
Optimization Course Project I:

Computing Wasserstein Barycenter via Linear Programming

In this project, we study the computation the Wasserstein barycenter of a set of discrete probability

measures. Given support points of probability measures in a metric space and a transportation cost function

(e.g. the Euclidean distance), Wasserstein distance defines a distance between two measures as the minimal

transportation cost between them. Given a set of measures in the same space, the p-Wasserstein barycenter

is defined as the measure minimizing the sum of p-Wasserstein distances to all measures in the set. Note

that computing the barycenter of a set of discrete measures can be formulated by linear programming.

In this project, we focus on the case of p = 2 and compare the performance of different linear program-

ming methods in solving the barycenter problem. We refer the notations and model setup to [2]. Instead of

running experiments on MNIST dataset, we first restrict our attention to the algorithmic side and consider

the following way in specifying the distributions P(t).

• Generate mt samples from normal distribution N (µt, σ
2
t ) and construct P(t) as the empirical distribu-

tion on the mt samples.

• In the following experiments, you should vary the choice of the number of samples mt, the number of

distributions N, and the parameters (µt, σ
2
t ).

In this way, the objective becomes finding the Wasserstein barycenter of N normal distributions. Addi-

tionally, we first focus on the case of Pre-specified Support Problem (See [2]) and choose the support of the

barycenter distribution P be the union of the supports of P(t)’s.

• Approach 1: Implement any linear programming method for solving this problem, such as the PDLP

method [1, 3]. Clearly state the linear program, include pseudo-code for your implementation, and

explore/tune the parameters in the optimization algorithm such as step sizes.

• Approach 2: Implement the single low-rank regularization method (SLRM) and double low-rank

regularization method (DLRM) developed in [2]. This method aims to reduce the cost of solving
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the Newton equations in interior point method. How does this algorithm compare to the vanilla

implementation of interior point method in Question 1? Plot the barycenter distribution P for two to

three problem instances (specifications of N , mt, etc.).

Now we consider the general Free Support Problem where the support of distribution P is also a decision

variable. In [4] and [5], the authors proposed an entropy-smoothed version of Wasserstein distance for

both regularization and computation purpose. The new distance replaces the summand ⟨D(t),Π(t)⟩ in

(3) and (4) in [2] with

⟨D(t),Π(t)⟩ − 1

λ
h(Π(t))

where h(·) is the entropy function. Intuitively, the entropy function will encourage the dispersion of

the distribution Π(t) and avoid concentrations on a few points. Computationally, this new formula-

tion enables a cheap computation of the gradients with respect to both the probability distribution

parameters (a1, ..., am) and the support X = (q1, ..., qm) (in the language of [2]).

• Approach 3: Implement Algorithm 3 in [5] with different choice of the regularization parameter γ.

How does the resultant barycenter distribution compare with the ones obtained from interior-point

methods? Note that Algorithm 3 in [5] considers a free-support setting while the two proceeding

questions consider a pre-specified support. For a fair comparison, you may implement the free-support

version of the interior-point method in [2]. Specifically, it will alternate between solving a linear

program for the distribution parameter (a1, ..., am) and solving a quadratic program for the support

X = (q1, ..., qm). The quadratic program features for an analytical solution as (7) in [2].

As noted in these papers, the free support problem is then a non-convex problem. Now we are interested

in how the gradient-based algorithm (Algorithm 3 in [5]) compares to the interior point method in

respect with escaping saddle points and local minima.

• Approach 4: Implement MAAIPM algorithm in [2] and compare it against Algorithm 3 in [5] in

respect with the original objective function value
N∑
t=1

⟨D(t),Π(t)⟩.

While implementing Algorithm 3 in [5], you may want to periodically increase the regularization

parameter γ to mitigate the effect of the additional penalty term. Please report the runtime, the

number of iterations, and the objective value under both algorithms.

• Approach 6: Now you may migrate the experiments to the MNIST dataset1 and Fashion MNIST

dataset2. The advantage of using these datasets is that it can provide a more meaningful visualization

of the barycenter distribution. The computational experiments can be on CPU and/or GPU [3].
1http://yann.lecun.com/exdb/mnist/
2https://www.kaggle.com/zalando-research/fashionmnist

2



References

[1] David Applegate, Oliver Hinder, Haihao Lu, and Miles Lubin. Faster first-order primal-dual meth-

ods for linear programming using restarts and sharpness. Mathematical Programming, 201(1-

2):133–184, September 2023. ISSN 0025-5610, 1436-4646. doi: 10.1007/s10107-022-01901-9. URL

https://link.springer.com/10.1007/s10107-022-01901-9.

[2] Dongdong Ge, Haoyue Wang, Zikai Xiong, Yinyu Ye. Interior-Point Methods Strike Back: Solving the

Wasserstein Barycenter Problem. https://arxiv.org/abs/1905.12895.

[3] Haihao Lu, Jinwen Yang, Haodong Hu, Qi Huangfu, Jinsong Liu, Tianhao Liu, etc. cuPDLP-C: A

Strengthened Implementation of cuPDLP for Linear Programming by C language. arXiv preprint

arXiv:2312.14832, 2023.

[4] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural

information processing systems, 2013.

[5] Marco Cuturi, Arnaud Doucet. Fast computation of Wasserstein barycenters. Proceedings of the Inter-

national Conference on Machine Learning 2014.

3


