Optimization Methods for Data Science, Machine Learning and Al
Prof. Yinyu Ye

Homework Assignment 3 Sample Solution

1. (10’) In most real applications, the (first-order) Lipschitz constant 8 is unknown. Fur-
thermore, we like to use a localized Lipschitz constant 3 at iteration k such that

Fx"+ad®) = f(x") = Vf(x")" (ad") < %Had’“Hz, (1)

where d* is the steepest descent direction —V f(x*). The goal is to decide a step-size
a 5%
Consider the following forward-backward tracking method. In the following, assume

that 8% > 1 and apa, > 1/6%. Notice that if ¥ < 1, we can enforce it to satisfy our
assumption by replacing it with max{1, 3¥}.

Now start at a initial guess o > 0,

i) Ifa < 2(f("k>ﬁ§£]‘§+“dk”, then doubling the step-size: a < 2q, stop as soon as

the inequality is reversed or o > apax(> 0), and select the latest a such that the

inequality (« < 2/ ("k)ﬁjg‘f +O‘dk))) holds and o < apax.

(S)~ f(xF +ad))

ii) Otherwise halving the step-size: a < a//2; stop as soon as o < 2 e 2

and return it.

(a) (4) Let & be a step-size generated by the scheme. Show that & > ﬁ

(b) (3’) Prove that the above scheme will terminate in finite steps.
(c) (3") Show that f(x* +ad®) < f(x*) — g [d*|3.

Solution:

(a) Based on the above definition, the procedure will only terminate in the following
two cases:

o Case I: 2a > apax. In this case we clearly have a > %amax and thus a > 2#
since upax > B—l,c as assumed.

o Case II: 2a > Q(f(xk)]£&7|2+2adk)). According to (1) it is the case that

52068 = 2(a — pta?) |d¥|

Combining above two inequalities gives

f(x") = f(x" +2ad*) > 2a]|d*|]? -

2a > 4(a — pra?),

which implies a > ﬁ since &, ¥ > 0.

(b)

Since the scheme is safeguarded above by an,.y, it suffices to show that the in-

equality
2(f(x") — f(x" + ad"))
oS TEE @

holds for sufficiently small . We claim that this inequality holds for any o < BF -

To see this, recall (1), which gives for any a > 0,
Bk
Ft) = o+ o) 2 (= Tt a2

For a < % we have gF < é, and thus

1 1
o) = 7 +0d®) > (0= o) 0P = Jalla

which immediately implies the inequality a < 2(/ (Xk)ﬁﬂﬁ?radk))

Based on the above definition, the & generated by the scheme always satisfies the
inequality (2). Combining (2) and the fact that a > ﬁ immediately tells that

1
Fx +ad®) = f(xF) < —5alld"|” < |d*]|*.

L
46"3

2. (10’) (Lo Regularization and Logarithmic Barrier) Consider the optimization problem

minimize,, ;, (21 — 29 + 1)
subject to 1 >0 o “free”.
Then we may combine the Ls-regularization and barrier together, that is, for any

i > 0, consider

minimize,, 4, (x1 — 20+ 1)* + g(2+ x2) — plog(x)

(a) (4’) Develop explicit path formula in terms of p. What is the limit solution as
w— 07

(b) (3") Using u = 1 and x° = (1, 0), apply one step of SDM with step-size 1/5 to
compute the next iterate.

(c) (3’) Using p =1 and x° = (1, 0), apply one step of Newton’s Method to compute
the next iterate.

Solution:

Setting the gradient to 0 (KKT conditions), we obtain that xo = 2§le, and r; =
pt2

t=1- And as a result, we obtain that the path formula of x(p) is

_ (h+2)/(n+4)
*k) = {(4;@ +12)/ (i + 6+ 8)} |

Taking 11 — 0, we obtain that the limit solution is 1 = 1/2, xo = 3/2.
(b) By definition of SDM, we have

R

(¢) By simple calculation, we have

2+ p+ p/a —2}

Vif(xn) = { 9 iy

And so with x° = (1,0) and p = 1, we have
4 =2
v =%,).
By definition of Newton’s method, we have

x' =x% - V2f(x%1) 'V, f(x%1) = {1{2] :

3. (20") (Ly Path-Following) Consider a convex function f : R — R in C? that is twice
continuously differentiable. Assume that its value is bounded from below and that
it has a minimizer. For any given positive parameter p > 0, consider the regulated
minimization problem

minimize f(x) + g||x\|2. (3)

Prove the following claims:
(a) (2") Write down the first-order optimality condition of (3). Is it sufficient for x
to be a minimizer?
(b) (5’) The minimizer, denoted by x(u), of (3) is unique in p.

