
Optimization Methods for Data Science, Machine Learning and AI
Prof. Yinyu Ye

Homework Assignment 2 Sample Solution

Individual Homework (110’):

1. (15’) Consider problem 5 of Homework Assignment 1 where the second-order cone is
replaced by the p-th order cone for p ≥ 1:

minx 2x1 + x2 + x3
s.t. x1 + x2 + x3 = 1,

x1 − ∥(x2, x3)∥p ≥ 0.

(a) (5’) Write out the conic dual problem.
(b) (5’) Compute the dual optimal solution (y∗, s∗).
(c) (5’) Using the zero duality condition to compute the primal optimal solution x∗.

Solution:

(a) Following lecture note 3, slide 19, the dual is

max y s.t. ye+ s = (2, 1, 1)T , s1 − ∥(s2, s3)∥q ≥ 0

or
max y s.t. (2− y)− (2|1− y|q)1/q ≥ 0

where 1
p
+ 1

q
= 1.

(b) If y ≥ 1, the constraint can be written as (2 − y) − 21/q(y − 1) ≥ 0 so that the
maximal value is

y∗ =
2 + 21/q

1 + 21/q
.

which is indeed ≥ 1. Hence there is no need to consider the other case when
y < 1. And s∗ = (2 − y∗; 1 − y∗; 1 − y∗)T . For p = 1, y∗ = 3/2; p = 2, y∗ =

√
2;

and for p = ∞, y∗ = 4/3.
(c) From the zero duality condition, we have 2x∗1 + x∗2 + x∗3 = y∗, and together with

the constraints x∗1 + x∗2 + x∗3 = 1, we have

x∗1 = y∗ − 1 =
1

1 + 21/q
, x∗2 + x∗3 =

21/q

1 + 21/q
.



When x∗2 = x∗3 =
21/q

2(1+21/q)
> 0,

∥(x∗2; x∗3)∥pp = 2

(
21/q

2(1 + 21/q)

)p

=
1

(1 + 21/q)p
21−p+p/q =

1

(1 + 21/q)p
≤ (x∗1)

p

so that it is feasible and, consequently, optimal.
This optimal solution is also unique, as we have

21/q

1 + 21/q
= x∗2 + x∗3 ≤ ∥(x∗2; x∗3)∥p∥(1; 1)∥q = 21/q∥(x∗2; x∗3)∥p

by Holder’s inequality, which implies that

∥(x∗2; x∗3)∥p ≥
1

1 + 21/q
= x∗1

and the equality is obtained iff x∗2 = x∗3 =
21/q

2(1+21/q)
.

2. (20’) Consider the distributionally robust optimization (DRO) problem

minimizex∈X [maxd∈D
∑N

k=1(p̂k + dk)h(x, ξk)
]

(1)

where the distribution set D is now given by

D = {d :
N∑
k=1

dk = 0, ∥d∥2 ≤ 1/N, p̂k + dk ≥ 0, ∀k.}

(a) (3’) What is the interpretation of D? Answer within 2 sentences.
(b) (4’) Represent D in standard conic form. (Hint: one set of the slack variables are

in the second-order cone and the others are in the non-negative orthant cone.)
(c) (7’) Construct the conic dual of the inner max-problem.
(d) (6’) Replace the inner max-problem (1) by its dual, and simplify the DRO problem

as much as possible.

Solution:

(a) D denotes a set of bounded perturbations d (or slack variables) which keep the
resulting pk := p̂k + dk, k = 1, . . . , N a probability vector.

(b) The conic representation of D is{
(d0;d) : d0 = 1/

√
N,

N∑
k=1

dk = 0, p̂k + dk = pk, pk ≥ 0, ∥d∥ ≤ d0

}



(c) Denoting h := (h(x, ξ1); . . . ;h(x, ξN)) and p̂ := (p̂1; . . . ; p̂N), and ignoring the
constants

∑N
k=1 p̂kh(x, ξk), the primal problem can be abbreviated as the following

CLP:
min
d0;d;y

− hTd

s.t. d0 = 1/
√
N, eTd = 0,d− y = −p̂

(d0;d) ∈ SOCN+1,y ≥ 0

Suppose that λ0, λ1, λ2 are the multipliers for the corresponding equality con-
straints, then the dual problem is

min
λ0,λ1,λ2

λ0/
√
N − λT2 p̂

s.t. λ0(1; 0; 0) + λ1(0; e; 0) + λ2(0; I;−I)− (s0; s; z) = (0;h; 0)

