 Homework 1 Problem 9
2

3 %% Each column is anchor point

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

56
57
58
59
60
61

63
64
65

A=[1 -1 0;
0 0 2];

%% Generate sensor in convex hull of 3 anchors
9% SOCP relaxation

alpha = rand(3,1);

alpha = alpha/norm(alpha,l);

s_true = Axalpha;

d = norms(A - s_truexones(1,3));

cvx__begin quiet
variable s(2)
minimize(0)
subject to
norms(A - sxones(1,3)) < d;

cvx__end

fprintf('SOCP - Inside of Convex Hull\n');

fprintf('True sensor location c(%f, %f)\n', s_true(l), s_true(2));
fprintf('Recovered sensor location: (%f, %f)\n', s(1), s(2));
fprintf('Difference : %f\n\n', norm(s_true - s));

9% SDP relaxation
cvx__begin sdp quiet
variable X(3,3) semidefinite
minimize(0)
subject to
X(1:2,1:2) = eye(2)
for i=1:3
[A(:,1);-1]"*X*[A(:,1);-1] = d(i)"2
end

cvx__end
s = X(1:2,3);

fprintf('SDP - Inside of Convex Hull\n');

fprintf('True sensor location c(%f, %f)\n', s_true(l), s_true(2));
fprintf('Recovered sensor location: (%f, %f)\n', s(1), s(2));
fprintf('Difference : %f\n\n', norm(s_true - s));

%% Generate sensor outside of convex hull of 3 anchors
alpha = 10%rand(3,1);
s_true = Axalpha;

d = norms(A - s_truexones(1,3));

cvx__begin quiet
variable s(2)
minimize(0)
subject to
norms(A - sxones(1,3)) < d;

cvx__end

fprintf('SOCP - Outside of Convex Hull\n');

fprintf('True sensor location s (%f, %f)\n', s_true(l), s_true(2));
fprintf('Recovered sensor location: (%f, %f)\n', s(1), s(2));
fprintf('Difference : %f\n\n', norm(s_true - s));

%% SDP relaxation

cvx__begin sdp quiet
variable X(3,3) semidefinite
minimize(0)

subject to

66
67
68
69
70
71
72
73
74
75
76
77

X(1:2,1:2) = eye(2)
for i=1:3

[A(:,1);-1]"*X*[A(:,1);-1] = d(i)"2
end

cvx__end
s = X(1:2,3);

fprintf('SDP - Outside of Convex Hull\n');

fprintf('True sensor location o (%f, %f)\n', s_true(l), s_true(2));
fprintf('Recovered sensor location: (%f, %f)\n', s(1), s(2));
fprintf('Difference : %f\n\n', norm(s_true - s));

9. (20’) Consider the sensor localization problem on plane R? with two sensors x; and X and three
anchors a; = (1;0), as = (—1;0) and ag = (0;2). Suppose that we know the (Euclidean) distances
from one sensor x; to a; and as, denoted by dq; and d;2; distances of the other sensor x5 to as and ag,
denoted by dso and dogz; and the distance between the two sensors x; and X5, denoted by cflg. Then,
from the anchor and distance information we would like to locate the sensor positions x1,xs € R2.
Do the following numerical experiments using CVX (or cvxpy, convex.jl) or MOSEK and answer the

questions:
(a) (10’) Generate two sensor points anywhere and try the SOCP relaxation model

HXl — ai||2 < dlz? ,=1,2
HX2—31‘||2 <d21, i:2,3
[x1 = xf* < d12
Did you find the correct locations? What have you observed? Try a few different locations of the

sensor pairs and identify the pattern.

(b) (10’) Now try the SDP relaxation: find X = [x1, x3] € R**? and

I X A
Z = es
XT v

to meet the constraints in the standard form:

(1;0;0;0)(1;0; 0;0)T =1,
(0;1;0;0)(0;1;0;0)T ¢ Z =1,
(1100)(1100) oZ =2
(a;;—1;0)(a;; —1;0)7 e Z =d};, i=1,2,
(a;;0;—1)(a;0;,-1)T e Z =d3, i=2,3,
(0;0;1;—=1)(0;0; 1; —1)T 0 Z = d2,,

Z =0¢e 54

Did you find the correct locations? What have you observed? Can you conclude with something?