(¢) (5") f(x(u)) is an increasing function of u (ie., f(x(u)) > f(x(¢')) if p>py >
0), and ||x(u)|| is a decreasing function of p.

(d) (5’) As u— 0% (i.e., pu decreases to 0), x(u) converges to the minimizer of f(x)
with the minimal Euclidean norm.

(e) (3") Consider the specific example
minimize,, ., (1 — zo — 1)?,

where the optimal solution set is unbounded. Write out the explicit path formula
of x(1) = (z1(p), ..., xn(p)) in terms of p. What is the limit solution as p — 07

Solution:
(a) The first-order optimality condition is V f(x)+ uz = 0. Yes, because the problem

is convex, and hence KKT conditions are sufficient (with no other requirements).

(b) In the following, apart from proving the uniqueness (we only require you to prove
this in the homework), we also prove that x(u) is continuous in g, which is similar
to part of the proof in (d) below. The uniqueness is simply due to strict (actually
strong) convexity. To show continuity, notice that V f(x(u)) + pa(u) = 0 for any
i > 0. Consider any u, i/ > 0. Then subtracting their optimality conditions, we
get

—pa(p) + pa(p') = Vf(x(w) = V)

Multiplying z(u) — z(1') on both sides, we get
(w(p) — ()" (—pa(p) + p'z(p) = () =2 (W) (V f(2(p) = Vf(a(x)) = 0
where the inequality comes from convexity of f(-). Hence we have

plla(p) — 2P < (0 — p)(a(p) — (@) 2(4).

Now we make use of the monotonicity to be established in (c¢) (which does not
depend on the result in (b) here), and observe that if we fix 4 > 0, and assume that

|/ — | < C for some C' > 0, then the monotonicity of ||z (u)|| ensures that ||z(u')||
is bounded by some constant that may depend on p (which is fixed now). Hence
by taking the limit x4/ — u, we obtain that the RHS above converges to 0 (using
in addition that z7y < ||=|/||y]|). Hence we conclude that ||z(u) — z(i/)|| — 0 as
i — > 0. Notice again that p is fixed.

Finally, since p is arbitrary, we have proved that x(u) is continuous in pu.

Let 0 < p/ < p. Then by the optimality of the solutions, we have

Fla() + ' 2|z < () + 1 /2l ()]

and
Fla(w) + 2z < fla(u)) + p/2)z()]>.

Adding the above inequalities, we see that

p— p—
T||9C(M/)||2 > THf’U(M)Hz-

Since p—p’ > 0, we have ||z(i/)||* > ||z (1)]|?, showing that ||z(p)|| is a decreasing

function of p. Finally, using any one of the first inequality above, we see that
fla()) < fl@(w) + 1/ 20z (wl? = =(w)I?) < f(2(n)), and hence f(z(p)) is

an increasing function of u.

Let 2* be an arbitrary minimizer of f(z). Then we have V f(z*) = 0, and together
with the fact that V f(x(u)) + pa(n) = 0, we obtain that

Vf(z(p) = Vf(z*) + px(p) = 0.

Similar to (b), multiplying both sides with z(u) — z*, we have by convexity of f
that

—u(x(p) — ") x(p) = (2(p) —)"V f(z(n) > 0.
Hence we have that ||z(u)]|? < z(p)Tz* < ||2*||||x(u)]|, which proves that ||z (u)]] <
|z*|| (for any p > 0).
Now notice that to prove the claim in the question, we only need to show that for
any sequence i, — 04, x(uy) converges to a minimizer of f(x) with minimal
Euclidean norm.
To see this, firstly notice that {x(ux)}52, is bounded, and hence it has a limit
point, i.e. there exists Z s.t. 3 a subsequence k; with x(uy,) — Z. Moreover, for
any limit point ¥’ of z(uz), since f is C?, V f(+) is continuous, and hence we have
V(@) =m0 VF(2(,)) = — lim; o0 g, x(p,) = 0 for some subsequence ;.
The last equality comes from the fact that z(1y,) is bounded and p;, — 04. Hence
we see that any limit point of () is an optimal solution. In addition, it also
comes with minimum Euclidean norm since ||z(u)|| < ||«*|| for any minimizer x*,

which implies that ||Z|| < ||z*|| also holds and hence Z’ is a minimal Euclidean
norm minimizer of f(z).

