
Optimization Methods for Data Science, Machine Learning and AI
Prof. Yinyu Ye

Homework 1 Sample Solutions

1. (15’) Show the followings:

(a) (5’) Consider the set
F := {x ∈ Rn : Ax = b, x ≥ 0},

where data matrix A ∈ Rm×n and vector b ∈ Rm. Prove that F is a convex set.

(b) (5’) Fix data matrix A and consider the b-data set for F defined in part (a):

B := {b ∈ Rm : F is not empty}.

Prove that B is a convex set.

(c) (5’) Fix data matrix A and consider the linearly constrained convex minimization problem

z(b) := max f(x)

s.t. Ax = b, x ≥ 0

where f(x) is a concave function, and the maximal value function z(b) is an implicit function of
b. Prove that z(b) is a concave function of b ∈ B, where B is defined in part (b).

Sample Solution:

(a) Take any two points x′, x′′ ∈ F , that is, Ax′ = b, x′ ≥ 0 and Ax′′ = b, x′′ ≥ 0. Then, for any
α ∈ [0 1] (α is so defined through out this homework) we must have

αx′ + (1− α)x′′ ≥ 0.

Moreover,
A(αx′ + (1− α)x′′) = αAx′ + (1− α)Ax′′ = αb+ (1− α)b = b.

Thus, αx′ + (1− α)x′′ ∈ F .

(b) Take any two points b′, b′′ ∈ B. Then we must have x′ ≥ 0 and x′′ ≥ 0 such that Ax′ = b′ and
Ax′′ = b′′. Now we like to prove that the convex combination αb′+(1−α)b′′ is also in B. Consider
the convex combination x = αx′ + (1− α)x′′. Obviously, x ≥ 0. Furthermore,

Ax = A(αx′ + (1− α)x′′) = αAx′ + (1− α)Ax′′ = αb′ + (1− α)b′′,

which give the desired proof.

(c) Take any two points b′, b′′ ∈ B, and let x′ and x′′ be two minimizers for b = b′ and b = b′′,
respectively. That is, z(b′) = f(x′) and z(b′′) = f(x′′). Then, consider z(αb′ + (1 − α)b′′). Since
αx′+(1−α)x′′ ≥ 0 and A(αx′+(1−α)x′′) = αb′+(1−α)b′′, αx′+(1−α)x′′ is a feasible solution

for problem with b = αb′ + (1 − α)b′′. Thus, the maximum value must be greater or equal to a
feasible solution function value, that is,

z(αb′ + (1− α)b′′) ≥ f(αx′ + (1− α)x′′) ≥ αf(x′) + (1− α)f(x′′) = αz(b′) + (1− α)z(b′′),

where the second inequality is from f is a concave function.

2. (10’) Show that the dual cone of the n-dimensional nonnegative orthant cone Rn
+ is itself, that is,

(Rn
+)

∗ = Rn
+.

(Hint: show that Rn
+ ⊂ (Rn

+)
∗ and (Rn

+)
∗ ⊂ Rn

+.)

Sample Solution: Prove Rn
+ ⊂ (Rn

+)
∗: Let any y ∈ Rn

+. Then xT y =
∑

i xiyi ≥ 0 for any x ∈ Rn
+

since each of the product in the sum is nonnegative.

Prove (Rn
+)

∗ ⊂ Rn
+: Suppose this is not true, that is, there is a y ∈ (Rn

+)
∗ but y ̸∈ Rn

+. Then at least
one entry of y is negative, w.l.o.g., say y1 < 0. Now select e1 = (1; 0; ...; 0) ∈ Rn

+ we have

eT1 y = y1 < 0

which contradicts that y ∈ (Rn
+)

∗.

3. (10’) Let g1, . . . , gm be a collection of concave functions on Rn such that

S = {x : gi(x) > 0 for i = 1, . . . ,m} ̸= ∅.

Show that for any positive constant µ and any convex function f on Rn, the function (called Barrier
function)

h(x) = f(x)− µ

m∑
i=1

log(gi(x))

is convex over S. (Hint: directly apply the convex/concave function definition or analyze the Hessian
of h(x).)

Sample Solution: It is easy to verify that S is convex. We know that the positively weighted sum
of convex functions having a common domain is convex on that domain. The given conditions imply
that the function

h(x) = f(x)− µ

m∑
i=1

log(gi(x))

is a positively weighted sum of the convex functions. To see this, one can prove that a nondecreasing
concave function of a concave function is concave, that is, log gi(x) is a concave function. To prove it,
take any two points x′ and x′′ in S, then for each i

gi(αx
′ + (1− α)x′′) ≥ αgi(x

′) + (1− α)gi(x
′′).

Since log is nondecreasing,

log(gi(αx
′ + (1− α)x′′)) ≥ log(αgi(x

′) + (1− α)gi(x
′′)).

Moreover, log is a concave function, so that

log(gi(αx
′ + (1− α)x′′)) ≥ log(αgi(x

′) + (1− α)gi(x
′′)) ≥ α log(gi(x

′)) + (1− α) log(gi(x
′′)),

which complete the proof. Hence its negative − log gi(x) is convex. Thus, we see that

h(x) = f(x) +

m∑
i=1

[µ(− log gi(x))]

is convex on S.

