
Optimization Methods for Data Science, Machine Learning and AI
Prof. Yinyu Ye

Homework Assignment 3

Reading. Read selected sections in Luenberger and Ye’s Linear and Nonlinear Programming
Fourth Edition Chapters 3, 5, 6, 8, 9, 10, and 14.

Theoretical Homework:

1. (10’) In most real applications, the (first-order) Lipschitz constant β is unknown. Fur-
thermore, we like to use a localized Lipschitz constant βk at iteration k such that

f(xk + αdk)− f(xk)−∇f(xk)T (αdk) ≤ βk

2
∥αdk∥2,

where dk is the steepest descent direction −∇f(xk). The goal is to decide a step-size
α ≈ 1

βk .
Consider the following forward-backward tracking method. In the following, assume
that βk ≥ 1 and αmax ≥ 1/βk. Notice that if βk < 1, we can enforce it to satisfy our
assumption by replacing it with max{1, βk}.
Now start at a initial guess α > 0,

i) If α ≤ 2(f(xk)−f(xk+αdk))
∥dk∥2 , then doubling the step-size: α ← 2α, stop as soon as

the inequality is reversed or α > αmax(> 0), and select the latest α such that the
inequality (α ≤ 2(f(xk)−f(xk+αdk))

∥dk∥2 ) holds and α ≤ αmax.

ii) Otherwise halving the step-size: α ← α/2; stop as soon as α ≤ 2(f(xk)−f(xk+αdk))
∥dk∥2

and return it.

(a) (4’) Let ᾱ be a step-size generated by the scheme. Show that ᾱ ≥ 1
2βk .

(b) (3’) Prove that the above scheme will terminate in finite steps.
(c) (3’) Show that f(xk + ᾱdk) ≤ f(xk)− 1

4βk ∥dk∥22.

2. (10’) (L2 Regularization and Logarithmic Barrier) Consider the optimization problem

minimizex1,x2 (x1 − x2 + 1)2

subject to x1 ≥ 0 x2 “free”.

Then we may combine the L2-regularization and barrier together, that is, for any
µ > 0, consider

minimizex1,x2 (x1 − x2 + 1)2 +
µ

2
(x2

1 + x2
2)− µ log(x1)



(a) (4’) Develop explicit path formula in terms of µ. What is the limit solution as
µ→ 0?

(b) (3’) Using µ = 1 and x0 = (1, 0), apply one step of SDM with step-size 1/5 to
compute the next iterate.

(c) (3’) Using µ = 1 and x0 = (1, 0), apply one step of Newton’s Method to compute
the next iterate.

3. (20’) (L2 Path-Following) Consider a convex function f : Rn → R in C2 that is twice
continuously differentiable. Assume that its value is bounded from below and that
it has a minimizer. For any given positive parameter µ > 0, consider the regulated
minimization problem

minimize f(x) +
µ

2
∥x∥2. (1)

(a) (3’) Write down the first-order optimality condition of (1). Is it sufficient for x

to be a minimizer?
(b) (3’) Show that the minimizer, denoted by x(µ), of (1) is unique for each fixed µ.
(c) (5’) Show that f(x(µ)) is an increasing function of µ (i.e., f(x(µ)) ≥ f(x(µ′))

if µ ≥ µ′ > 0 ), and ∥x(µ)∥ is a decreasing function of µ.
(d) (6’) Show that As µ→ 0+ (i.e., µ decreases to 0 ), x(µ) converges to the minimizer

of f(x) with the minimal Euclidean norm.
(e) (3’) Consider the specific example

minimizex1,x2 (x1 − x2 − 1)2,

where the optimal solution set is unbounded. Write out the explicit path formula
of x(µ) = (x1(µ), . . . , xn(µ)) in terms of µ. What is the limit solution as µ→ 0?



4. (15’) (Affine-Scaling Interior-Point SD) Consider the conic constrained optimization
problem

min
x

f(x) s.t. x ≥ 0 (2)

where we assume the objective function f is first-order β-Lipschitz. Starting from
x0 = e > 0, consider the affine-scaling interior-point method as follows: at iterate
xk > 0 let diagonal scaling matrix D be

Dii = min{1, xk
i }

and
xk+1 = xk − αkD2∇f(xk),

with step-size
αk = min

{
1

β
,

1

2∥D∇f(xk)∥∞

}
.

(a) (3’) Show that −D2∇f(xk) is a descent direction.
(b) (3’) Show that xk+1 > 0 for all k = 0, 1, ....
(c) (6’) Show that

f(xk+1)− f(xk) ≤ −min

{
1

2β
∥D∇f(xk)∥2∞,

1

4
∥D∇f(xk)∥∞

}
(d) (3’) Derive a iterative complexity bound for ∥D∇f(xk)∥∞ ≤ ϵ.



Computational Homework (group of 1-3 people):

5. (10’) There is a simple nonlinear least squares approach for Sensor Network Localiza-
tion:

min
∑

(ij)∈Nx

(
∥xi − xj∥2 − d2ij

)2
+
∑

(kj)∈Na

(
∥ak − xj∥2 − d2kj

)2 (3)

which is an unconstrained nonlinear minimization problem.

(a) (5’) Apply the Steepest Descent Method, starting with either the origin or a
random solution as the initial solution for model (3), to solve the SNL instances
you created in Problem 9 of HW1. Does it work?

(b) (5’) Apply the same Steepest Descent Method, starting from the SOCP or SDP
solution (which may not have errors) as the initial solution for model (3), to solve
the same instances in (a). Does it work? Does the SOCP or SDP initial solution
make a difference?



6. (30’) (Multi-Block ADMM)

Part I Implement the ADMM to solve the divergence example:

minimize 0 · x1 + 0 · x2 + 0 · x3

subjectto

1 1 1

1 1 2

1 2 2

x1

x2

x3

 = 0

(a) (5’) Try β = 0.1, β = 1, and β = 10, respectively. Does the choice of β make a
difference?

(b) (5’) Add the objective function to minimize

0.5(x2
1 + x2

2 + x2
3)

to the problem, and retry β = 0.1, β = 1, and β = 10, respectively. Does the
choice of β make a difference?

(c) (5’) Set β = 1 and apply the randomly permuted updating-order of x (discussed
in class) to solving each of the two problems in (a) and (b). Does the iterate
converge?

Part II Generate some (feasible) convex QP problems with linear equality con-
straints, say 30 variables and 10 constraints (i.e., A ∈ R10×30),

minimize 1
2
xTQx

subject to Ax = b, x ≥ 0.

(d) (5’) Divide the variables of x into 5 blocks and apply the ADMM with β = 1. Does
it converge? (You may construct 5 different blocks and conduct the experiments.)

(e) (5’) Apply the randomly permuted updating-order of the 5 blocks in each iteration
of the ADMM. Does it converge? Convergence performance?

(f) (5’) Consider the following scheme – random-sample-without-replacement: in
each iteration of ADMM, randomly sample 6 variables for update, and then ran-
domly select 6 variables from the remaining 24 variable for update, and... , till all
30 variables are updated; then update the multipliers as usual. Does it converge?
Convergence performance?