Finally, it’s easy to show that the minimal norm solution is unique. To see
this, simply notice that if there are two minimal norm solutions x; # x5, then
(x1 + x2)/2 is also a minimizer of f(z) but has a smaller norm (unless z; = z5),
which is a contradiction. Hence we see that any limit point of x(uy) is the same
minimal norm minimizer z, and since p; is an arbitrary sequence with pp — 0+,
we conclude that as g — 04, x(u) converges to the unique minimizer of f(z)
with the minimal Euclidean norm.

By the first-order optimality conditions, we have r; = —z9 = ﬁ. As 1t — 0, the

limit solution is z1 = —x9 = %

4. (15’) (Affine-Scaling Interior-Point SD) Consider the conic constrained optimization

problem
mmin f(x) st. x>0 (4)

where we assume the objective function f is first-order [-Lipschitz. Starting from

x" = e > 0, consider the affine-scaling interior-point method as follows: at iterate

x* > 0 let diagonal scaling matrix D be
D = min{1, =¥}

and
xF = x¥ — oF D?V f(xF),

with step-size

ot =in{ 5. S e) &)

(a) (3’) Show that D2V f(x*) is a descent direction.
(b) (3’) Show that x**1 > 0 for all k = 0,1,
(¢) (6”) Show that

f(xk-H) o f(Xk) < min {_%HDV}C(Xk)HgO’ _}LHva(Xk)HOO}

(d) (3") Derive a iterative complexity bound for || DV f(x*)]|s < e.
Solution: Here we treat the gradient vector as a column vector.

(a) Denote d, = —D?V f(x*). By definition of D and the fact that x* > 0 one clearly
have D = 0, and thus D? = 0. Hence dLVf(x*) = -V f(x*)D?*V f(x*) < 0 if
Vf(x*) # 0. Hence d* is a descent direction if V f(x*) # 0.

(b) We will prove the fact that x* > 0 for all kK = 0,1,... by induction. Clearly for

k = 0 one have x° = e > 0 by assumption. Assume this fact holds for k, i.e.,

x® > 0, consider the (k + 1)-th iteration. It follows that the i-th component of

xF1 satisfies

oi ™ = 2] — o (DPVf(x"))i 2 af = oM |(D*V(x"))i] = af — " (Da)|[(DV f ("))l

()

Since D;; = min{1, 2%} one have D;; < z¥, and thus
zi = o* (D) |(DV f(x"))i] = o} — o"af|(DV f(x))i] = 27 (1 — " (DV f(x*))il)

Note that Dy|V f(x*)|; < || DV f(x*)|s, by definition of o we obtain of D;;|V f (x*)|; <
%. Combining these results above yields xf“ > %xf > (). This concludes the in-

duction.

(c)(d) Since the function is first-order S-Lipschitz, for each step,

) < F(xF) — (@R DAV £ (xH) TV £ (xF) + 2

S (@)ID*V (M5
= f(x") = *[DV NI + g(ak)2||D2Vf(X’“)II§

Since Dy; < 1 we have || D2V f(x*)||2 < || DV f(x*)]|3, and therefore

FOE1) < F) — KD SO + 5 (02 DV)
— k k 5 k\2 k\ |12
= 1) = (= S(h?) IV

(6)

Note that ||DVf(M3 > ||DV f(x*)||%,. According to the scheme, the inequality

0<oab<i 5 always holds, which implies of — B(ak)? € [0, &]. Therefore

2 ' 28
B
P) < 1) (= S1ah?) 1DV 16
According to the step-size scheme (5), there are two cases:
o Casel: of =1 5 < W In this case (according to (7)),

FMY) < fk) — %IIDVf(x‘“)Hio

o CaseIl: of = W % In this case (according to (7)),

s < _5 k 1 V12
P) < 76 = (1= 50) g 1DV A

=) = 5 (1 5t) IV 6l

< F6) — TIDV ()

where in the last inequality we used the fact that a %

Combining the two cases immediately tells that the method will identify an x

such that || DV f(x¥)||. < & within max {4(f(x?7f*), 25(“’;2)7’”)} steps.