Try a few different locations of the sensor pairs and identify the pattern.

Solution: (The MATLARB titles of the figures may be a bit misleading. For all the figures, red points
are 1 and blue points are xo. Titles violating this are all wrong due to previous typos in the title
generation codes. The descriptions below are still all consistent. These are minor issues and forget

about these if you didn’t look into such details.)

(a) For the SOCP formulation, in general we’re not able to find the correct locations, even if both
the sensors x; and x5 are in the convex hull of the anchors a1, a2, a3. To enable exact recovery,
we need to require that x1 ¢s inside the convex hull of xo,a1,as and xo is inside the convex hull

of x1,as,a3. We will validate this claim by numerical results.
Specifically, if at least one sensor is outside the convex hull of the anchors ay,as, a3, we generally

cannot ensure exact recovery. So the exact recovery condition here is stronger than just requiring

both sensors being inside the convex hull of the anchors.

This comes from the same analysis as in problem 2, where we write down the first-order KKT
conditions and keep in mind the non-positiveness of the multipliers. In particular, when the sensors
are in the interior of the convex hulls, the corresponding multipliers are positive and hence by
complementarity the inequalities become tight, which leads to exact recovery. On the other hand,
when the sensors are on the boundaries of the convex hulls, then the inequality constraints already
uniquely determine the points, and hence again we obtain exact recovery.

In contrast, if any of the convex hull inclusions of the two sensors is violated, then the correspond-
ing (three) multipliers must all be 0. This will potentially lead to non-tight inequalities, disabling
exact recovery.

In the experiments, we provide three options of generating sensors x1, x5 for facility of usage. The
first is to generate both by randn.m. The second is to start by generating x; inside the convex
hull of a1, as, as, and then generate x5 inside the convex hull of x1, as, az. The third is to generate
1 and zo independently inside the convex hull of a1, as,a3. Notice that the second option does

not ensure that z; is inside x2, a1, as.

We showcase the five possible situations in the following figures:

1) x1 € convhull(zg, a1, az), x9 € convhull(xy, as, as), (z1,x2 € convhull(ay,as,as));

2) xy ¢ convhull(xg, a1,as),x2 € convhull(zy,as, ag), 1, 22 € convhull(ay, as, az);

(
(2)
(3) a1 ¢ convhull(zg, a1, as), x2 ¢ convhull(zy, as, a3), x1,z2 € convhull(ay, as, as);
(4) one of x1, x5 outside convhull(ay, as, as), and the other inside;

(5)

5) both x1,x2 outside convhull(aq, ag, as).

blue *: x1; red *: x2; blue o: x1-num; red o: x2-num blue *: x1; red *: x2; blue o: x1-num; red o: x2-num

Figure 1: Left: exact recovery, case 1. Right: inexact recovery, case 2.

0.8

06

0.2

blue *: x1; red *: x2; blue o: x1-num; red o: x2-num

Figure 2: Inexact recovery, case 3.

blue *: x1; red *: x2; blue o: x1-num; red o: x2-num blue *: x1; red *: x2; blue o: x1-num; red o: x2-num

1.5

05

" ,)
-1

Figure 3: Left: inexact recovery, case 4. Right: inexact recovery, case 4.

We see that apart from the first case, we almost always lose exact recovery.

Also notice that switching the generation of x1; and zs (i.e. first generate x5 inside the convex
hull of a1, as, as and then generate x; inside the convex hull of xa, a1, as) still results in the same
observations, i.e. we obtain exact recovery if zs is also inside the convex hull of 1, as, a3, and
vice versa.

