
Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #05 1

Second-Order Optimization Algorithms

Yinyu Ye

http://www.stanford.edu/~yyye

Chapters 10, 5.4-7, 6.6, Chapter 15



Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #05 2

Newton’s Method: a Second-Order Method

For multi-variables, Newton’s method for minimizing f(x) is to minimize the second-order Taylor
expansion function at point xk :

xk+1 = xk − (∇2f(xk))−1∇f(xk).

We now introduce the second-order β-Lipschitz condition: for any point x and direction vector d

∥∇f(x + d)−∇f(x)−∇2f(x)d∥ ≤ β∥d∥2,

which implies

f(x + d)− f(x) ≤ ∇f(x)T d +
1

2
dT∇2f(x)d +

β

3
∥d∥3.

In the following, for notation simplicity, we use g(x) = ∇f(x) and∇g(x) = ∇2f(x). Thus,

xk+1 = xk − (∇g(xk))−1∇f(xk), or∇g(xk)(xk+1 − xk) = −g(xk).

Indeed, Newton’s method was initially developed for solving a system of nonlinear equations in the
form g(x) = 0.
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Local Convergence Theorem of Newton’s Method

Theorem 1 Let f(x) be β-Lipschitz and the smallest absolute eigenvalue of its Hessian uniformly
bounded below by λmin > 0. Then, provided that ∥x0 − x∗∥ is sufficiently small, the sequence
generated by Newton’s method converges quadratically to x∗ that is a KKT solution with g(x∗) = 0.

∥xk+1 − x∗∥ = ∥xk − x∗ −∇g(xk)−1g(xk)∥
= ∥∇g(xk)−1

(
g(xk)−∇g(xk)(xk − x∗)

)
∥

= ∥∇g(xk)−1
(
g(xk)− g(x∗)−∇g(xk)(xk − x∗)

)
∥

≤ ∥∇g(xk)−1∥∥g(xk)− g(x∗)−∇g(xk)(xk − x∗)∥
≤ ∥∇g(xk)−1∥β∥xk − x∗∥2 ≤ β

λmin
∥xk − x∗∥2.

(1)

Thus, when β
λmin

∥x0 − x∗∥ < 1, the quadratic convergence takes place:

β

λmin
∥xk+1 − x∗∥ ≤

(
β

λmin
∥xk − x∗∥

)2

.

Such a starting solution x0 is called an approximate root of g(x).
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Case I: Newton’s Method for Computing “Analytic Center”

Consider the optimization problem

min −
∑
j lnxj

s.t. Ax − b = 0 ∈ Rm,

x ≥ 0.

Note this is a (strict) convex optimization problem. Suppose the feasible region has an interior and it is
bounded, then the (unique) minimizer is called the analytic center of the feasible region, and it, together
with multipliers y, s, satisfy the following optimality conditions:

xjsj = 1, j = 1, ..., n,

Ax = b,

AT y + s = 0,

(x, s) ≥ 0.
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Newton Direction of Linear System

Let (x > 0, y, s > 0) be an initial point. Then, the Newton direction would be solution of:
S 0 X

A 0 0

0 AT I




dx

dy

ds

 =


e −Xs

b −Ax

−AT y − s

 .

Let us assume that the initial point are feasible. Then

Sdx +Xds = e −Xs,

Adx = 0,

AT dy + ds = 0.

(2)

MultiplyingAS−1 to the top equation and notingAdx = 0, we haveAXS−1ds = AS−1(e −Xs),

which together with the third equation give

dy = −(AXS−1AT )−1AS−1(e −Xs),

ds = −AT dy, and dx = S−1(e −Xs −Xds).

The new Newton iterate would be x+ = x + dx, y+ = y + dy, s+ = s + ds.
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Quadratic Convergnce from Approximate Centers

The error residual of the first equation would be:

η(x, s) := ∥Xs − e∥. (3)

We now prove the following theorem

Theorem 2 If the starting point of the Newton procedure satisfies
η(x, s) < 2/3, then

x+ > 0, Ax+ = b, s+ = cT −AT y+ > 0

and

η(x+, s+) ≤
√
2η(x, s)2

4(1− η(x, s))
.

