Optimization Course Project V:

Support Vector Machine

1 Introduction

Support vector machine (SVM) is a powerful tool for classification and regression in machine learning. The
history of SVM can be tracked back to 1962, when it was first invented by Vladimir Vapnik and Alexey
Chervonenkis in ([1]). Later, with the evolution of machine learning, coupled with numerous subsequent
studies (]2, 3]), SVM became one fundamental machine learning tool, which enjoys both solid empirical
effectiveness and strong theoretical interpretability. Its adaptability across a diverse array of domains, such

as finance, healthcare, and manufacturing.

This project focuses on applying SVM to binary classification problems. Specifically, we consider two
classes of data points. Denote {a;}j~; C R? and {b;}7-, C R? as training data from Class 1 and 2,
respectively. In this case, SVM aims to identify a boundary between Classes 1 and 2 based on the training

data {a;}7_; C R? and {b; jiae R?, and then, it will classify any new point based solely on this boundary.

2 Different Variants of SVM

Here are some variants of SVM.

Hard-Margin SVM: We first consider a linear separable case, where there is a hyperplane such that
{ai}; and {b;}71, are situated on opposite sides of this hyperplane. To identify this hyperplane, hard-
margin SVM suggests first selecting two parallel hyperplanes that separate the two classes of data by maximiz-
ing the distance between those two hyperplanes. Then, the hyperplane equidistant from the aforementioned

parallel hyperplanes is selected as the boundary of the two classes. This idea can be formalized by the



following quadratic program. :

min  ||x|3
subject to ajx—&—xo >1, foralli=1,...,n, (1)

bij+x0§—1, forall j=1,...,m.

Here, x and z are the boundary hyperplane’s slope vector and intersect scalar. In this case, then w' x+z¢ =
1 and w'x + 29 = —1 are the two parallel hyperplanes mentioned before, and ﬁ is the distance between
those two hyperplanes. In addition, We remark that the region between those two hyperplanes is also called
the margin, the size of which then can be measured by ﬁ, so the SVM classifier is also known as the

maximum-margin classifier.

Soft-Margin SVM: A notable limitation of the hard-margin SVM arises when the data points from two
classes are not strictly linearly separable. Specifically, the problem defined in (1) becomes infeasible even
when the majority of data points from both sets lie on their respective sides of a hyperplane, except for
several outliers due to random noises. To address this issue, [3] introduce some slack variables & and (; to

constraints in (1). Then, the new optimization problem can be reformulated as follows:

min [xf3+p (S 6+ > ¢

i=1 j=1m
subject to  a/ x4 x9>1-¢;, foralli=1,...,n, (2)
b;rx—l—aso <—=1+¢j, forallj=1,...,m

5274] > 07 for all ivja

where p > 0 is a pre-fixed constant that potentially depends on d, n, and m. Here, the slack variables in
the objective quantify the classification error of the two parallel hyperplanes. Compared to the hard-margin
formulation (1), (2) also looks for two parallel hyperplanes with maximum margin to separate points in two
classes, while it allows the margin, or the region between these two hyperplanes, to contain some data points.

Thus, this formulation is known as soft-margin SVM.

SVM with Non-Linear Mapping: In the previous two parts, we assume the two classes are linearly
separable. In this part, we discuss applying SVM if linear separability does not hold. For the sake of
simplicity, we first consider an ellipsoidal separation setting, where {a;}? ; are almost out of an ellipsoid,
and {b; };”:1 are almost contained in the same ellipsoid. In this case, one can still apply SVM by mapping

a;’s and b,’s to a linear separable space. Specifically, since there exists an ellipsoid separating {a;}}_; and



{b;}"_,, one can find X € RY*? and x € R? such that

alT-X+aiTx+xo>0, for a majority of t = 1,...,n,

bjb;r~X+b;'—x+x0 < 0, for a majority of j =1,...,m,

where —% is the center of the ellipsoid, and X measures the size and direction of the ellipsoid. Then, letting
#(a) = (aa',a) € R4 x RY

for a € R%, we have that {¢(a;)}/, and {¢(b;)}7_, are linearly separable, and thus, we can apply soft-margin

SVM by solving the following mixed linear and semidefinite programming problem:
min Trace(X) + x5+ 1 [ Y&+ 3 ¢
i=1 j=1m
subject to aja; - X +a/x+1-29g>1-§, foralli=1,. (3)
bjb] X +blx+1 29< -1+,

£,(; >0, forallj=1,...,m

This idea of SVM with non-linear mapping also works in general. Particularly, for any mapping ¢, one can

still construct a soft-margin SVM problem as follows:
min x| +p (D &G+ D¢
i=1 j=1m
subject to  ¢(a;) x4+ 29 >1—&, foralli=1,...,n, (4)
d(b;) ' x +xog < —14¢, forall j=1,...,m,

&,¢ >0, for all i, .