The code is attached below:

-

clear all;
%% Initialization
A=[1,-1,0;0,0,2];
Y% 1)
% x1
% x2
Ko 2)
%% enable)

% lambdal = rand(3,1);

% x1 = A % lambdal / sum(lambdal);

close all;

random initialization choice (remove comment to enable)
randn(2, 1);
1);

initialization

randn (2,

random choice inside the conv-hull (remove comment to

© W N e o oAe W N

[
S}

11 % lambda2 = rand(3,1);

12 % x2 = A % lambda2 / sum(lambda2);

13 %% 2) special initialization choice (add comment to disable)

14 lambdal = rand(3,1);

15 x1 = A % lambdal / sum(lambdal);

16 lambda2 = rand(3,1);

17 x2 = [x1, A(:,2:3)] * lambda2 / sum(lambda2);

18 %% Plot the figure

19 scatter(A(1,:),A(2,:), 'k', 'filled');

20 hold on;

21 scatter(x1(1), x1(2), 'r=');

22 scatter(x2(1), x2(2), 'bx');

23 scatter(linspace(-1,1,1000),zeros(1,1000),5, 'k");
(
(

24 scatter(linspace(-1,0,1000),242«linspace(-1,0,1000),5, 'k');
25 scatter(linspace(0,1,1000),2-2xlinspace(0,1,1000),5,'k");
26 scatter(linspace(-1,x2(1),1000),

27 x2(2)/(x2(1)4+1)*(linspace (-1,x2(1),1000)41),2, 'mx ") ;
28 scatter(linspace(x2(1),1,1000),

29 x2(2)/(x2(1)-1)*(linspace(x2(1),1,1000)-1) ,2, m«");
30 scatter(linspace(-1,x1(1),1000),

31 x1(2)/(x1(1)+1)*(linspace(-1,x1(1),1000)+1),2, m=");
32 scatter(linspace(0,x1(1),1000),

33 (x1(2)-2)/x1(1)*(linspace(0,x1(1),1000))+2,2, 'mx");
34 9% data generation

35 dl1l = norm(x1-A(:,1));

36 d12 = norm(x1-A(:,2));

37 d22 = norm(x2-A(:,2));

38 d23 = norm(x2-A(:,3));

39 d12h = norm(x1-x2);

40 9% SOCP

41 cvx__begin

42 variables z1(2) z2(2)

43 minimize (0)

44 subject to

45 norm(zl-A(:,1))<dl1

46 norm(zl-A(:,2))<d12

47 norm(z2-A(:,2))<d22

48 norm(z2-A(:,3))<d23

49 norm(zl-z2)<d12h

50 cvx_end

51 fprintf('xl error = %3.4e\n', norm(zl-x1));

52 fprintf('x2 error = %3.4e\n', norm(z2-x2));

53 scatter(zl1(1), z1(2), 'ro', 'filled');

54 scatter(z2(1), z2(2), 'bo', 'filled');

55 title('red x: x1; blue *: x2; red o: xl-num; blue o: x2-num');

56 hold off

For the SDP case, the recovery is still not always exact even if both sensors are inside the convex
hull of the anchors a1, as,as3. But there are more chances of recovering exactly than the SOCP
formulation.

When both x1, 29 are inside the convex hull of a1, as,as, as long as one of the following two cases
holds: 1) xy is inside the convex hull of x2,a1,as; 2) xo is inside the convex hull of x1, as, az, then
we obtain exact recovery. If these are violated, then we may need some algebraic characterizations
(see the remark in the ned). Again, we will validate this claim by numerical experiments.

In the numerical experiments, we again provide three options of generating sensors xi,xo for
facility of usage. The first is to generate both by randn.m. The second is to start by generating

x1 randomly using randn.m, and then generate x5 inside the convex hull of x1, as, az. The third

is to generate x1 and xo independently inside the convex hull of a1, as, as.

As described above, we obtain exact recovery in the second case as long as s is also inside the
convex hull of a1, as, asz. Notice that again, switching the order of generating x1 and x5 (i.e. first
generating zo using randn.m and then generate x; inside the convex hull of xs,a1,as) leads to

the same observations.

The trickier case is when 1, 25 are not both inside the convex hull of a1, ag, as, but (exactly) one
of 1) and 2) holds. In this case, we sometimes get exact recovery while sometimes not. But if we
check the rank of a dual optimal slack matrix (see definition in the end remark), we will see that

we obtain exact recovery iff its rank is n = 2.