(7)

k

Computational Homework:

5. (10”) There is a simple nonlinear least squares approach for Sensor Network Localiza-
tion:

. 2 2
min Z(ij)eNz (sz - Xj”2 - dzgj) + Z(kj)eNa (Hak - Xj”2 - dij) (10)

which is an unconstrained nonlinear minimization problem.

(a) (5") Apply the Steepest Descent Method, starting with either the origin or a

(b)

random solution as the initial solution for model (10), to solve few selected SNL

instances you created in HW1. Does it work?

(5”) Apply the same Steepest Descent Method, starting from the SOCP or SDP
solution (which may not have errors) as the initial solution for model (10), to

solve the same instances in (a).

solution make a difference?

Solution:

(a) ! For the data from HW2, we obtain the following result:

Case# Iteration#

g1l

[l — 7]

0 95 7.02937300001e-07 1.31526462014

1 96 8.49323630054e-07 0.4132505402

2 66 7.91874506287e-07 2.06534769155

3 46 7.36718181322e-07 0.41958131873

4 211 8.77641007091e-07 0.932793325729

5 2692 9.97830126784e-07 0.176389149702

6 91 7.82269895272e-07 1.23784084017

7 227 9.45751060917e-07 1.18611529159

8 61 7.82206062276e-07 1.21552072733

9 308 9.77360601169e-07 1.4142135577e-08
10 41 6.78613735484e-07 0.175096086606

11 209 9.99876636385¢-07 0.806543186885

12 357 9.99499535795e-07 0.575181360423
13 1039 9.76516842978e-07 0.219059563814
14 104 8.72745816205e-07 0.849779558494

15 293 9.5217523952e-07 6.32455531876e-08
16 24 5.27755778653e-07 0.982261236774
17 2965 9.95270899503e-07 2.23606798625¢-08

! Adapted from student solutions last year. Thanks to Kailai Xu and Vivienne Liu.

Does it work? Does the SOCP or SDP initial

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

65
27
378
195
1552
285
89
147
99
309
226
654
988
364
510
7
2134
2390
163
516
204
215
190
519
23
98
66
160
666
181
67
23

7.77092719272e-07
9.54216094557e-07
9.87688019158e-07
8.62342659222e-07
9.91882305809e-07
9.97067679627e-07
9.75161710255e-07
9.72828975705e-07
8.13831949701e-07
9.79323149256e-07
9.2885990418e-07

9.79829401167e-07
9.94532217468e-07
9.68201976257e-07
9.93023652421e-07
9.07378070571e-07
9.95071239091e-07
9.92962934133e-07
9.82627021908e-07
9.84861710495e-07
9.48124819317e-07
9.18247954374e-07
9.99061485568e-07
9.54957321284e-07
6.69096706371e-07
8.84224787798e-07
8.19316713216e-07
9.58536768051e-07
9.74917392674e-07
9.27183274439e-07
9.77719512522e-07
8.86323005847e-07

3.51732255203
0.815901373748
1.99999999895e-08
0.724194649238
2.99999999287e-08
1.12545484854
1.59704634344
0.740145519253
1.50224641879
1.02081475561
0.721344277403
5.99999999684e-08
0.109547519934
0.590655437691
0.490007256859
0.61726817244
0.0630439420689
0.309758188886
0.0
4.12310563018e-08
0.282016214286
0.880287444236
0.153819671152
0.246353191122
1.02024518653
5.00000000292e-08
1.1314524184
0.449272985057
3.16227766509¢-08
0.323240948876
1.22810067024
9.99999993923¢-09

We can see from the table:

— The algorithm do converge for all the cases.

— The average iteration number is larger in the latter case (HW2).

— However, the algorithm do not necessarily converge to the real
location. Only in a few cases(those in RED) turn out to be exact.

This depends on the locality of the original problem.