(s0; s) ∈ SOCN+1, z ≥ 0

or equivalently,

min
λ0,λ1,λ2

λ0/
√
N − λT2 p̂

s.t. ∥λ1e+ λ2 − h∥ ≤ λ0

λ2 ≤ 0

which can be further simplified to

min
λ1,λ2

∥λ1e+ λ2 − h∥/
√
N − λT2 p̂

s.t. λ2 ≤ 0

(d) Replacing the inner-max problem with its dual in (c), we can reformulate the
DRO problem as follows:

min
x∈X,λ1,λ2

p̂Th+ ∥λ1e+ λ2 − h∥/
√
N − λT2 p̂

s.t. λ2 ≤ 0

where p̂ and h are defined as in (c). When x ∈ X and λ2 ≤ 0 are fixed, λ1 can
be partially solved out as

λ1 =
1

N

N∑
k=1

(h(x, ξk)− λk2) = eT (h− λ2)/N

and hence we finally arrive at

min
x∈X,λ2

p̂Th+ ∥Hn(h− λ2)∥/
√
N − λT2 p̂

s.t. λ2 ≤ 0

where Hn := I − eeT

N
is the centralization matrix.



3. (10’) Consider the SOCP relaxation in problem 8 of Homework Assignment 1:

minx 0Tx

s.t. ∥x− ai∥2 ≤ d2i , i = 1, 2, 3,

where x ∈ R2.

(a) (4’) Write down the first-order KKT optimality conditions.
(b) (3’) Interpret (with no more than 2 sentences) the three optimal multipliers when

the true position of the sensor is inside the convex hull of the three anchors.
(c) (3’) Could the true position x̄ ∈ R2 of the sensor satisfy the optimality conditions

if it is outside the convex hull of the three anchors? What would be the multiplier
values?

Solution: Let the Lagrangian or dual multipliers be yi ≤ 0, i = 1, 2, 3.

(a) Then, writing down the (first-order) KKT conditions, the optimal solution would
satisfy ∑

i

yi(x− ai) = 0,

and complementarity

yi(d
2
i − ∥x− ai∥2) = 0, i = 1, 2, 3.

(b) When the true position x̄ ∈ R2 is inside the convex hull, then yi represents a force
pulling x̄ from ai. The three forces balance at x̄ as the conditions indicated. In
particular, when yi’s are not all zero, then we have x̄ = y1a1+y2a2+y3a3

y1+y2+y3
.

Moreover, if all the forces are nonzero, then we find the correct solution. This
is because the complementarity conditions then indicate that each constraint is
tight, that is,

d2i − ∥x− ai∥2 = 0, ∀i = 1, 2, 3

which mean that you find the x that satisfies all the original equality constraints.
In this case, the relaxation is exact.

(c) It still satisfies the optimality conditions. But all multipliers must have 0 values,
since otherwise we will have x̄ = y1a1+y2a2+y3a3

y1+y2+y3
with yi ≤ 0, which is a point inside

the convex hull. This leads to a contradiction. In this case, the x you find may
not have all the constraints active, i.e.

d2i − ∥x− ai∥2 = 0, ∀i = 1, 2, 3

may not all hold.



4. (10’) Consider the following parametric QCQP problem for a parameter κ > 0:

min (x1 − 1)2 + x22

s.t. −x1 + x2
2

κ
≥ 0

(a) (5’) Is x = 0 a first-order KKT solution?
(b) (5’) Is x = 0 a second-order KKT necessary or sufficient solution for some value

of κ?

Solution: Define f(x) := (x1 − 1)2 + x22, c(x) = −x1 + x2
2

κ
. Then the Lagrangian

function for this problem is

L(x, y) = f(x)− yc(x) = (x1 − 1)2 + x22 − y

(
−x1 +

x22
κ

)
, y ≥ 0.

