
Optimization Methods for Data Science, Machine Learning and AI
Prof. Yinyu Ye

Homework Assignment 4

Reading. Read selected sections in Luenberger and Ye’s Linear and Nonlinear Programming
Fourth Edition Chapters 5, 6, 8, 10 and 14.

1. Recall that the (local) second-order (SO), concordant second-order (CSO) and scaled
concordant second-order (SCSO) Lipschitz conditions (LC) are defined as follows:

SOLC : ∥∇f(x+ d)−∇f(x)−∇2f(x)d∥ ≤ β∥d∥2, where ∥d∥ ≤ C for some C > 0

CSOLC : ∥∇f(x+d)−∇f(x)−∇2f(x)d∥ ≤ β|dT∇2f(x)d|, where ∥d∥ ≤ C for some C > 0,

and

SCSOLC : ∥X(∇f(x+ d)−∇f(x)−∇2f(x)d)∥ ≤ β|dT∇2f(x)d|,

where ∥X−1d∥ ≤ C for some C > 0,

and X = diag(x > 0). Here we have implicitly assumed/required that x and x+d are
in the domain of f . Here the constant C should be independent of x.

For each of the following scalar functions, find the Lipschitz parameter β value of
(SOLC), (CSOLC) and (SCSOLC). You can provide an upper bound on β or state
that it doesn’t exist.

(a) f(x) = 1
3
x3 + x, x > 0

(b) f(x) = − log(x), x > 0.

(c) f(x) = x log(x), x > 0

2. Consider the following questions:

(a) Let ϕ(y), where y ∈ Rm, be (regular) β-second-order (SO) Lipschitz and be δ-
strongly convex, that is, for all y in the domain of ϕ, the largest eigenvalue of
Hessian ∇2ϕ(y) is bounded above by β > 0 and the smallest eigenvalue of ∇2ϕ(y)

is bounded below by δ > 0. Prove that the function

f(x) = ϕ(Ax),



where A ∈ Rm×n, n ≥ m, is a constant coefficient matrix with rank m, is
concordant second-order Lipschitz for all x ∈ Rn such that y = Ax is in the
domain of ϕ.

(b) Find the concordant Lipschitz bounds α for the following three functions (or show
that a global constant doesn’t exist):

– f(x) = 1
2
(x1 + x2)

2

– f(x) = ex1+x2

– f(x) = (x1 + x2) log(x1 + x2) where x1 + x2 > 0.

3. Prove the logarithmic approximation lemma for SDP. Let D ∈ Sn and |D|∞ < 1.
Then,

Tr(D) ≥ log det(I +D) ≥ Tr(D)− |D|2

2(1− |D|∞)

where for any given symmetric matrix D, |D|2 is the sum of all its squared eigenvalues,
and |D|∞ is its largest absolute eigenvalue.

Hint: det(I + D) equals the product of the eigenvalues of I + D. Then the proof
follows from Taylor’s expansion.