(ACpd_newton.m of Chapter 5)



Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #05 7

Case II: Spherical Trust-Region Method for Minimizing Lipschitz f(x)

Recall the second-order β-Lipschitz condition: for any two points x and d

∥g(x + d)− g(x)−∇g(x)d∥ ≤ β∥d∥2,

where g(x) = ∇f(x) and∇g(x) = ∇2f(x). It implies

f(x + d)− f(x) ≤ ∇f(x)T d +
1

2
dT∇2f(x)d +

β

3
∥d∥3.

f(x + d)− f(x)−∇f(x)T d − 1
2 d
T∇2f(x)d

=
∫ 1

0
dT (∇f(x + td)−∇f(x))dt− 1

2 d
T∇2f(x)d

=
∫ 1

0
dT
(
∇f(x + td)−∇f(x)−∇2f(x)(td)

)
dt

≤
∫ 1

0
∥d∥∥∇f(x + td)−∇f(x)−∇2f(x)(td)∥dt

≤
∫ 1

0
∥d∥β∥td∥2dt (by 2nd-order -Lipschitz condition)

= β∥d∥3
∫ 1

0
t2dt = β

3 ∥d∥
3.
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The second-order method, at the kth iterate, would let xk+1 = xk + dk where

dk = arg mind (ck)T d + 1
2 d
TQkd + β

3α
3

s.t. ∥d∥ ≤ α,

with ck = ∇f(xk) andQk = ∇2f(xk). One typically fixed α to a “trusted” radius αk so that it
becomes a sphere-constrained problem (the inequality is normally active if the Hessian is non PSD):

(Qk + λkI)dk = −ck, (Qk + λkI) ⪰ 0, ∥dk∥22 = (αk)2.

For fixed αk , the method is generally called trust-region method.

The Trust-Region can be ellipsoidal such as ∥Sd∥ ≤ α where S is a PD diagonal scaling matrix.
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Convergence Speed of the Spherical Trust-Region Method

Is there a trusted radius such that the method converging? A simple choice would fix αk =
√
ϵ/β.

Then from reduction (??)

f(xk+1)− f(xk) ≤ −λ
k

2
∥dk∥2 + β

3
(αk)3 = −λ

k(αk)2

2
+
β

3
(αk)3 = −λkϵ

2β2
+
ϵ3/2

3β2
.

Also ∥g(xk+1)∥ = ∥g(xk+1)− (ck +Qkdk) + (ck +Qkdk)∥
≤ ∥g(xk+1)− (ck +Qkdk)∥+ ∥(ck +Qkdk)∥
≤ β∥dk∥2 + λk∥dk∥ = β(αk)2 + λkαk = ϵ

β + λk√ϵ
β .

Thus, one can stop the algorithm as soon as λk ≤
√
ϵ so that the inequality becomes

∥g(xk+1)∥ ≤ 2ϵ
β and the function value is decreased at least− ϵ1.5

6β2 . Furthermore,
|λmin(∇g(xk))| ≤ λk =

√
ϵ.

Theorem 3 Let the objective function p∗ = inf f(x) be finite. Then in O(β2(f(x0)−p∗))
ϵ1.5 iterations of the

trust-region method, the norm of the gradient vector is less than ϵ and the Hessian is
√
ϵ-positive

semidefinite, where each iteration solves a spherical-constrained quadratic minimization discussed
earlier.
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Relation to Quadratic/Cubic Regularization/Proximal-Point Method

One can also interpret the Spherical Trust-Region method as the Quadratic Regularization Method

dk(λ) = arg mind (ck)T d + 1
2 d
TQkd + λ

2 ∥d∥
2

where parameter λ makes (Qk + λI) ⪰ 0. Then consider the one-variable function

ϕ(λ) := f(xk + dk(λ))

and do one-variable minimization of ϕ(λ) over λ. Then let λk be a minimizer and
xk+1 = xk + dk(λk).

Thus, based on the earlier analysis, we must have at least

f(xk+1)− f(xk) ≤ − ϵ
1.5

6β2

for some (local) Lipschitz constant β of the objective function.