4. (10’) (Lipschitz Functions) Prove the following two implication inequalities:

(a) (5’) Assume f is a first-order β-Lipschitz function, namely there is a positive number β such that
for any x,y ∈ Rn:

∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥,

then for any x,y ∈ Rn,

|f(x)− f(y)−∇f(y)T (x− y)| ≤ β

2
∥x− y∥2.

(b) (5’) Assume f is a second-order β-Lipschitz function, namely there is a positive number β such
that for any x,y ∈ Rn:

∥∇f(x)−∇f(y)−∇2f(y)(x− y)∥ ≤ β∥x− y∥2,

then for any x,y ∈ Rn,

|f(x)− f(y)−∇f(y)T (x− y)− 1

2
(x− y)T∇2f(y)(x− y)| ≤ β

3
∥x− y∥3.

Solution: The key tool is Taylor’s formula with integral remainder (cf., https://en.wikipedia.org/
wiki/Taylor%27s_theorem#Derivation_for_the_integral_form_of_the_remainder).

Let ∆ := y − x and ϕ(t) = f(x + t∆) where t is a scalar variable. Then we have ϕ(0) = f(x) and
ϕ(1) = f(x+∆) = f(y). Moreover,

f(x+∆)− f(x) = ϕ(1)− ϕ(0) =

∫ 1

0

dϕ(t) =
∫ 1

0

∆T∇f(x+ t∆)dt.

For the first implication inequality, noting ∆T∇f(x) =
∫ 1

0
∆T∇f(x)dt, we have

|f(x+∆)− f(x)−∇f(x)T∆| =
∣∣∣∣∫ 1

0

∆T (∇f(x+ t∆)−∇f(x)) dt
∣∣∣∣

≤
∫ 1

0

∣∣∆T (∇f(x+ t∆)−∇f(x))
∣∣ dt

≤
∫ 1

0

∥∆∥ ∥∇f(x+ t∆)−∇f(x)∥dt (Cauchy-Schwartz inequality)

= ∥∆∥
∫ 1

0

∥∇f(x+ t∆)−∇f(x)∥dt

≤ ∥∆∥
∫ 1

0

β∥t∆∥dt (the first-order Lipschitz condition)

= ∥∆∥β∥∆∥
∫ 1

0

tdt = β

2
∥∆∥2.

https://en.wikipedia.org/wiki/Taylor%27s_theorem#Derivation_for_the_integral_form_of_the_remainder
https://en.wikipedia.org/wiki/Taylor%27s_theorem#Derivation_for_the_integral_form_of_the_remainder

For the second implication inequality, further noting 1

2
∆T∇2f(x)∆ = ∆T∇2f(x)∆

∫ 1

0
tdt, we have

|f(x+∆)− f(x)−∇f(x)T∆− 1

2
∆T∇2f(x)∆|

=

∣∣∣∣∫ 1

0

∆T
(
∇f(x+ t∆)−∇f(x)−∇2f(x)(t∆)

)
dt
∣∣∣∣

≤
∫ 1

0

∣∣∆T
(
∇f(x+ t∆)−∇f(x)−∇2f(x)(t∆)

)∣∣ dt
≤
∫ 1

0

∥∆∥∥∇f(x+ t∆)−∇f(x)−∇2f(x)(t∆)∥dt (Cauchy-Schwartz inequality)

= ∥∆∥
∫ 1

0

∥∇f(x+ t∆)−∇f(x)−∇2f(x)(t∆)∥dt

≤ ∥∆∥
∫ 1

0

β∥t∆∥2dt (the second-order Lipschitz condition)

= β∥∆∥3
∫ 1

0

t2dt = β

3
∥∆∥3.

This completes our proof.

5. (10’) Consider the following SOCP problem:

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1,

x1 −
√
x2
2 + x2

3 ≥ 0.

(a) (5’) Show that the feasible region is a convex set.

(b) (5’) Try to find a minimizer of the problem and “argue” 1 why it is a minimizer.

Sample Solution:

• It is clear that the plane set {x : eTx = 1} is a convex set. Let x−1 = (x2;x3; ...;xn). Then we
like to prove that

{x : ∥x−1∥ ≤ x1}

is a convex set. Consider any two points x′ and x′′ in the set. For any α ∈ [0 1], we have, by
triangle inequality,

∥αx′
−1 + (1− α)x′′

−1∥ ≤ ∥αx′
−1∥+ ∥(1− α)x′′

−1∥ = α∥x′
−1∥+ (1− α)∥x′′

−1∥.

But ∥x′
−1∥ ≤ x′

1 and ∥x′′
−1∥ ≤ x′′

1 , so that

∥αx′
−1 + (1− α)x′′

−1∥ ≤ αx′
1 + (1− α)x′′

1 ;

that is, the convex combination point is also in the set. This implies that the set is a convex set.
The feasible region is the intersection of two convex sets, so that it is also a convex set.

1We recommend to prove this directly, namely without using duality argument which will be introduced in the following
lectures.