Kernalized SVM (Optional): To further generalize SVM with non-linear mapping, [2] introduces ker-
nelized SVM, which we will discuss below. This kernelized SVM can generalize the above variants of SVM
without explicitly bothering the mapping ¢, and make SVM more powerful in practice.

Here, we derive the kernelized SVM. Specifically, denote (x*, z{) as the optimal solution of (2). Then,

based on KKT conditions of (2), one can show

x* = Zam(ai) - Zﬂm(bj), (5)

zo—argmlef:pof aZ +Zl+l’0+¢ ) X).
j=1

=1



In the above equalities, a;’s and f;’s are the solutions of the dual problem of (2) as listed below (please
double-check it by yourself).

m

n m n m
Z o + Z Bi+ Z i, i, 0(ai,) T 6(ai,) Z B B, d(bj,) Z Z a;Bi¢(
i=1 j=1 i=1 j=1

i1,i0=1 J1,j2=1
n m
subject to Zai = Zﬁj (6)
i=1 j=1
0<a;,B;<pforalli=1,...,n, j=1,....,m

Then, for any new point ¢, one can classify it by the following formula,

T >0, ceC(Classl,
o(c) ' x* + xo (7)
<0, ceClass 2.

Now, we define the kernel K(-,-) := ¢(-) " ¢(-) be the inner product of the mapped points. With the

kernel, we can simplify the classification rule (7) as follows:

" s >0, ceCClassl,
> aiK(aj,c) = Y BiK(bj,c) (8)
i=1 j=1 <0, ceClass?2

We can see that (8) depends only on the kernel K since z( also depends only on the kernel. In addition,

with this kernel, we can rewrite (6) to (9)

Zai+26j+ Z (351'1()‘Z'2I{(‘r112'17ai2)+ Z ﬂj1ﬂj2K(bj17 Zzalﬂj au
i—1 j=1

i1,i2=1 J1,j2=1 i=1 j=1
n m
subject to Zai = Zﬁj, (9)
i=1 j=1
0<a;,B;<pforalli=1,...,n,5=1,...,m.

This new optimization problem also depends only on the kernel K. Combining (8) and (9), if the kernel K
is given, one can directly find the classifier (8) without explicitly using the mapping ¢. Actually, Mercer’s
Theorem says that there exists a mapping ¢ such that K(-,-) = ¢(-) " #(-) if and only if a function K satisfies
i) nonnegativity K(a,b) > 0, and ii) symmetry: K(a,b) = K(b,a) for all a,b. Thus, in practice, one can
apply any kernels to find a classifier by (8) and (9) without constructing a feature mapping ¢. This method

is also known as the ”kernel method.” Some popular kernel functions are listed below.

Linear Kernel: K(a,b) =a'b,
Gaussian Kernel: K (a,b) = exp{—~|ja — b3}, for some parameter v > 0,

polynomial Kernel: K(a,b) = (a'b 4 ), for some constant r and degree d.

¢(bj)



3 Project Goals

You may explore those SVM variants by applying SVMs on some generated linear or ellipsoidal separable
binary classification problems and on the MNIST Dataset. The key questions are: what are the differences
among those different variants? What are the best choices of u? Are SVMs robust to some outliers (or
extreme points) of the training samples? How are the performances of SVMs if the data are not linear
and ellipsoidal separable? How can you accelerate SVM’s training process for large-scale problems? For
the kernelized SVM, which kernel is the best? How is the performance of kernels that do not satisfy the
nonnegativity condition? The comparison can include aspects such as algorithm design, theoretical analysis,

computation time, and the approximation error of different algorithms.

4 Remarks

In recent years, SVM might not have garnered as much attention as other areas within the machine learning
community. However, SVM’s empirical efficacy and theoretical clarity continue to underscore its significance
as a practical tool. Moreover, the concepts of maximum margin and the kernel method also have considerable
influence in the machine learning community, including but not limited to applying and understanding deep

neural networks ([4, 5]).
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