(a) Firstly, x = 0 is feasible with c(x) = 0. Moreover,

∇f(0) = (−2; 0), ∇c(0) = (−1; 0)

Thus y = 2 makes ∇f(0) = 2∇c(0) so that x = 0 is a first-order KKT solution.
(b) Since the constraint is active, the tangent space is

T = {d : d ∈ R2, (−1, 0)d = 0}.

The second-order necessary condition implies that for all d ∈ T

dT∇2
xL(x̄, ȳ)d ≥ 0,

where

∇2
xL(0, 2) =

(
2 0

0 2− 4
κ

)
Thus, when κ ≥ 2, the Hessian matrix of the Lagrangian is PSD so that x = 0 is
a second-order KKT solution. Otherwise, x = 0 cannot be a local minimizer.

5. (20’) (Central-Path and Potential) Given standard LP problem

minimizex∈Rn cTx

subject to Ax = b, x ≥ 0.
(LP)

The Analytic Center of the primal feasible region Fp := {x : Ax = b,x ≥ 0} is
defined as the solution of the following linear-constrained convex optimization problem:

minimizex∈Rn −
n∑

j=1

log xj,

subject to Ax = b, x > 0.

(PB)



The Central Path x(µ) of (LP) is defined as the solution of the following Barrier LP
problem (where µ > 0 is a parameter):

minimizex∈Rn cTx− µ ·
n∑

j=1

log xj,

subject to Ax = b, x > 0.

(BLP)

Part I Now consider the following example:

minimizex∈R3 x1 + x2,

subject to x1 + x2 + x3 = 1,

(x1, x2, x3) ≥ 0.

(2)

(a) (4’) What is the analytic center of the primal feasible region in (2)?
(b) (4’) Find the central path x(µ) = (x1(µ), x2(µ), x3(µ)) for (2).
(c) (4’) Show that as µ decreases to 0, x(µ) converges to the unique optimal solution

of (2).

Part II Consider another example with different objective but the same feasible
region:

minimizex∈R3 x1

subject to x1 + x2 + x3 = 1

(x1, x2, x3) ≥ 0

(3)

(d) (4’) Find the central path x(µ) = (x1(µ), x2(µ), x3(µ)) for (3).
(e) (4’) Which point does the central path converge to now (as µ→ 0+)?

Solution:

(a) The analytic center is the vector that minimizes the potential function:

−
3∑

j=1

log xj

and satisfies
∑3

j=1 xj = 1, x > 0. Thus the analytic center is (1/3, 1/3, 1/3).
(b) From the central path condition we derive a quadratic equation for x1:

2(x1)
2 − (3µ+ 1)x1 + µ = 0.

Taking the non-negative root gives

x1 =
3µ+ 1−

√
9µ2 + 1− 2µ

4
.

Other conditions give x2 = x1 and x3 = 1− 2x1.



(c) The set of optimal solution is a singleton (0; 0; 1). When µ decreases to zero,
we know from the expression that x1(µ) = x2(µ) → 0. Also, since

∑
i x1 = 1

always holds, we know that x3 → 1. We know that (0, 0, 1) is going to be the
optimal solution, because f(x) = x1 + x2 ≥ 0, and (0, 0, 1) attains the value 0.
The uniqueness is easily proved: to attain optimal value, x1, x2 has to be zero, so
x3 have to be 1, because of the equality constraint.
Thus, as µ goes to zero, x(µ) converges to the unique optimal solution.

(d)(e) Just repeat the above stuff. The only thing to be noted is that now the optimal
solution to the original problem is not unique, so the problem description in (c)
needs to be slightly changed. But everything else is the same.

6. (15’) Consider the following SVM problem, where µ ≥ 0 is a prescribed constant:

min β + µ∥x∥2
s.t. aTi x+ x0 + β ≥ 1, ∀i,

bTj x+ x0 − β ≤ −1, ∀j,
β ≥ 0.

(a) (8’) Write out the Lagrangian dual problem of the SVM problem. Write it as
explicit as possible (at least remove the inner minimization). (Hint: You may
want to consider two separate cases: µ = 0 and µ > 0)

(b) (7’) Suppose that we have 6 training data in R2: a1 = (0; 0), a2 = (1; 0), a3 =

(0; 1) and b1 = (0; 0), b2 = (−1; 0), b3 = (0;−1). Use the optimality conditions
(or any approach you want) to find optimal solutions for µ = 0 and µ = 10−5,
respectively. Are the two optimal solutions unique for the given µ? Prove your
claim.