(b) Starting from the solutions of SOCP/SDP relaxation obtained from CVX as we

did in HW2, we see that if SOCP/SDP has already (almost) exactly recovered
the true solution, then the SDM applied to the unconstrained problem here does
improve the accuracy further. Also, starting from SDP tends to give more accu-
rate results (and also more cases where we can refine the solution, because SDP
exact recovery is more common than SOCP, as we have seen in HW2 problem 9).
However, if SOCP/SDP already fails miserably, then SDM also doesn’t help at
all. This is expected as we first used a more accurate method (CVX solvers, which
are typically second-order algorithms) and then try to refine it with a first-order
solver SDM. The code is listed in Appendix.

Remark. We will accept any reasonable solutions showing sufficient efforts, and
the results above are just for references.

6. (30") (Multi-Block ADMM)

Part I Implement the ADMM to solve the divergence example:

(a)
(b)

minimize 0-z;+0-292+0-x3

111 X
subjectto 11 2 o | =0
1 2 2 T3

(5") Try = 0.1, 5 = 1, and 8 = 10, respectively. Does the choice of 5 make a
difference?

(5”) Add the objective function to minimize
0.5(2% + 35 + 23)
to the problem, and retry § = 0.1, 8 = 1, and 8 = 10, respectively. Does the

choice of make a difference?

(5”) Set 5 =1 and apply the randomly permuted updating-order of x (discussed
in class) to solving each of the two problems in (a) and (b). Does the iterate
converge?

Part II Generate some (feasible) convex QP problems with linear equality con-

straints, say 30 variables and 10 constraints (i.e., A € R'0*30),

(d)

e . 1..T
minimize 5x' Qx

subject to Ax=Db, x> 0.

(5”) Divide the variables of x into 5 blocks and apply the ADMM with 8 = 1. Does
it converge? (You may construct 5 different blocks and conduct the experiments.)

(5”) Apply the randomly permuted updating-order of the 5 blocks in each iteration
of the ADMM. Does it converge? Convergence performance?

(5”) Consider the following scheme — random-sample-without-replacement: in
each iteration of ADMM, randomly sample 6 variables for update, and then ran-
domly select 6 variables from the remaining 24 variable for update, and... , till all
30 variables are updated; then update the multipliers as usual. Does it converge?
Convergence performance?

Solution: First of all, we would like to comment that since for each sub-step, the

minimization problem is a convex QP, and hence we can simply solve it by taking the

gradient and setting it to 0, which reduces to the problem to solving a linear system.

Hence in this problem, either you apply a gradient step to the sub-problem or solve it

directly, you never need to use some other general optimization solvers.

We Implement the ADMM to solve the divergence example in Lecture 15. As
shown in figure 1, the choice of 5 doesn’t really make a difference. For all three
choices of 3, the procedure diverges, especially they diverge in a very similar
geometric rate.

1 rng(l); A=[1,1,1;1,1,2;1,2,2]; LA = tril (A"2); UA = LA-A"2;

2 figure();

3 for beta = [0.1,1,10]

4 M_1lhs = [LAxbeta, zeros(3,3);Axbeta,eye(3)]; M_rhs = [UAxbeta, A;
zeros (3,3) ,eye(3)];

5 M = inv(M_lhs)*M rhs; x = rand(3,1); y = rand(3,1); xnorm = [];

6 for time = 1:1000

7 xynew = Mx[x;y]; x = xynew(1:3); y = xynew(4:6); xnorm = [xnorm, norm(x)];

8 end

9 semilogy (xnorm); hold on

10 end

11 legend('\beta = 0.1"',"\beta = 1',"\beta = 10");
12 xlabel('Iterations'); ylabel('x Norm'); ylabel('x Norm');
13 t = title ('ADMM: divergence example in Lecture 15');

ADMM: divergence in Lecture 15
T T T T

10" ;

1010k

10°F]

x Norm

104 F A]

102]

-2 L L L L L L L L L
10
0 100 200 300 400 500 600 700 800 900 1000

Iterations

Figure 1: ADMM (a): the divergence example in Lecture 15

(b) After we add 0.5(2% + z3 + x3) to the objective function, the choice of 3 makes
a difference. In figure 2, it appears that the procedure diverges for § = 10, and
converges for § = 0.1 and 8 = 1. This time the procedure can converge for
some [and hence, to a certain extent, better than the previous one in (a). It is
because the objective function becomes strictly convex. The step size corresponds
to f = 10 is too large so that the procedure does not converge. At the same time,
£ = 0.1 corresponds to a much smaller step size, making the convergence rate not
as good as the 8 =1 one. Still, both cases converge geometrically.