Note that the algorithm needs to estimate only the minimum eigenvalue, λmin(Qk), of the Hessian.
One heuristic is to let λk decreases geometrically and do few possible line-search steps.



Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #05 11

Dimension-Reduced Trust-Region Method in the Subspace

Let gk = ∇f(xk) and the momentum directon dk = xk − xk−1. Again we consider iteration

xk+1 = xk − α1g
k + α2d

k = xk + d(α)

where the pair of step-sizes α = (α1;α2) can be chosen from

min
α∈Sk

ψk(α) := ∇f(xk)d(α) + 1

2
d(α)∇2f(xk)d(α).

Here Sk is a trust-region of α for the two-dimensional quadratic prolem that has Hessian and gradient

∇2ψk(α) =

 (gk)THkgk −(dk)THkgk

−(dk)THkgk (dk)THkdk

 ,∇ψk(α) =

 −∥gk∥2

(gk)T dk

 .

wehereHk = ∇2f(xk). Again, if the full Hessian is not available, one can approximate∇2ψk(α)

using

Hkgk ∼ ∇(xk + gk)− gk and Hkdk ∼ ∇(xk + dk)− gk ∼ −(gk−1 − gk);

or more accurate difference approximation between two gradients. (DRSOMTrust....m of Chapter 8)
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Do the Second-Order Methods Make a Difference

Consider the nonconvex compressed-sensing model

min
x
0.5∥Ax − b∥2 + µ

∑
j

|xj |p, s.t. x ≥ 0

where 0 < p ≤ 1.

(TrustL2Lx....m of Chapter 8)
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Would Convexity Help SOM?

Before we answer this question, let’s summarize a generic form one iteration of the Second Order
Method for solving∇f(x) = g(x) = 0:

(∇g(xk) + µI)(x − xk) = −γg(xk), or

g(xk) +∇g(xk)(x − xk) + µ(x − xk) = (1− γ)g(xk).

Many interpretations: when

• γ = 1, µ = 0: pure Newton;

• γ and µ are sufficiently large: SDM;

• γ = 1 and µ decreases to 0: Homotopy or path-following method.
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A Path-Following Algorithm for Unconstrained Optimization I

For any µ > 0 consider the (unique) optimal solution x(µ) for problem

x(µ) = arg min f(x) +
µ

2
∥x∥2,

and they form a path down to x(0) and satisfy gradient equations with parameter µ:

g(x) + µx = 0, with µ = µk > 0. (4)

Let the approximation path error at xk with µ = µk be

∥g(xk) + µkxk∥ ≤ 1

2β
µk.

Then, we like to compute a new iterate xk+1, using Newton’s method with xk as an initial solution, such
that

∥g(xk+1) + µk+1xk+1∥ ≤ 1

2β
µk+1, where 0 ≤ µk+1 < µk.

If µk can be decreased at a geometric rate, independent of ϵ, and each update uses one Newton step,
then this would lead to a linearly convergent algorithm.
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Concordant Lipschitz Functions

We analyze the path-following algorithm when f is convex and meet a Concordant Lipschitz condition:
for any point x and a β ≥ 1

∥∇f(x + d)−∇f(x)−∇2f(x)d∥ ≤ βdT∇2f(x)d, whenever ∥d∥ ≤ O(1) < 1 (5)

and x + d in the function domain. Such condition can be verified using Taylor Expansion Series;
basically, the third derivative of the function is bounded by its second derivative.

• All quadratic functions are concordant Lipschitz with β = 0.

• Convex function ex is concordant Lipschitz with β = O(1) but it is not regular Lipschitz.

• Convex function− log(x) is neither regular Lipschitz nor concordant Lipschitz.

• Function f(x) := ϕ(Ax− b) is concordant Lipschitz if ϕ(·) is regular Lipschitz and strictly convex.
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A Path-Following Algorithm for Unconstrained Optimization II

When µk is replaced by µk+1, say (1− η)µk for some η ∈ (0, 1], we aim to find a solution x such
that

g(x) + (1− η)µkx = 0,

we start from xk and apply the Newton iteration:

g(xk) +∇g(xk)d + (1− η)µk(xk + d) = 0, or

∇g(xk)d + (1− η)µkd = −g(xk)− (1− η)µkxk.
(6)

From the second expression, we have

∥∇g(xk)d + (1− η)µkd∥ = ∥ − g(xk)− (1− η)µkxk∥
= ∥ − g(xk)− µkxk + ηµkxk∥
≤ ∥ − g(xk)− µkxk∥+ ηµk∥xk∥
≤ 1

2βµ
k + ηµk∥xk∥.