• The problem can be treated as

min x1

s.t. x1 + x2 + x3 = 1,

x1 −
√
x2
2 + x2

3 ≥ 0;

which is as the same as
max x2 + x3

s.t. x2 + x3 +
√
x2
2 + x2

3 ≤ 1.

For any fixed positive value of x2 + x3,
√
x2
2 + x2

3 would be minimized when x2 = x3. Thus, we
consider the case x2 = x3: which is as the same as

max 2x2

s.t. 2x2 +
√
2x2 ≤ 1.

That is, x2 = 1
2+

√
2
. Thus, the minimal value of the original problem might be 2− 2x2 =

√
2.

6. (10’) Prove that the set {Ax : x ≥ 0 ∈ Rn} is a closed and convex cone. (Hint: apply Carathéodory’s
theorem in Lecture Note to prove the closedness.)

Sample Solution: Let C = {Ax : x ≥ 0 ∈ Rn}.

It is easy to see that C is a cone. Take any b ∈ C, then b = Ax for some x ≥ 0. Now consider βb for
any β ≥ 0. But βb = β(Ax) = A(βx) and βx ≥ 0, so that βb ∈ C.

The convexity is easy to prove. Take b1 ∈ C and b2 ∈ C. Then we must have x1 ≥ 0 and x2 ≥ 0 such
that b1 = Ax1 and b2 = Ax2. Then for any α ∈ [0 1],

αb1 + (1− α)b2 = α(Ax1) + (1− α)(Ax2) = A(αx1 + (1− α)x2).

since αx1 + (1− α)x2 ≥ 0, we have αb1 + (1− α)b2 ∈ C.

Now let bk = Axk, xk ≥ 0, k = 1, ..., be a bounded and convergent sequence and let its limit points
be b̄. We would like to prove b̄ ∈ C. From Carathéodory’s theorem, we can assume that xk is a basic
feasible solution, that is, for some basis Bk ⊆ [n], we have ABkxk

Bk = bk, and the rest of entries in xk

are all zeros. Then, xk is bounded for all k = 1, Thus, there must be a subsequence of xk ≥ 0,
k ∈ K := {k1, k2, ...}, that is convergent. Let its limit to be x̄. We have x̄ ≥ 0. Now consider the
subsequence bk, k ∈ K, that is, bk = Axk, xk ≥ 0, k ∈ K. Thus, it is a convergent sequence with limit
Ax̄ ∈ C. But the limit of any convergent subsequence of bk is b̄, so that b̄ = Ax̄ ∈ C.

7. (15’) Farkas’ lemma can be used to derive many other (named) theorems of the alternative. This
problem concerns a few of these pairs of systems. Using Farkas’s lemma, prove each of the following
results.

(a) (5’) Gordan’s Theorem. Exactly one of the following systems has a solution:

(i) Ax > 0

(ii) yTA = 0, y ≥ 0, y ̸= 0.

(b) (5’) Stiemke’s Theorem. Exactly one of the following systems has a solution:

(i) Ax ≥ 0, Ax ̸= 0

(ii) yTA = 0, y > 0

(c) (5’) Gale’s Theorem. Exactly one of the following systems has a solution:

(i) Ax ≤ b

(ii) yTA = 0, yTb < 0, y ≥ 0

Solution: (a) Gordan’s Theorem. Let b denote a positive vector. Then, (i) is equivalent to Ax ≥ b

and it can be written as
Ax′ −Ax′′ − z = b, (x′;x′′; z) ≥ 0

By Farkas’ lemma, it is alternative system is

yT (A, −A, −I) ≤ 0, yT b = 1

which is equivalent to (ii).

(b) Stiemke’s Theorem. Let b denote a positive vector. Then, (i) is equivalent to Ax ≥ 0, bTAx = 1

and it can be written as:(
A −A −I

bTA −bTA 0

)
(x′;x′′; z) =

(
0

1

)
, (x′;x′′; z) ≥ 0

By Farkas’ lemma, its alternative system is on (y′; τ) such that:

(y′; τ)T

(
A −A −I

bTA −bTA 0

)
≤ 0, (y′; τ)T (0; 1) = 1

Let y = y′ + τ · b. Then, it is a solution to (ii).

(c) Gale’s Theorem. Note that (i) can be written as:

Ax′ −Ax′′ + z = b, (x′;x′′; z) ≥ 0

By Farkas’ lemma, its alternative system is

yT (A, −A, I) ≤ 0, yT b = 1

Then, −y is a solution to (ii).

8. (20’) Consider the sensor localization problem on plane R2 with one sensor x and three anchors
a1 = (1; 0), a2 = (−1; 0) and a3 = (0; 2). Suppose the Euclidean distances from the sensor to the
three anchors are d1, d2 and d3 respectively and known to us.Then, from the anchor and distance
information, we can locate the second by finding x ∈ R2 such that

∥x− ai∥2 = d2i , i = 1, 2, 3.

Do the following numerical experiments using CVX (or cvxpy, convex.jl) or MOSEK and answer the
questions:

(a) (10’) Generate any sensor point in the convex hull of the three anchors, compute its distances
to three anchors di, i = 1, 2, 3, respectively. Then solve the SOCP relaxation problem

∥x− ai∥2 ≤ d2i , i = 1, 2, 3.