Solution:

(a) Let the multipliers for ai constraints be yai ≥ 0 and those for bj constraints be
ybj ≤ 0, and β ≥ 0 be yβ ≥ 0. Then, the Lagrangian function is

L(x, x0, β, y
a, yb, yβ) = β+µ∥x∥2−

∑
i

yai (a
T
i x+x0+β−1)−

∑
j

ybj(b
T
j x+x0−β+1)−yββ.

The dual must have constraint∑
i

yai +
∑
j

ybj = 0

and
1− yβ −

∑
i

yai +
∑
j

ybj = 0,



since otherwise the primal can choose x0 or β to make the Lagrangian function
unbounded from below.
1) If µ = 0, then we also have∑

i

yai ai +
∑
j

ybjbj = 0,

since otherwise the primal can choose x to make the Lagrangian function un-
bounded from below.
The dual problem is thusly

max
∑

i y
a
i −

∑
j y

b
j ,

s.t.
∑

i y
a
i +

∑
j y

b
j = 0,

1− yβ −
∑

i y
a
i +

∑
j y

b
j = 0,∑

i y
a
i ai +

∑
j y

b
jbj = 0,

ya ≥ 0, yb ≤ 0, yβ ≥ 0.

2) For µ > 0, the primal minimization of the Lagrangian function would be β = 0

and
2µx =

∑
i

yai ai +
∑
j

ybjbj.

Thus,
ϕ(ya, yb, yβ) = − 1

4µ
∥
∑
i

yai ai +
∑
j

ybjbj∥2 +
∑
i

yai −
∑
j

ybj ,

and the dual problem is

max ϕ(ya, yb, yβ)

s.t.
∑

i y
a
i +

∑
j y

b
j = 0,

1− yβ −
∑

i y
a
i +

∑
j y

b
j = 0,

ya ≥ 0, yb ≤ 0, yβ ≥ 0.

(b) Firstly, we show that for the set of ai, bj given in this problem, any feasible β
satisfies β ≥ 1. To see this, suppose on the contrary that β < 1. Then for
a1 = b1, we have

aT1 x+ x0 ≥ 1− β > 0 > −1 + β ≥ bT1 x+ x0,

which is a contradiction. Hence the optimal value β+µ∥x∥2 of the primal objective
function is at least 1. Moreover, it can always be achieved by simply setting β = 1,
x = 0 and x0 = 0. Hence we know that the optimal value is always 1 no matter
whether µ = 0 or not.
1) For µ = 0, any point of the form β = 1, x = (t; t), x0 = 0 with t ≥ 0

is optimal, as the objective value is 1 and the constraints are satisfied. So the
optimal solution is not unique.



2) For µ > 0, a point is optimal iff β = 1 and x = 0, since otherwise we will have
β + µ∥x∥2 > β ≥ 1. In this case, we need x0 ≥ 0 ≥ x0, and hence x0 = 0. Hence
we obtain a unique optimal solution β = 1, x = 0 and x0 = 0.

7. (20’) Consider a generalized Arrow–Debreu equilibrium problem in which the mar-
ket has n agents and m goods. Agent i, i = 1, ..., n, has a bundle amount of wi =

(wi1, wi2, . . . , wim) ∈ Rm
+ goods initially and has a linear utility function whose coef-

ficients are ui = (ui1, ui2, . . . , uim) > 0 ∈ Rm. The goal is to price each good so that
the market clears. Note that, given the price vector p = (p1, p2, . . . , pm) > 0, agent i’s
utility maximization problem is:

maximize uT
i xi

subject to pTxi ≤ pTwi

xi ≥ 0

(a) (5’) For a given p ∈ Rm, write down the optimality conditions for agent i’s utility
maximization problem. Without loss of generality, you may fix pm = 1 since the
budget constraints are homogeneous in p.

(b) (5’) Suppose that p ∈ Rm and xi ∈ Rm satisfy the constraints:
n∑

i=1

xi =
n∑

i=1

wi,

uT
i xi

pTwi

pj ≥ uij, ∀i, j,

p ≥ 0,

xi ≥ 0, ∀i.