(7)

On the other hand

∥∇g(xk)d + (1− η)µkd∥2 = ∥∇g(xk)d∥2 + 2(1− η)µkdT∇g(xk)d + ((1− η)µk)2∥d∥2.
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From convexity, dT∇g(xk)d ≥ 0, together with (7) we have

((1− η)µk)2∥d∥2 ≤ ( 1
2β + η∥xk∥)2(µk)2 and

2(1− η)µkdT ∥∇g(xk)d ≤ ( 1
2β + η∥xk∥)2(µk)2.

The first inequality implies

∥d∥2 ≤ (
1

2β(1− η)
+

η

1− η
∥xk∥)2.

Let the new iterate be x+ = xk + d. The second inequality implies

∥g(x+) + (1− η)µkx+∥
= ∥g(x+)− (g(xk) +∇g(xk)d) + (g(xk) +∇g(xk)d) + (1− η)µk(xk + d)∥
= ∥g(x+)− g(xk) +∇g(xk)d∥
≤ βdT∇g(xk)d ≤ β

2(1−η) (
1
2β + η∥xk∥)2µk.

We now just need to choose η ∈ (0, 1) such that

( 1
2β(1−η) +

η
1−η∥x

k∥)2 ≤ 1 and
βµk

2(1−η) (
1
2β + η∥xk∥)2 ≤ 1

2β (1− η)µk = 1
2βµ

k+1.
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For example, given β ≥ 1,

η =
1

2β(1 + ∥xk∥)
would suffice.

This would give a linear convergence since ∥xk∥ is typically bounded following the path to the
optimality, while the convergence in non-convex case is only arithmetic.

More question related to the path-following algorithm:

• For convex case, since x(µ) is the unique minimizer of

min f(x) +
µ

2
∥x∥2,

what is the limit of x(µ) as µ→ 0+?

• More practical strategy to decrease µ?

• Apply first-order or 1.5-order algorithms for solving each step of the path-following, since it is to
minimize a strictly convex quadratic function?

• What happen when f is bounded from below but not convex, and just meet the standard Lipschitz
condition? The key is analyzing x(µ), which may form multiple paths. Then can we still follow the
path?

(QPpath.m of Chapter 8)
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Interior-Point Methods (IPM) for Linear Programming

Optimality Conditions: (1) Primal Feasibility, (2) Dual Feasibility, (3) Zero-Duality Gap/Prima-Dual
Complementarity.

Recall that the (primal) Simplex Algorithm maintains the primal feasibility and complementarity while
working toward dual feasibility. (The Dual Simplex Algorithm maintains dual feasibility and
complementarity while working toward primal feasibility.)

In contrast, interior-point methods will move in the interior of the feasible region, hoping to by-pass
many corner points on the boundary of the region. The primal-dual interior-point method maintains both
primal and dual feasibility while working toward complementarity.

The key for the simplex method is to make computer see corner points; and the key for interior-point
methods is to stay in the interior of the feasible region.
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Interior Feasible Points for LP and LD

(LP ) min cT x s.t.Ax = b, x ≥ 0 <=> (LD) max bT y s.t.AT y + s = c, s ≥ 0.

intFp = {x : Ax = b, x > 0} ̸= ∅

intFd = {(y, s) : s = c −AT y > 0} ̸= ∅.

Let z∗ denote the optimal value and
F = Fp ×Fd.

We are interested in finding an ϵ-approximate solution for the LP problem:

xT s = cT x − bT y ≤ ϵ.