In all other cases, we (almost) always lose exact recovery.

We showcase three possible situations below with both x1, x5 inside the convex hull of aq, as, as
in the following figures:

(1) x1 € convhull(za, a1, as),z2 € convhull(zy, asz, a3), (x1,z2 € convhull(ay, as, as));

(2) x1 ¢ convhull(za, a1, as),z2 € convhull(zy, as, a3), x1,z2 € convhull(ay, asz, as);

(3) x1 ¢ convhull(zg, a1, as),x2 ¢ convhull(zy, as, as), x1,z2 € convhull(ay, as, as);

blue *: x1; red *: x2; blue o: x1-num; red o: x2-num blue *: x1; red *: x2; blue o: x1-num; red o: x2-num

blue *: x1; red *: x2; blue o: x1-num; red o: x2-num

Figure 4: Top left: exact recovery, case 1. Top right: exact recovery, case 2. Bottom: inexact recovery, case
3.

This validates our claim. But when one of x1,zs are outside the convex hull of a1, as, as, things

become much trickier:

blue *: x1; red *: x2; blue o: x1-num; red o: x2-num blue *: x1; red *: x2; blue o: x1-num; red o: x2-num

o
150 150

1+ 1

05t 05}

ol
~05 -05F

At Al
s ‘ ‘ ‘ ‘ ‘ e ‘ ‘ ‘ ‘ ‘
-1.5 -1 -0.5 0 0.5 1 -1 -0.5 0 05 1 15
Figure 5: Exact recovery when both 1) and 2) are violated.
red *: x1; blue *: x2; red o: x1-num; blue o: x2-num red *: x1; blue *: x2; red o: x1-num; blue o: x2-num
3r 3r
L]

251 25F .

2r 2F

1.5F 1.5

1F 1

0.5F 0.5r]

.
[
= -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 6: Inexact recovery when one of 1) and 2) holds.

Remark: The special cases which can not be easily characterized by convex hull inclusions can
actually be (still partly) explained using Theorem 2 on slide 14 of lecture 8. In fact, the exact
recovery is obtained if the optimal dual slack matrix (which can be retrieved e.g. using dual
variable command in CVX) has rank n. This implies that any primal optimal/feasible solution

Z has rank 2, and hence gives exact recovery.

The code is attached below:

clear all
%% Initialization

A=1[1,-1,0;0,0,2];

9% 1) random initialization choice (remove comment to enable)
% x1 = randn (2, 1);

% x2 = randn (2, 1);

close all

N)

o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

53
54
55
56
57

59
60
61
62
63
64
65
66
67
68

9% 2) random initialization choice inside the conv-hull (remove comment to

9%% enable)

lambdal = rand(3,1);
x1 = A % lambdal / sum(lambdal);
lambda2 = rand(3,1);
x2 = A * lambda2 / sum(lambda2);

9% 3) special initialization choice (add comment to disable)
lambdal = rand(3,1);

x1 = A % lambdal / sum(lambdal);

lambda2 = rand(3,1);

x2

= [x1, A(:,2:3)] = lambda2 / sum(lambda2);

%% Plot the figure

scatter (A(1,:),A(2,:), 'k', 'filled');

hold on;

scatter (x1(1), x1(2), 'r=');

scatter (x2(1), x2(2), 'bx');

scatter (linspace(-1,1,1000) ,zeros(1,1000),5, 'k");

scatter (linspace(-1,0,1000),242xlinspace(-1,0,1000) ,5, 'k');
scatter (linspace(0,1,1000),2-2xlinspace(0,1,1000),5,'k")

3

scatter (linspace(-1,x2(1),1000),

x2(2) /(x2(1)4+1)*(linspace (-1,x2(1),1000)+1),2, m=");

scatter (linspace(x2(1),1,1000),

x2(2)/(x2(1)-1)*(linspace(x2(1),1,1000)-1),2, mx"');

scatter (linspace(-1,x1(1),1000),

x1(2)/(x1(1)4+1)*(linspace(-1,x1(1),1000)4+1),2, 'm=");

scatter (linspace (0,x1(1),1000),

(x1(2)-2)/x1(1)*(linspace(0,x1(1),1000))+2,2, 'm«");