Show that p is then an equilibrium price vector.
(c) (5’) For simplicity, assume that all uij are positive so that all pj are positive.

By introducing new variables yj = log(pj) for j = 1, ...,m, the conditions can be
written as follows:

min 0

s.t.
∑n

i=1 xi =
∑n

i=1 wi

log(uT
i xi)− log (

∑m
k=1wike

yk) + yj ≥ log(uij) ∀i, j

xij ≥ 0, ∀i, j

Show that this problem is convex in xij and yj. (Hint: Use the fact that
log (

∑m
k=1wike

yk) is a convex function in the yk’s.)
(d) (5’) Consider the Fisher example on Lecture Note with two agents and two goods,

where the utility coefficients are given by

u1 = (2; 1) and u2 = (3; 1),



while now there are no fixed budgets. Rather, let

w1 = (1; 0) and w2 = (0; 1)

that is, agent 1 brings in one unit good x and agent brings in one unit of good y.
Find the Arrow–Debreu equilibrium prices, where you may assume py = 1.

Solution:

(a) Notice that here p is fixed, and hence the problem is simply an LP. Writing down
the primal feasibility, dual feasibility and zero duality gap conditions, we obtain:

ui ≤ λip, λi ≥ 0, λi · pTwi = uTi xi, xi ≥ 0, pTxi ≤ pTwi.

Alternative solution: write down the KKT conditions – the zero duality gap
condition λi · pTwi = uTi xi will be replaced by the zero gradient condition for the
Lagrangian. Notice that these are equivalent.

(b) This proof is identical to the Lecture Note #5 for Fisher equilibrium where scalar
wi is substituted by pTwi.
In particular, we simply check that xi are all optimal for the given p in their own
utility maximization LPs, i.e. we check that the optimality conditions in (a) are
all satisfied.
Firstly, define λi := uT

i xi

pTwi
. Then obviously we have λi ≥ 0 and λip ≥ ui by the

second set of constraints in (b). Moreover, by definition, we have λipTwi = uTxi,
and xi ≥ 0 is satisfied automatically by the third set of constraints in (b).
It remains to check that pTxi ≤ pTwi. To see this, multiply both sides of the first
set of constraints in (b) by pT , we have

n∑
i=1

pTxi =
n∑

i=1

pTwi

On the other hand, multiplying both sides of the second set of constraints in (b)
by xj and sum over j, we have

uTi xi
pTwi

pTxi ≥ uTi xi

and since ui > 0 by assumption, we have uT
i xi

pTwi
, pj both strictly large than 0 (since

otherwise the second set of constraints in (b) would be violated). In particular, we
have uTi xi > 0, and hence we can divide it on both sides of the above inequality,
and obtain that pTxi ≥ pTwi. Combining this with the fact that

∑n
i=1 p

Txi =∑n
i=1 p

Twi, we conclude that pTwi = pTxi ≥ pTxi, which finishes our proof.



(c) We first observe that the function log(uTi xi) is concave in xi, and that the function
g : Rm → R given by g(y) = log (

∑m
k=1wike

yk) is convex in y. The former is
obvious. To establish the latter, we compute:

∂g

∂yj
=
wije

yj

S
where S =

m∑
k=1

wike
yk

∂2g

∂yjyk
=
Swije

yj1{j=k} − wijwike
yjeyk

S2

(Optional) We show that the Hessian matrix ∇2g(y) is positive semidefinite by
showing that it is symmetric diagonally dominant, and that its diagonal entries
are non–negative. The symmetry of ∇2g(y) is obvious. Now, for all j = 1, . . . ,m,
we have:∑

k:k ̸=j

∣∣∣∣ ∂2g∂yjyk

∣∣∣∣ = 1

S2
wije

yj
∑
k:k ̸=j

wike
yk =

1

S2
wije

yj (S − wije
yj) =

∂2g

∂y2j

i.e. ∇2g(y) is diagonally dominant. Moreover, since wi ≥ 0 for all i = 1, . . . , n,
we have:

∂2g

∂y2j
=

1

S2

(
Swije

yj − w2
ije

2yj
)
=

1

S2

∑
k:k ̸=j

wike
yk ≥ 0

for all j = 1, . . . ,m. It follows that ∇2g(y) ⪰ 0, which in turn implies that g is
convex. Hence, we conclude that the inequalities:

log

(
m∑
k=1

wike
yk

)
− log

(
uTi xi

)
− yj ≤ − log(uij) ∀i, j

define a convex set. As the remaining constraints and the objective function are
linear, we conclude that the problem is a convex minimization problem.