Did you find the correct location? What about if the sensor point was in the outside of the
convex hull? Try a few different locations of the sensor and identify the pattern.

(b) (10’) Now try the SDP relaxation

(ai;−1)(ai;−1)T •

(
I x

xT y

)
= d2i , i = 1, 2, 3;

(
I x

xT y

)
⪰ 0 ∈ S3,

which can be written in the standard form

(1; 0; 0)(1; 0; 0)T • Z = 1,

(0; 1; 0)(0; 1; 0)T • Z = 1,

(1; 1; 0)(1; 1; 0)T • Z = 2,

(ai;−1)(ai;−1)T • Z = d2i , i = 1, 2, 3,

Z ⪰ 0 ∈ S3.

Did you find the correct location everywhere on the plane? Try a few different locations of the
sensor and identify the pattern.

You can use CVX (or cvxpy, convex.jl) to solve these numerical problems.

Sample Solution: Both the SOCP and SDP relaxations exactly find the sensor location if the sensor
is contained in the convex hull of the anchor points.

However, when the sensor is located outside of the convex hull, the SOCP relaxation will fail to find
the sensor correctly. This is due to the relaxed ∥x − ai∥ ≤ di constraint, which allows regions of the
convex hull to be feasible even if x∗ is outside of the convex hull. Thus the SOCP relaxation will tend
to return solutions within the convex hull. On the other hand, the SDP relaxation is always exact
since it strictly requires that ∥x− ai∥ = di.

Experimental code is given below:

1 %% MS&E 311/CME 307 Homework 1 Problem 9
2

3 %% Each column i s anchor point

4 A = [1 -1 0;
5 0 0 2] ;
6

7 %% Generate sensor in convex hull of 3 anchors
8 %% SOCP relaxation
9 alpha = rand(3 ,1) ;

10 alpha = alpha/norm(alpha ,1) ;
11 s_true = A∗alpha ;
12 d = norms(A - s_true∗ones (1 ,3)) ;
13

14 cvx_begin quiet
15 variable s (2)
16 minimize(0)
17 subject to
18 norms(A - s∗ones (1 ,3)) ≤ d;
19 cvx_end
20

21 fpr int f ('SOCP - Inside of Convex Hull\n ') ;
22 fpr int f ('True sensor location : (%f , %f)\n ' , s_true(1) , s_true(2)) ;
23 fpr int f ('Recovered sensor location : (%f , %f)\n ' , s (1) , s (2)) ;
24 fpr int f (' Difference : %f\n\n ' , norm(s_true - s)) ;
25

26 %% SDP relaxation
27 cvx_begin sdp quiet
28 variable X(3 ,3) semidefinite
29 minimize(0)
30 subject to
31 X(1:2 ,1:2) == eye(2)
32 for i =1:3
33 [A(: , i) ; -1] '∗X∗[A(: , i) ; -1] == d(i)^2
34 end
35 cvx_end
36

37 s = X(1:2 ,3) ;
38

39 fpr int f ('SDP - Inside of Convex Hull\n ') ;
40 fpr int f ('True sensor location : (%f , %f)\n ' , s_true(1) , s_true(2)) ;
41 fpr int f ('Recovered sensor location : (%f , %f)\n ' , s (1) , s (2)) ;
42 fpr int f (' Difference : %f\n\n ' , norm(s_true - s)) ;
43

44 %% Generate sensor outside of convex hull of 3 anchors
45 alpha = 10∗rand(3 ,1) ;
46 s_true = A∗alpha ;
47 d = norms(A - s_true∗ones (1 ,3)) ;
48

49 cvx_begin quiet
50 variable s (2)
51 minimize(0)
52 subject to
53 norms(A - s∗ones (1 ,3)) ≤ d;
54 cvx_end
55

56 fpr int f ('SOCP - Outside of Convex Hull\n ') ;
57 fpr int f ('True sensor location : (%f , %f)\n ' , s_true(1) , s_true(2)) ;
58 fpr int f ('Recovered sensor location : (%f , %f)\n ' , s (1) , s (2)) ;
59 fpr int f (' Difference : %f\n\n ' , norm(s_true - s)) ;
60

61 %% SDP relaxation
62 cvx_begin sdp quiet
63 variable X(3 ,3) semidefinite
64 minimize(0)
65 subject to

66 X(1:2 ,1:2) == eye(2)
67 for i =1:3
68 [A(: , i) ; -1] '∗X∗[A(: , i) ; -1] == d(i)^2
69 end
70 cvx_end
71

72 s = X(1:2 ,3) ;
73

74 fpr int f ('SDP - Outside of Convex Hull\n ') ;
75 fpr int f ('True sensor location : (%f , %f)\n ' , s_true(1) , s_true(2)) ;
76 fpr int f ('Recovered sensor location : (%f , %f)\n ' , s (1) , s (2)) ;
77 fpr int f (' Difference : %f\n\n ' , norm(s_true - s)) ;

9. (20’) Consider the sensor localization problem on plane R2 with two sensors x1 and x2 and three
anchors a1 = (1; 0), a2 = (−1; 0) and a3 = (0; 2). Suppose that we know the (Euclidean) distances
from one sensor x1 to a1 and a2, denoted by d11 and d12; distances of the other sensor x2 to a2 and a3,
denoted by d22 and d23; and the distance between the two sensors x1 and x2, denoted by d̂12. Then,
from the anchor and distance information we would like to locate the sensor positions x1,x2 ∈ R2.