%% data generation

d1l = norm(x1-A(:,1));

d12

norm(x1-A(:,2));

d22 = norm(x2-A(:,2));
d23 = norm(x2-A(:,3));
d12h = norm(x1-x2);

9% SDP

al = A(:,1);
a2 = A(:,2);
a3 = A(:,3);

cvx__begin
variable Z(4,4) semidefinite

minimize (0)

subject to

Z(

1:2,1:2) = eye(2, 2);

%% constraint formulation

1
% lal;-1;0]" = Z % [al;-1;0] = d1172;
% [a2;-1;0]" * Z * [a2;-1;0] = d1272;
% [a2;0;-1]"' % Z = [a2;0;-1] = d2272;
% [a3;0;-1]"' * Z = [a3;0;-1] = d2372;
% [0;0;1;-1]" = Z = [0;0;1;-1] = d12h"2;
9% constraint formulation 2
sum(sum (([al;-1;0]*[al;-1;0]").% Z)) = d1172;
sum(sum (([a2;-1;0]*[a2;-1;0]") .x Z)) = d1272;

sum(sum (([a2;0;-1]%[a2;0;-1]") .x Z)) = d2272;
sum(sum (([a3;0;-1]%[a3;0;-1]") .x Z)) = d2372;
sum(sum (([0;0;1;-1]%[0;0;1;-1]") .%x Z)) = d12h™2;

cvx_ end
z1 = 7Z(1:2,3);
z2 = 7Z(1:2,4);

fprintf('xl error = %3.4e\n', norm(zl-x1));
fprintf('x2 error = %3.4e\n', norm(z2-x2));
scatter (z1(1), z1(2), 'ro', 'filled');

ScC

atter(z2(1), z2(2), 'bo', 'filled');

title('red =: x1; blue #: x2; red o: xl-num; blue o: x2-num');

69 hold off

10. (10’) For the Maze Runner example in Lecture Note #1, suppose that the blue-action at State 3 has
a probability 0.5 leading to State 4 and 0.5 leading to State 5; and the only action at State 5 leads to
State 0. Reformulate the MDP-LP problem with v = 0.9 and solve it using any LP solver.

Sample Solution: LP formulation

Solution

Sample code:

maximizey

subjectto

Yo+uy1 +y2+Ys+ys+ys,

yo < min{0 + yy1,0 + 7(0.5y2 + 0.25y5 + 0.125y4 + 0.125y5) },

0.5y3 + 0.25y4 -+ 0.25y5)},

0.5y4 + 0.5y5)}, (1)
y3 < min{0 + yy4, 0 + 7(0.5ys + 0.5y5) },

(
y1 < min{0 + yy2, 0+ (
y2 < min{0 + vys, 0 + (
(
ys < 1+ yys,
Y5 < 0+ vyo.

Yo = 0.747207793362298, m; = Red.
y = 0.830230881521939, 7} = Red.
ys = 0.922478757256612, 75 = Red.
i = 1.024976396962329, 75 = Blue.
yi = 1.605238312580964,
Yyt = 0.672487014018313.

1 gamma = 0.9

2

3 cvx__begin

4 variables y0 yl y2 y3 y4 y5

5 maximize y0 + y1 + y2 + y3 + y4 + y5

6 subject to

7 y0 < 0 4+ gamma * yl

8 y0 < 0 + gamma * (0.5 % y2 4+ 0.25 % y3 + 0.125 % y4 + 0.125 * y5)
9 yl < 0 4+ gamma * y2

10 yl < 0 + gamma * (0.5 % y3 + 0.25 % y4 + 0.25 * y5)
11 y2 < 0 + gamma * y3

12 y2 < 0 + gamma * (0.5 * y4 + 0.5 % y5)

13 y3 < 0 4+ gamma * y4

14 y3 < 0 + gamma * (0.5 *x y4 + 0.5 * y5)

15 y4 < 1 + gamma * y5

16 y5 < 0 4 gamma * y0

17 cvx_end

