Optimization Course Project I:

Computing Wasserstein Barycenter via Linear Programming

In this project, we study the computation the Wasserstein barycenter of a set of discrete probability
measures. Given support points of probability measures in a metric space and a transportation cost function
(e.g. the Euclidean distance), Wasserstein distance defines a distance between two measures as the minimal
transportation cost between them. Given a set of measures in the same space, the p-Wasserstein barycenter
is defined as the measure minimizing the sum of p-Wasserstein distances to all measures in the set. Note

that computing the barycenter of a set of discrete measures can be formulated by linear programming.

In this project, we focus on the case of p = 2 and compare the performance of different linear program-
ming methods in solving the barycenter problem. We refer the notations and model setup to [2]. Instead of
running experiments on MNIST dataset, we first restrict our attention to the algorithmic side and consider

the following way in specifying the distributions P®).

« Generate m; samples from normal distribution N (s, o?) and construct P*) as the empirical distribu-

tion on the m; samples.

e In the following experiments, you should vary the choice of the number of samples m;, the number of

distributions N, and the parameters (p, 07).

In this way, the objective becomes finding the Wasserstein barycenter of N normal distributions. Addi-
tionally, we first focus on the case of Pre-specified Support Problem (See [2]) and choose the support of the
barycenter distribution P be the union of the supports of P(*)’s.

e Approach 1: Implement any linear programming method for solving this problem, such as the PDLP
method [1, 3]. Clearly state the linear program, include pseudo-code for your implementation, and

explore/tune the parameters in the optimization algorithm such as step sizes.

e Approach 2: Implement the single low-rank regularization method (SLRM) and double low-rank
regularization method (DLRM) developed in [2]. This method aims to reduce the cost of solving



the Newton equations in interior point method. How does this algorithm compare to the vanilla
implementation of interior point method in Question 1?7 Plot the barycenter distribution P for two to

three problem instances (specifications of N, my, etc.).

Now we consider the general Free Support Problem where the support of distribution P is also a decision
variable. In [4] and [5], the authors proposed an entropy-smoothed version of Wasserstein distance for
both regularization and computation purpose. The new distance replaces the summand (D(t), ™) in
(3) and (4) in [2] with
1
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where h(-) is the entropy function. Intuitively, the entropy function will encourage the dispersion of
the distribution II®) and avoid concentrations on a few points. Computationally, this new formula-
tion enables a cheap computation of the gradients with respect to both the probability distribution

parameters (ai, ..., an,) and the support X = (qu, ..., @) (in the language of [2]).

o Approach 3: Implement Algorithm 3 in [5] with different choice of the regularization parameter ~.
How does the resultant barycenter distribution compare with the ones obtained from interior-point
methods? Note that Algorithm 3 in [5] considers a free-support setting while the two proceeding
questions consider a pre-specified support. For a fair comparison, you may implement the free-support
version of the interior-point method in [2]. Specifically, it will alternate between solving a linear
program for the distribution parameter (ai, ..., a,,) and solving a quadratic program for the support

X =(q1, -, @m)- The quadratic program features for an analytical solution as (7) in [2].

As noted in these papers, the free support problem is then a non-convex problem. Now we are interested
in how the gradient-based algorithm (Algorithm 3 in [5]) compares to the interior point method in

respect with escaping saddle points and local minima.

o Approach 4: Implement MAATIPM algorithm in [2] and compare it against Algorithm 3 in [5] in

respect with the original objective function value

N
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While implementing Algorithm 3 in [5], you may want to periodically increase the regularization
parameter v to mitigate the effect of the additional penalty term. Please report the runtime, the

number of iterations, and the objective value under both algorithms.

« Approach 6: Now you may migrate the experiments to the MNIST dataset! and Fashion MNIST
dataset?. The advantage of using these datasets is that it can provide a more meaningful visualization

of the barycenter distribution. The computational experiments can be on CPU and/or GPU [3].

Lhttp://yann.lecun.com/exdb/mnist/
2https://www.kaggle.com/zalando-research/fashionmnist
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