Do the following numerical experiments using CVX (or cvxpy, convex.jl) or MOSEK and answer the
questions:

(a) (10’) Generate two sensor points anywhere and try the SOCP relaxation model

∥x1 − ai∥2 ≤ d21i, i = 1, 2

∥x2 − ai∥2 ≤ d22i, i = 2, 3

∥x1 − x2∥2 ≤ d̂212.

Did you find the correct locations? What have you observed? Try a few different locations of the
sensor pairs and identify the pattern.

(b) (10’) Now try the SDP relaxation: find X = [x1, x2] ∈ R2×2 and

Z =

(
I X

XT Y

)
∈ S4

to meet the constraints in the standard form:

(1; 0; 0; 0)(1; 0; 0; 0)T • Z = 1,

(0; 1; 0; 0)(0; 1; 0; 0)T • Z = 1,

(1; 1; 0; 0)(1; 1; 0; 0)T • Z = 2,

(ai;−1; 0)(ai;−1; 0)T • Z = d21i, i = 1, 2,

(ai; 0;−1)(ai; 0;−1)T • Z = d22i, i = 2, 3,

(0; 0; 1;−1)(0; 0; 1;−1)T • Z = d̂212,

Z ⪰ 0 ∈ S4.

Did you find the correct locations? What have you observed? Can you conclude with something?
Try a few different locations of the sensor pairs and identify the pattern.

Solution: (The MATLAB titles of the figures may be a bit misleading. For all the figures, red points
are x1 and blue points are x2. Titles violating this are all wrong due to previous typos in the title
generation codes. The descriptions below are still all consistent. These are minor issues and forget
about these if you didn’t look into such details.)

(a) For the SOCP formulation, in general we’re not able to find the correct locations, even if both
the sensors x1 and x2 are in the convex hull of the anchors a1, a2, a3. To enable exact recovery,
we need to require that x1 is inside the convex hull of x2, a1, a2 and x2 is inside the convex hull
of x1, a2, a3. We will validate this claim by numerical results.
Specifically, if at least one sensor is outside the convex hull of the anchors a1, a2, a3, we generally
cannot ensure exact recovery. So the exact recovery condition here is stronger than just requiring
both sensors being inside the convex hull of the anchors.

This comes from the same analysis as in problem 2, where we write down the first-order KKT
conditions and keep in mind the non-positiveness of the multipliers. In particular, when the sensors
are in the interior of the convex hulls, the corresponding multipliers are positive and hence by
complementarity the inequalities become tight, which leads to exact recovery. On the other hand,
when the sensors are on the boundaries of the convex hulls, then the inequality constraints already
uniquely determine the points, and hence again we obtain exact recovery.
In contrast, if any of the convex hull inclusions of the two sensors is violated, then the correspond-
ing (three) multipliers must all be 0. This will potentially lead to non-tight inequalities, disabling
exact recovery.
In the experiments, we provide three options of generating sensors x1, x2 for facility of usage. The
first is to generate both by randn.m. The second is to start by generating x1 inside the convex
hull of a1, a2, a3, and then generate x2 inside the convex hull of x1, a2, a3. The third is to generate
x1 and x2 independently inside the convex hull of a1, a2, a3. Notice that the second option does
not ensure that x1 is inside x2, a1, a2.
We showcase the five possible situations in the following figures:

(1) x1 ∈ convhull(x2, a1, a2), x2 ∈ convhull(x1, a2, a3), (x1, x2 ∈ convhull(a1, a2, a3));
(2) x1 /∈ convhull(x2, a1, a2), x2 ∈ convhull(x1, a2, a3), x1, x2 ∈ convhull(a1, a2, a3);
(3) x1 /∈ convhull(x2, a1, a2), x2 /∈ convhull(x1, a2, a3), x1, x2 ∈ convhull(a1, a2, a3);
(4) one of x1, x2 outside convhull(a1, a2, a3), and the other inside;
(5) both x1, x2 outside convhull(a1, a2, a3).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

blue *: x1; red *: x2; blue o: x1−num; red o: x2−num

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

blue *: x1; red *: x2; blue o: x1−num; red o: x2−num

Figure 1: Left: exact recovery, case 1. Right: inexact recovery, case 2.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

blue *: x1; red *: x2; blue o: x1−num; red o: x2−num

Figure 2: Inexact recovery, case 3.

−1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

blue *: x1; red *: x2; blue o: x1−num; red o: x2−num

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

blue *: x1; red *: x2; blue o: x1−num; red o: x2−num

Figure 3: Left: inexact recovery, case 4. Right: inexact recovery, case 4.