1 rng(l); A=[1,1,1;1,1,2;1,2,2]; LA = tril(A”2); UA = LA-A"2;

2 figure();

3 for beta = [0.1,1,10]

4 M _1lhs = [LAxbeta + eye(3), zeros(3,3);Axbeta,eye(3)]; M_rhs = [UAxbeta, A;

zeros (3,3) ,eye(3)];

5 M = inv(M_lhs)*M rhs; x = rand(3,1); y = rand(3,1); xnorm = [];

6 for time = 1:1000

7 xynew = Mx[x;y]; x = xynew (1:3); y = xynew(4:6); xnorm = [xnorm, norm(x) |;

8 end

9 semilogy (xnorm); hold on

10 end

11 legend('\beta = 0.1"',"\beta = 1', '\beta = 10"); xlabel('Iterations'); ylabel('x ..
Norm') ;

12 t = title ('ADMM: Adding 0.5(x 172 + x 272 + x 372) to objective');

ADMM: Adding 0.5(xf + x§ + xg) to objective
1010 T T . T . - : r T

1070 N 1

1020+

x Norm
5
A
8
T
.

10740 1 \ 1
10750 -

10-60 = 3 o

70 L L
10
0 100 200 300 400 500 600 700 800 900 1000

Iterations

Figure 2: ADMM (b): add 0.5(x% 4+ 23 + 23) to objective

See figure 3 and figure 4 After randomly permuting the updating-order of z, for
both problems in (a) and (b), the iterates converge. The one corresponds to (a)
converges slower than the that to (b), as the problem is more “convex” for (b).
Both converge in roughly a geometric rate.

1 A= [1,1,1;1,1,2;1,2,2]; beta = 1;

2 x =rand(3,1); y = rand(3,1); xnorm = [];

3

4 for time = 1:1000

5 r_index = randperm(3);

6 A 2=A"2; LA = tril (A _2(r_index,r_ index));

7 [t,r_rank] = sort(r_index);

8 LA = LA(r_rank, r_rank); UA = LA-A"2;

9 M_1lhs = [LAxbeta, zeros(3,3);Axbeta,eye(3)];

10 M_rhs = [UAxbeta, A; zeros(3,3),eye(3)];

11 M = inv(M_lhs)*M rhs;

12 xynew = Mx[x;y]; x = xynew(1:3); y = xynew (4:6) ;

13 xnorm = [xnorm, norm(x)]|;

14 end

15 figure();

16 semilogy (xnorm); legend('\beta = 1'); xlabel('Iterations'); ylabel('x Norm');
17 t = title ('ADMM: randomly permuted updating-order - (a)');
18

19 A= [1,1,1;1,1,2;1,2,2]; beta = 1;

20 x = rand(3,1); y = rand(3,1); xnorm = [];

21 for time = 1:1000

22 r_index = randperm(3);

23 A 2=A"2; LA = tril (A _2(r_index,r_index));

24 [t,r_rank] = sort(r_index);

25 LA = LA(r_rank, r_ rank); UA = LA-A"2; LA = LAteye(3);
26 M _1lhs = [LAxbeta, zeros(3,3);Asbeta,eye(3)];

27 M rhs = [UAxbeta, A; zeros(3,3),eye(3)];

28 M = inv (M_lhs)*M_rhs;

29 xynew = Mx[x;y]; x = xynew(1:3); y = xynew (4:6) ;

30 xnorm = [xnorm, norm(x) |;

31 end

32 figure();

33 semilogy (xnorm); legend('\beta = 1'); xlabel('Iterations'); ylabel('x Norm');
34 t = title ('ADMM: randomly permuted updating-order - (b)');

ADMM: r permuted jati rder - (a)

10° ;

x Norm

10710 F

I
\‘U\(\ru

12 L L L L L L L L L
10
0 100 200 300 400 500 600 700 800 900 1000

Iterations

Figure 3: ADMM (c): randomly permuting the updating-order

ADMM: d updati der - (b)

100

10
10710+ A" B

1020+ £ |

x Norm

1030 - R 4

1040 v |

1070 | e . 4

10760 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Iterations

Figure 4: ADMM (c): randomly permuting the updating-order

In figure 5, we consider three procedures. We'll refer to them as procedure 1,2,3
respectively.