(d) The problem reduces to finding px, x1, y1, x2, y2 ≥ 0 with py = 1, such that:

x1 + x2 = 1

y1 + y2 = 1

2x1 + y1
px

px ≥ 2

2x1 + y1
px

py ≥ 1

3x2 + y2
py

px ≥ 3

3x2 + y2
py

py ≥ 1 .



Then, you will find (either by taking a guess from the numerical solutions, or
follow some case-by-case analysis arguments that we will elaborate on in the
coming problem session on Feb. 16):

px = 2, py = 1, x1 = 1/2, y1 = 1, x2 = 1/2, y2 = 0.

8. First, we reformulate this problem in a standard SDP form. Since A = {aij}3i,j=1 is not
a zero matrix, we first assume a11 ̸= 0. Then, the dual problem can be reformulated
as

min⟨S−C, be11⟩
s.t. ⟨S−C, a11e11 − aijeij/a11⟩ = 0, ∀1 ≤ i ≤ j ≤ 3,

S ⪰ 0,

where eij is a matrix with value 1 at (i, j) entry and zero otherwise. Here, the first
constraint comes from Ay + S = C. Next, we apply Caratheodory’s theorem to draw
the conclusion. Notice that the condition is satisfies automatically when i = j = 1.
We eliminate this constraint, and this new SDP problem only has 5 constraints. By
Caratheodory’s theorem, the rank r of one optimal solution satisfies

r(r + 1) ≤ 10,

which implies r ≤ 2.
Moreover, the location of the non-zero entry of A will not affect the following proof.
Thus, we finish the proof.



Groupwork (40’) (group of 1-4 people):

9. (5’) Let {(ai, ci)}mi=1 be a given dataset where ai ∈ Rn, ci ∈ {±1}. In Logistic Regres-
sion (LR), we determine x0 ∈ R and x ∈ Rn by maximizing( ∏

i,ci=1

1

1 + exp(−aT
i x− x0)

)( ∏
i,ci=−1

1

1 + exp(aT
i x+ x0)

)
.

which is equivalent to maximizing the log-likelihood probability

−
∑
i,ci=1

log
(
1 + exp(−aT

i x− x0)
)
−
∑

i,ci=−1

log
(
1 + exp(aT

i x+ x0)
)
.

In this problem, we consider the quadratic regularized log-logistic-loss function

f(x, x0) =
∑
i,ci=1

log
(
1 + exp(−aT

i x− x0)
)
+
∑

i,ci=−1

log
(
1 + exp(aT

i x+ x0)
)
+0.001·∥x∥22.

Consider the following data set

a1 = (0; 0), a2 = (1; 0), a3 = (0; 1), a4 = (0; 0), a5 = (−1; 0), a6 = (0;−1),

with label
c1 = c2 = c3 = 1, c4 = c5 = c6 = −1

use the KKT conditions to find a solution of min f(x, x0). You can either solve it
numerically (e.g., using Matlab fsolve) or analytically (represent the solution by a
solution of a simpler (1D) nonlinear equation).
Solution:
Since the problem is unconstrained, the KKT condition is nothing but setting ∇f(x, x0)
to zero. Let x = (x1; x2), the KKT condition can be written coordinate-wise as

0 =
−1

1 + exp(x0)
+

−1

1 + exp(x0 + x1)
+

−1

1 + exp(x0 + x2)
+

1

1 + exp(−x0)
+

1

1 + exp(−x0 + x1)
+

1

1 + exp(−x0 + x2)

0 = −
1

1 + exp(x0 + x1)
−

1

1 + exp(−x0 + x1)
+ 0.002x1

0 = −
1

1 + exp(x0 + x2)
−

1

1 + exp(−x0 + x2)
+ 0.002x2

(4)

Note that if x0 = 0 then the first equation of (4) automatically holds. Assuming
x0 = 0, the last two equations becomes

x1 =
1000

1 + exp(x1)
, x2 =

1000

1 + exp(x2)

Hence it suffices to set x1 = x2 to be the (unique) solution of nonlinear equation
z(1 + ez) = 1000. The approximate solution of this nonlinear equation is 5.2452.
Consequently a KKT solution is

x∗ ≈ (5.2452; 5.2452), x∗0 = 0.