We see that apart from the first case, we almost always lose exact recovery.
Also notice that switching the generation of x1 and x2 (i.e. first generate x2 inside the convex
hull of a1, a2, a3 and then generate x1 inside the convex hull of x2, a1, a2) still results in the same
observations, i.e. we obtain exact recovery if x2 is also inside the convex hull of x1, a2, a3, and
vice versa.
The code is attached below:

1 clear a l l ; close a l l ;
2 %% Init ia l i zat ion
3 A = [1 , -1 ,0 ;0 ,0 ,2] ;
4 %%% 1) random in i t ia l i zat ion choice (remove comment to enable)
5 % x1 = randn(2 , 1) ;
6 % x2 = randn(2 , 1) ;
7 %%% 2) random in i t ia l i zat ion choice inside the conv- hull (remove comment to
8 %%% enable)
9 % lambda1 = rand(3 ,1) ;

10 % x1 = A ∗ lambda1 / sum(lambda1) ;

11 % lambda2 = rand(3 ,1) ;
12 % x2 = A ∗ lambda2 / sum(lambda2) ;
13 %%% 2) special in i t ia l i zat ion choice (add comment to disable)
14 lambda1 = rand(3 ,1) ;
15 x1 = A ∗ lambda1 / sum(lambda1) ;
16 lambda2 = rand(3 ,1) ;
17 x2 = [x1 , A(: ,2 :3)] ∗ lambda2 / sum(lambda2) ;
18 %% Plot the figure
19 scatter (A(1 , :) ,A(2 , :) , 'k ' , ' f i l l e d ') ;
20 hold on ;
21 scatter (x1(1) , x1(2) , ' r∗ ') ;
22 scatter (x2(1) , x2(2) , 'b∗ ') ;
23 scatter (linspace (-1 ,1 ,1000) , zeros (1 ,1000) ,5 , 'k ') ;
24 scatter (linspace (-1 ,0 ,1000),2+2∗linspace (-1 ,0 ,1000) ,5 , 'k ') ;
25 scatter (linspace (0 ,1 ,1000) ,2 -2∗ linspace (0 ,1 ,1000) ,5 , 'k ') ;
26 scatter (linspace (-1 ,x2(1) ,1000) , . . .
27 x2(2) /(x2(1)+1)∗(linspace (-1 ,x2(1) ,1000)+1) ,2 , 'm∗ ') ;
28 scatter (linspace (x2(1) ,1 ,1000) , . . .
29 x2(2) /(x2(1) -1) ∗(linspace (x2(1) ,1 ,1000) -1) ,2 , 'm∗ ') ;
30 scatter (linspace (-1 ,x1(1) ,1000) , . . .
31 x1(2) /(x1(1)+1)∗(linspace (-1 ,x1(1) ,1000)+1) ,2 , 'm∗ ') ;
32 scatter (linspace (0 ,x1(1) ,1000) , . . .
33 (x1(2) -2)/x1(1) ∗(linspace (0 ,x1(1) ,1000))+2,2, 'm∗ ') ;
34 %% data generation
35 d11 = norm(x1-A(: ,1)) ;
36 d12 = norm(x1-A(: ,2)) ;
37 d22 = norm(x2-A(: ,2)) ;
38 d23 = norm(x2-A(: ,3)) ;
39 d12h = norm(x1-x2) ;
40 %% SOCP
41 cvx_begin
42 variables z1(2) z2(2)
43 minimize(0)
44 subject to
45 norm(z1 -A(: ,1))≤d11
46 norm(z1 -A(: ,2))≤d12
47 norm(z2 -A(: ,2))≤d22
48 norm(z2 -A(: ,3))≤d23
49 norm(z1 - z2)≤d12h
50 cvx_end
51 fpr int f ('x1 error = %3.4e\n ' , norm(z1 -x1)) ;
52 fpr int f ('x2 error = %3.4e\n ' , norm(z2 -x2)) ;
53 scatter (z1(1) , z1(2) , ' ro ' , ' f i l l e d ') ;
54 scatter (z2(1) , z2(2) , 'bo ' , ' f i l l e d ') ;
55 t i t l e (' red ∗: x1 ; blue ∗: x2 ; red o : x1-num; blue o : x2-num') ;
56 hold of f

(b) For the SDP case, the recovery is still not always exact even if both sensors are inside the convex
hull of the anchors a1, a2, a3. But there are more chances of recovering exactly than the SOCP
formulation.
When both x1, x2 are inside the convex hull of a1, a2, a3, as long as one of the following two cases
holds: 1) x1 is inside the convex hull of x2, a1, a2; 2) x2 is inside the convex hull of x1, a2, a3, then
we obtain exact recovery. If these are violated, then we may need some algebraic characterizations
(see the remark in the ned). Again, we will validate this claim by numerical experiments.
In the numerical experiments, we again provide three options of generating sensors x1, x2 for
facility of usage. The first is to generate both by randn.m. The second is to start by generating
x1 randomly using randn.m, and then generate x2 inside the convex hull of x1, a2, a3. The third

is to generate x1 and x2 independently inside the convex hull of a1, a2, a3.
As described above, we obtain exact recovery in the second case as long as x2 is also inside the
convex hull of a1, a2, a3. Notice that again, switching the order of generating x1 and x2 (i.e. first
generating x2 using randn.m and then generate x1 inside the convex hull of x2, a1, a2) leads to
the same observations.
The trickier case is when x1, x2 are not both inside the convex hull of a1, a2, a3, but (exactly) one
of 1) and 2) holds. In this case, we sometimes get exact recovery while sometimes not. But if we
check the rank of a dual optimal slack matrix (see definition in the end remark), we will see that
we obtain exact recovery iff its rank is n = 2.
In all other cases, we (almost) always lose exact recovery.
We showcase three possible situations below with both x1, x2 inside the convex hull of a1, a2, a3
in the following figures:

(1) x1 ∈ convhull(x2, a1, a2), x2 ∈ convhull(x1, a2, a3), (x1, x2 ∈ convhull(a1, a2, a3));
(2) x1 /∈ convhull(x2, a1, a2), x2 ∈ convhull(x1, a2, a3), x1, x2 ∈ convhull(a1, a2, a3);
(3) x1 /∈ convhull(x2, a1, a2), x2 /∈ convhull(x1, a2, a3), x1, x2 ∈ convhull(a1, a2, a3);

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

blue *: x1; red *: x2; blue o: x1−num; red o: x2−num

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

blue *: x1; red *: x2; blue o: x1−num; red o: x2−num

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

blue *: x1; red *: x2; blue o: x1−num; red o: x2−num

Figure 4: Top left: exact recovery, case 1. Top right: exact recovery, case 2. Bottom: inexact recovery, case
3.

This validates our claim. But when one of x1, x2 are outside the convex hull of a1, a2, a3, things
become much trickier:

−1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

blue *: x1; red *: x2; blue o: x1−num; red o: x2−num

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

blue *: x1; red *: x2; blue o: x1−num; red o: x2−num

Figure 5: Exact recovery when both 1) and 2) are violated.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

red *: x1; blue *: x2; red o: x1−num; blue o: x2−num

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

red *: x1; blue *: x2; red o: x1−num; blue o: x2−num

Figure 6: Inexact recovery when one of 1) and 2) holds.

Remark: The special cases which can not be easily characterized by convex hull inclusions can
actually be (still partly) explained using Theorem 2 on slide 14 of lecture 8. In fact, the exact
recovery is obtained if the optimal dual slack matrix (which can be retrieved e.g. using dual
variable command in CVX) has rank n. This implies that any primal optimal/feasible solution
Z has rank 2, and hence gives exact recovery.
The code is attached below:

1 clear a l l ; close a l l ;
2 %% Init ia l i zat ion
3 A = [1 , -1 ,0 ;0 ,0 ,2] ;
4 %%% 1) random in i t ia l i zat ion choice (remove comment to enable)
5 % x1 = randn(2 , 1) ;
6 % x2 = randn(2 , 1) ;

7 %%% 2) random in i t ia l i zat ion choice inside the conv- hull (remove comment to
8 %%% enable)
9 % lambda1 = rand(3 ,1) ;