1. Divide the variables of x into 5 blocks and apply the ADMM with § = 1. The
procedure does converge.

2. Apply the randomly permuted updating-order of the 5 blocks in each iteration
of the ADMM. The procedure also does converge.

3. new scheme random-sample-without-replacement: in each iteration of ADMM,
randomly sample 6 variables for update, and then randomly select 6 variables from
the remaining 24 variable for update, and... , till all 30 variables are updated;
then update the multipliers as usual. The procedure also converges.

All of the three converge in geometric rate. The new scheme-random-sample-
without-replacement appears to converge the fastest, followed by no permutation

Note that the yellow line doesn’t appear to move after 350 iterations, this may
be due to that the "true value” of x we used is not perfectly accurate.

1 %hconstruct the problem

2 A= rand(10,30); Q_half = rand(30,30);

3 x_0 =rand(30,1); b = Axx_0; Q = Q_half'«Q_half; LU = Q 4+ A'xA;
4 Y%use cvx to find the true value

5 cvx__begin quiet

6 variable x_true(30)

7 minimize (x_true'«Qxx_ true)

8 subject to

9 Axx true = b

10 cvx_end

= =
N

a=ones (6,6); n=5;
AA=repmat (a,n,1); BB=mat2cell (AA,6*ones(1,n) ,6);
Diagonal_B=blkdiag (BB{:}); lower_B = tril (ones(30,30)) + triu(Diagonal B,1);

== e
(S Y

Y%%Without random permutation
beta = 1; x = rand(30,1); y = rand(10,1); xnorml = [];
for time = 1:1000
LA = lower_B.xLU; UA = LA-LU;
M_1lhs = [LA, zeros(30,10);A,eye(10
M rhs = [UA, A'; zeros(10,30) ,eye(
M b= [A'sb; b];
xynew = inv (M_lhs)*(M_rhs*[x;y]4+M_b); x = xynew(1:30); y = xynew(31:40);

xnorml = [xnorml, norm(x-x_true)]|;

I
S © W N o

Rk
10)];

NN NN
L

end

NN
(o2

%%With random permutation of block
x = rand(30,1); y = rand(10,1); xnorm2 = [];
29 for time = 1:1000

NN
®

30 group_index = randperm(5);

31 r_index = reshape(6*repmat(group_index,6,1) + repmat((0:5)',1,5)-5,1,30);
32

33 LA = lower_ B.%(LU(r_index,r_index)); [t,r_rank] = sort(r_index);

34 LA = LA(r_rank, r_rank); UA = LA-LU;

35
36 M_1lhs = [LA, zeros(30,10);A,eye(10)];

69

M_rhs = [UA, A'; zeros(10,30),eye(10)];
M b= [A'xb; b];

xynew = inv (M_lhs)*(M_rhs*[x;y]+M _b); x = xynew(1:30); y = xynew (31:40);
xnorm2 = [xnorm2, norm(x-x_true)];

end

Ymew scheme random-sample-without-replacement

x = rand (30,1);y = rand(10,1) ;xnorm3 = [];

for time = 1:1000
r_index = randperm(30);

LA = lower B.*(LU(r_index,r index));
[t,r_rank] = sort(r_index); LA = LA(r_rank, r_rank); UA = LA-LU;

M 1lhs = [LA, zeros(30,10);A,eye(10)];
M_rhs = [UA, A'; zeros(10,30),eye(10)];
M b= [A'sxb; b];

xynew = inv (M_lhs)*(M_rhs*[x;y]4+M _b); x = xynew(1:30); y = xynew(31:40);

xnorm3 = [xnorm3, norm(x-x_true)];
end
Yplot
figure (); semilogy (xnorml); hold on

semilogy (xnorm2); hold on
semilogy (xnorm3) ;

legend ('No random permutation', 'Random permutation of blocks', 'New scheme:
random-sample - without -replacement ') ;

xlabel ('Iterations'); ylabel('||x-x_0|]");

t = title ('ADMM: With and without random permutations');

x|

ADMM: With and without random permutations

No random permutation
Random permutation of blocks
New scheme: random-sample-without-replacement

~
PRI BT AT TTT R R

A
Ll

-7 L L L L I L L I
10
0 100 200 300 400 500 600 700 800 900 1000

Iterations

Figure 5: ADMM: Comparison of convergence speed