Remark: You can also numerically solve (4) using your favorite solvers (e.g., Matlab
function fsolve).

10. (15’) Consider standard LP problem

minimizex∈Rn cTx,

subject to Ax = b, x ≥ 0.
(LP)

with its dual
maximizey∈Rm,s∈Rn bTy,

subject to ATy + s = c, s ≥ 0.
(LD)

For any x ∈ int Fp := {x ∈ Rn : Ax = b,x > 0} and s ∈ int Fd := {s ∈ Rn : s =

c− ATy, s > 0,y ∈ Rm}, the Primal-Dual Potential Function is defined by

ψn+ρ(x, s) := (n+ ρ) log(xT s)−
n∑

j=1

log(xjsj)

where ρ > 0 is a parameter.
Task: for two LP examples in Problem 5, namely (2) and (3), draw x part of the
primal-dual potential function level sets

ψ6(x, s) ≤ 0 and ψ6(x, s) ≤ −10,

and
ψ12(x, s) ≤ 0 and ψ12(x, s) ≤ −10;

respectively in int Fp (on a plane).
Hint: To plot the x part of the level set of the potential function, say ψ6(x, s) ≤ 0,
you plot

{x ∈ int Fp : min
s∈int Fd

ψ6(x, s) ≤ 0}.

This can be approximately done by sampling as follows. You randomly generate N
primal points {xp}Np=1 from int Fp, and N primal points of {sq}Nq=1 from int Fd. For
each primal point xp, you find if it is true that

min
q=1,...,N

ψ6(x
p, sq) ≤ 0.

Then, you plot those xp who give an ”yes” answer.
Solution: Sample Matlab code:

1
2 function l e v e l s e t (n , l eve l , numpoints )
3



4 h = f igure ;
5 hold on ;
6
7 % generate primal f e a s i b l e so lut ion in the outer 2 loops
8
9 f o r i= 0:1/ numpoints :1

10 x1 = i ;
11 f o r j = 0:1/ numpoints :1 - x1 ,
12 x2 = j ;
13 x3 = 1 - x2 - x2 ;
14 % generate dual f e a s i b l e so lut ion
15 f o r k = 0: -1/ numpoints : -15 ,
16 y = k ;
17 s1 = 1 - y ;
18 s2 = s1 ;
19 s3 = -y ;
20 % check l e v e l set condit ion
21 i f (n ∗ log (x1∗s1+x2∗s2+x3∗s3 ) - log (x1∗x2∗x3∗s1∗s2∗s3 ) < l e v e l )
22 plot (x1 , x2 , ' r . ' ) ;
23 break ;
24 end
25 end
26 end
27 end
28
29 axis ( [ 0 1 0 1 ] ) ;
30 %save f i gure
31 print (h , ' - dpdf ' , s p r i n t f ( 'n\%ulev\%d . pdf ' , n , l e v e l ) ) ;
32 c lo se (h) ;

First, by sampling, it is very hard to plot {ψ6(x, s) ≤ −10}, because here s = (1 +

y, 1+ y, y) > 0, so we need y > 0. But ψ6(x, s) ≥ 3 log(xT s)+ 3 log 3 = 3 log(x1 + x2 +

y) + 3 log 3. Hence {ψ6(x, s) ≤ −10} is too harsh for sampled points to survive.
Notice that when n + ρ is larger, more primal points survive, and when we look at
lower level set {ψ ≤ −10}, even though fewer points survive, but they converge to the
optimal solution (as we lower the level set again and again).
Here is how we do the analysis: we sample 1000 feasible x in the Fp, which satisfy
the conditions

∑
i xi = 1, xi ≥ 0 and for each x, we sample 20 feasible s, where

s = [1− y, 1− y,−y], and for s to > 0, we sample y = −rand(1). Then we follow the
determine rule in hint, and analyze whether minq=1,...,N ψ6(x

p, sq) ≤ 0. or not.