10 % x1 = A ∗ lambda1 / sum(lambda1) ;
11 % lambda2 = rand(3 ,1) ;
12 % x2 = A ∗ lambda2 / sum(lambda2) ;
13 %%% 3) special in i t ia l i zat ion choice (add comment to disable)
14 lambda1 = rand(3 ,1) ;
15 x1 = A ∗ lambda1 / sum(lambda1) ;
16 lambda2 = rand(3 ,1) ;
17 x2 = [x1 , A(: ,2 :3)] ∗ lambda2 / sum(lambda2) ;
18 %% Plot the figure
19 scatter (A(1 , :) ,A(2 , :) , 'k ' , ' f i l l e d ') ;
20 hold on ;
21 scatter (x1(1) , x1(2) , ' r∗ ') ;
22 scatter (x2(1) , x2(2) , 'b∗ ') ;
23 scatter (linspace (-1 ,1 ,1000) , zeros (1 ,1000) ,5 , 'k ') ;
24 scatter (linspace (-1 ,0 ,1000),2+2∗linspace (-1 ,0 ,1000) ,5 , 'k ') ;
25 scatter (linspace (0 ,1 ,1000) ,2 -2∗ linspace (0 ,1 ,1000) ,5 , 'k ') ;
26 scatter (linspace (-1 ,x2(1) ,1000) , . . .
27 x2(2) /(x2(1)+1)∗(linspace (-1 ,x2(1) ,1000)+1) ,2 , 'm∗ ') ;
28 scatter (linspace (x2(1) ,1 ,1000) , . . .
29 x2(2) /(x2(1) -1) ∗(linspace (x2(1) ,1 ,1000) -1) ,2 , 'm∗ ') ;
30 scatter (linspace (-1 ,x1(1) ,1000) , . . .
31 x1(2) /(x1(1)+1)∗(linspace (-1 ,x1(1) ,1000)+1) ,2 , 'm∗ ') ;
32 scatter (linspace (0 ,x1(1) ,1000) , . . .
33 (x1(2) -2)/x1(1) ∗(linspace (0 ,x1(1) ,1000))+2,2, 'm∗ ') ;
34 %% data generation
35 d11 = norm(x1-A(: ,1)) ;
36 d12 = norm(x1-A(: ,2)) ;
37 d22 = norm(x2-A(: ,2)) ;
38 d23 = norm(x2-A(: ,3)) ;
39 d12h = norm(x1-x2) ;
40 %% SDP
41 a1 = A(: ,1) ;
42 a2 = A(: ,2) ;
43 a3 = A(: ,3) ;
44 cvx_begin
45 variable Z(4 ,4) semidefinite
46 minimize(0)
47 subject to
48 Z(1:2 ,1:2) == eye(2 , 2) ;
49 %%% constraint formulation 1
50 % [a1 ; -1 ;0] ' ∗ Z ∗ [a1 ; -1 ;0] == d11^2;
51 % [a2 ; -1 ;0] ' ∗ Z ∗ [a2 ; -1 ;0] == d12^2;
52 % [a2 ;0 ; -1] ' ∗ Z ∗ [a2 ;0 ; -1] == d22^2;
53 % [a3 ;0 ; -1] ' ∗ Z ∗ [a3 ;0 ; -1] == d23^2;
54 % [0 ; 0 ; 1 ; - 1] ' ∗ Z ∗ [0 ; 0 ; 1 ; - 1] == d12h^2;
55 %%% constraint formulation 2
56 sum(sum(([a1 ; - 1 ; 0] ∗ [a1 ; -1 ;0] ') .∗ Z)) == d11^2;
57 sum(sum(([a2 ; - 1 ; 0] ∗ [a2 ; -1 ;0] ') .∗ Z)) == d12^2;
58 sum(sum(([a2 ; 0 ; - 1] ∗ [a2 ;0 ; -1] ') .∗ Z)) == d22^2;
59 sum(sum(([a3 ; 0 ; - 1] ∗ [a3 ;0 ; -1] ') .∗ Z)) == d23^2;
60 sum(sum(([0 ; 0 ; 1 ; - 1] ∗ [0 ; 0 ; 1 ; - 1] ') .∗ Z)) == d12h^2;
61 cvx_end
62 z1 = Z(1:2 ,3) ;
63 z2 = Z(1:2 ,4) ;
64 fpr int f ('x1 error = %3.4e\n ' , norm(z1 -x1)) ;
65 fpr int f ('x2 error = %3.4e\n ' , norm(z2 -x2)) ;
66 scatter (z1(1) , z1(2) , ' ro ' , ' f i l l e d ') ;
67 scatter (z2(1) , z2(2) , 'bo ' , ' f i l l e d ') ;
68 t i t l e (' red ∗: x1 ; blue ∗: x2 ; red o : x1-num; blue o : x2-num') ;

69 hold of f

10. (10’) For the Maze Runner example in Lecture Note #1, suppose that the blue-action at State 3 has
a probability 0.5 leading to State 4 and 0.5 leading to State 5; and the only action at State 5 leads to
State 0. Reformulate the MDP-LP problem with γ = 0.9 and solve it using any LP solver.

Sample Solution: LP formulation

maximizey y0 + y1 + y2 + y3 + y4 + y5,

subjectto y0 ≤ min{0 + γy1, 0 + γ(0.5y2 + 0.25y3 + 0.125y4 + 0.125y5)},

y1 ≤ min{0 + γy2, 0 + γ(0.5y3 + 0.25y4 + 0.25y5)},

y2 ≤ min{0 + γy3, 0 + γ(0.5y4 + 0.5y5)},

y3 ≤ min{0 + γy4, 0 + γ(0.5y4 + 0.5y5)},

y4 ≤ 1 + γy5,

y5 ≤ 0 + γy0.

(1)

Solution
y∗0 = 0.747207793362298, π∗

0 = Red.

y∗1 = 0.830230881521939, π∗
1 = Red.

y∗2 = 0.922478757256612, π∗
2 = Red.

y∗3 = 1.024976396962329, π∗
3 = Blue.

y∗4 = 1.605238312580964,

y∗5 = 0.672487014018313.

(2)

Sample code:

1 gamma = 0.9
2

3 cvx_begin
4 variables y0 y1 y2 y3 y4 y5
5 maximize y0 + y1 + y2 + y3 + y4 + y5
6 subject to
7 y0 ≤ 0 + gamma ∗ y1
8 y0 ≤ 0 + gamma ∗ (0.5 ∗ y2 + 0.25 ∗ y3 + 0.125 ∗ y4 + 0.125 ∗ y5)
9 y1 ≤ 0 + gamma ∗ y2

10 y1 ≤ 0 + gamma ∗ (0.5 ∗ y3 + 0.25 ∗ y4 + 0.25 ∗ y5)
11 y2 ≤ 0 + gamma ∗ y3
12 y2 ≤ 0 + gamma ∗ (0.5 ∗ y4 + 0.5 ∗ y5)
13 y3 ≤ 0 + gamma ∗ y4
14 y3 ≤ 0 + gamma ∗ (0.5 ∗ y4 + 0.5 ∗ y5)
15 y4 ≤ 1 + gamma ∗ y5
16 y5 ≤ 0 + gamma ∗ y0
17 cvx_end

