Optimization Methods for Data Science, Machine Learning and Al
Prof. Yinyu Ye

Homework Assignment 3

Reading. Read selected sections in Luenberger and Ye’s Linear and Nonlinear Programming
Fourth Edition Chapters 3, 5, 6, 8, 9, 10, and 14.

Theoretical Homework:

1. (10’) In most real applications, the (first-order) Lipschitz constant £ is unknown. Fur-
thermore, we like to use a localized Lipschitz constant 3 at iteration k such that

P+ ad®) — () = V1 () (ad?) < 2 a2

where d* is the steepest descent direction —V f(x*). The goal is to decide a step-size
a ﬁik

Consider the following forward-backward tracking method. In the following, assume
that % > 1 and amax > 1/5’“. Notice that if ¥ < 1, we can enforce it to satisfy our
assumption by replacing it with max{1, 3¥}.

Now start at a initial guess a > 0,

i) If a < 2(f(xk)ﬁ,5’“‘§+adk)), then doubling the step-size: a < 2, stop as soon as

the inequality is reversed or o > apax(> 0), and select the latest a such that the

inequality (a < 2/ (xk)ﬁ(ﬁﬁ; +adk))) holds and a < ayax.

ii) Otherwise halving the step-size: a < a//2; stop as soon as o < Q(f(xk)m‘lgﬁfwd’“))

and return it.

(a) (4) Let & be a step-size generated by the scheme. Show that & > ﬁ
(b) (3’) Prove that the above scheme will terminate in finite steps.

(c) (3) Show that f(x* +ad¥) < f(x*) — 14| d"[3

- 4pF
2. (10") (Lo Regularization and Logarithmic Barrier) Consider the optimization problem
minimize,, ,, (1 — my + 1)
subject to 1 >0 o “free”.

Then we may combine the Ls-regularization and barrier together, that is, for any
w1 > 0, consider

minimize,, 4, (x1 — 20+ 1)* + %( * 4+ x3) — plog(wy)



(a) (4’) Develop explicit path formula in terms of p. What is the limit solution as
w— 07

(b) (3") Using u = 1 and x° = (1, 0), apply one step of SDM with step-size 1/5 to
compute the next iterate.

(c) (3’) Using p =1 and x° = (1, 0), apply one step of Newton’s Method to compute
the next iterate.

. (20") (Ly Path-Following) Consider a convex function f: R® — R in C? that is twice
continuously differentiable. Assume that its value is bounded from below and that
it has a minimizer. For any given positive parameter p > 0, consider the regulated
minimization problem

minimize f(x) + ngH2. (1)

(a) (3") Write down the first-order optimality condition of (1). Is it sufficient for x
to be a minimizer?

(b) (3’) Show that the minimizer, denoted by x(u), of (1) is unique for each fixed p.

(c¢) (5") Show that f(x(u)) is an increasing function of p (i.e., f(x(u)) > f(x(1'))
if u>p' >0),and ||x(u)] is a decreasing function of p.

(d) (6’) Show that As u — 0% (i.e., u decreases to 0 ), x(u1) converges to the minimizer
of f(x) with the minimal Euclidean norm.

(e) (3’) Consider the specific example
minimize,, ., (1 — 22 — 1),

where the optimal solution set is unbounded. Write out the explicit path formula
of x(1) = (z1(p), ..., xn(p)) in terms of p. What is the limit solution as p — 07



4. (15’) (Affine-Scaling Interior-Point SD) Consider the conic constrained optimization

problem
mmin f(x) st. x>0 (2)

where we assume the objective function f is first-order [-Lipschitz. Starting from
x" = e > 0, consider the affine-scaling interior-point method as follows: at iterate
x* > 0 let diagonal scaling matrix D be

Dy = min{1, z¥}

and
XM = x¥ — oF D?V f(xF),

with step-size

o :min{l ! }
B 2| DV f (x|l

(a) (3’) Show that —D?V f(x*) is a descent direction.
(b) (3’) Show that x*** > 0 for all k =0, 1, ....
(¢) (6”) Show that

FO) = ) < = min { 1DV A G 1DV £

(d) (3’) Derive a iterative complexity bound for ||DV f(x*)||s < €.



Computational Homework (group of 1-3 people):

5. (10”) There is a simple nonlinear least squares approach for Sensor Network Localiza-
tion:

. 2 2
min Z(ij)eNz (sz - x4 - d?j) + Z(kj)eNa (Hak - x4 = dij) (3)

which is an unconstrained nonlinear minimization problem.

(a) (5") Apply the Steepest Descent Method, starting with either the origin or a
random solution as the initial solution for model (3), to solve the SNL instances
you created in Problem 9 of HW1. Does it work?

(b) (5") Apply the same Steepest Descent Method, starting from the SOCP or SDP
solution (which may not have errors) as the initial solution for model (3), to solve
the same instances in (a). Does it work? Does the SOCP or SDP initial solution
make a difference?



6. (30") (Multi-Block ADMM)

Part I Implement the ADMM to solve the divergence example:

(a)

(b)

minimize 0-z;+0-25+0- x5

111 Ty
subjectto 11 2 x| =0
1 2 2 X3

(5) Try = 0.1, 8 = 1, and § = 10, respectively. Does the choice of 5 make a
difference?

(5”) Add the objective function to minimize
0.5(x7 + a5 + 23)
to the problem, and retry § = 0.1, 8 = 1, and 8 = 10, respectively. Does the

choice of $ make a difference?

(5”) Set 5 =1 and apply the randomly permuted updating-order of x (discussed
in class) to solving each of the two problems in (a) and (b). Does the iterate
converge?

Part II Generate some (feasible) convex QP problems with linear equality con-
straints, say 30 variables and 10 constraints (i.e., A € R!0*30),

(d)

. . . 1 T
minimize $x' Qx

subject to Ax=Db, x>0.

(57) Divide the variables of x into 5 blocks and apply the ADMM with § = 1. Does
it converge? (You may construct 5 different blocks and conduct the experiments.)

(57) Apply the randomly permuted updating-order of the 5 blocks in each iteration
of the ADMM. Does it converge? Convergence performance?

(5’) Consider the following scheme — random-sample-without-replacement: in
each iteration of ADMM, randomly sample 6 variables for update, and then ran-
domly select 6 variables from the remaining 24 variable for update, and... , till all
30 variables are updated; then update the multipliers as usual. Does it converge?
Convergence performance?