Figure 1: ψ6(x, s) ≤ 0, x part

Figure 2: ψ12(x, s) ≤ −10, x part

Figure 3: ψ12(x, s) ≤ 0, x part



Remark. Alternatively, you can use optimization solvers like MOSEK, or fmincon.m
in MATLAB, to solve the feasibility problems directly by looping over a grid of x (or
uniformly sampling x) and solving the partial feasibility problem in terms of s. If the
solver returns infeasibility, then x is not feasible. Otherwise, x is feasible. Similarly,
for any sampled/chosen x that needs to be checked, we can simply minimize over s
and conclude that x is feasible iff the optimal value of ψn+ρ(x, ·) is non-positive.

11. (10’) Recall the Fisher’s Equilibrium prices problem (discussed in Lecture Note 6),
which we describe here again for reference. Let B be the set of buyers and G be the
set of goods. Each buyer i ∈ B has a budget wi > 0, and utility coefficients uij ≥ 0

for each good j ∈ G. Under price p, buyer i ∈ B’s optimal purchase quantity x∗
i (p) is

the solution of the following optimization problem:

x∗
i (p) ∈ argmax uT

i xi :=
∑
j∈G

uijxij

s.t. pTxi :=
∑
j∈G

pjxij ≤ wi,

xi ≥ 0

Suppose each good j ∈ G has a supply level s̄j. We call a price vector p∗ an equilib-
rium price vector if the market clears, namely for all j ∈ G,∑

i∈B

x∗(p∗)ij = s̄j.

In the lecture, we discussed how to compute the equilibrium price p∗ and buyers’
activities {x∗

i (p
∗)}i∈B under the equilibrium price based on utility coefficients {ui}i∈B,

budgets {wi}i∈B and supplies s̄:

({ui}i∈B, {wi}i∈B, s̄) ⇒ (p∗, {x∗
i (p

∗)}i∈B) (5)

In this question, we consider the inverse problem of (5): suppose the market does not
know the “private information” of each buyer, namely the utility {ui}i∈B and the bud-
gets {wi}i∈B, but instead you observe the equilibrium prices {p∗(k)}Kk=1 and their cor-
responding realized activities {x∗(k)

i }Kk=1 under K different supply levels s̄(1), . . . , s̄(K).
The query is to infer buyers’ utility coefficients {ui}i∈B and their budgets {wi}i∈B. We
assume that the utility function is ℓ1-normalized, namely ∥ui∥1 = 1 for i ∈ B.
Hint: Mathematically, the query is to find {ui}i∈B (s.t. ui ≥ 0 and ∥ui∥1 = 1) and
{wi}i∈B (s.t. wi > 0) such that for all i ∈ B, and k = 1, . . . , K,

x
∗(k)
i = argmax

xi

uT
i xi

s.t. (p∗(k))Txi ≤ wi

xi ≥ 0



given {x∗(k)
i }i∈B,k∈{1,...,K} and {p∗(k)}k∈{1,...,K}.

Question: Now consider the following 2-buyer 2-good example and solve this inverse
problem. Let B = {1, 2} and G = {1, 2}. Suppose we observe the following 5 scenarios:

• p∗(1) = (9
5
; 3
5
), x∗(1)

1 = (1; 1
3
), x∗(1)

2 = (0; 5
3
);

• p∗(2) = (2; 1), x∗(2)
1 = (1; 0), x∗(2)

2 = (0; 1);
• p∗(3) = (1; 1), x∗(3)

1 = (2; 0), x∗(3)
2 = (0; 1);

• p∗(4) = (1
2
; 1), x∗(4)

1 = (4; 0), x∗(4)
2 = (0; 1);

• p∗(5) = (3
7
; 6
7
), x∗(5)

1 = (14
3
; 0), x∗(5)

2 = (1
3
; 1).

Use any approach to find {ui}i∈B (s.t. ui ≥ 0 and ∥ui∥1 = 1) and {wi}i∈B (s.t.
wi > 0). Describe your approach and report the result.
Solution: Solve the system of KKT conditions: u1 = (3/4; 1/4), u2 = (1/3; 2/3),
w1 = 2, w2 = 1.