For simplicity, we assume that an interior-point pair (x0, y0, s0) is known, and we will use it as our initial
point pair.
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Barrier Functions and Analytic Center Again

Consider the barrier function optimization problems:

(PB) minimize −
∑n
j=1 logxj

s.t. x ∈ intFp
and

(DB) maximize
∑n
j=1 log sj

s.t. (y, s) ∈ intFd

The maximizer x (or (y, s)) of (PB) (or (BD)) is called the analytic center of bounded polyhedron Fp (or
Fd). Applying the KKT conditions and usingX = diag(x), we have

−X−1e −AT y = 0 or − e −XAT y = 0, Ax = b, x > 0.

After introducing auxiliary vector s = X−1e, the conditions become

Xs = e

Ax = b

−AT y − s = 0

x > 0.

or

Sx = e

Ax = 0

−AT y − s = −c

s > 0.


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S1

S2

S3

S4

S5

Figure 1: The dual analytic center maximizes the product of slacks.
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Examples

Fp = {x :
∑
j

xj = 1, x ≥ 0}.

The analytic center of Fp would be

xc = (
1

n
; ...;

1

n
), y = −n, s = (n; ...; n).

Fd = {y : 0 ≤ y ≤ e}.

The analytic center of Fd would be

yc = arg max
∑
i

(log(yi) + log(1− yi)) = arg max
∑
i

log(yi(1− yi))

that is

yc = (
1

2
; ...;

1

2
), s =

1

2
e, x = 2e.

Why “analytic”: depending on the analytical representation data.
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Logarithmic Function and Scaled Concordant Lipschitz

Lemma 1 LetB(x) = −
∑n
j=1 log(xj). Then, for any point x > 0 and direction vector d such that

∥X−1d∥∞ ≤ α(< 1),

−eTX−1d ≤ B(x + d)−B(x) ≤ −eTX−1d +
∥X−1d∥2

2(1− α)
.

The Barrier function property can be generalized to the so-called Second-Order Scaled Concordant
Lipschitz Condition: for any x > 0 and x + d in the function domain:

∥X
(
∇f(x + d)−∇f(x)−∇2f(x)d

)
∥ ≤ βαd

T∇2f(x)d, whenever ∥X−1d∥ ≤ α(< 1).

Such condition can be verified using Taylor Expansion Series; basically, the scaled third derivative of
the function is bounded by its (unscaled) second derivative.

• All quadratic functions are scaled concordant Lipschitz with βα = 0.

• Convex function− log(x) is scaled concordant Lipschitz with βα = 1
(1−α) .

• All power functions {xp : x > 0} with integer p are scaled concordant Lipschitz with
βα = O(p)

(1−α) .
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Affine-Scaling Gradient Projection

To compute the analytic center, we consider the affine-scaling GPM from any feasible x > 0:

minimize −eTX−1d

s.t. Ad = 0, ∥X−1d∥ ≤ α
or

minimize −eT d′

s.t. AXd′ = 0, ∥d′∥ ≤ α

which has a close-form solution

d′ = α(I −XAT (AX2AT )−1AX)e/∥(I −XAT (AX2AT )−1AX)e∥.

Note that d = Xd′ so that we let x+ = x + d, which should remain positive:

x+ = x + d = x +Xd′ = X(e + d′) > 0

as long as x > 0 and ∥d′∥ < 1. Then, from Lemma 1 the Barrier function value would be decreased at
least by

B(x+)−B(x) ≤ −α∥(I −XAT (AX2AT )−1AX)e∥+ α2

2(1− α)
.
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Convergence Speed Analysis

For simplicity, let y(x) = (AX2AT )−1AXe and s(x) = AT y(s) so that

(I −XAT (AX2AT )−1AX)e = e −Xs(x).

Note that y(x) minimizes miny ∥e −XAT y∥2. Thus, as long as ∥e −Xs(x)∥ ≥ 1, the Barrier
function can be decreased by a universal constant−α+ α2

2(1−α) = −3/4 when we set α = 1/2. If
the quantity ∥e −Xs(x)∥ < 1, then we simply let x+ = x +X(e −Xs(x)), in which case we now
prove ∥e −X+s(x+)∥ ≤ ∥e −Xs(x)∥2 (quadratic convergence)!

∥e −X+s(x+)∥2 ≤ ∥e −X+s(x)∥2, (because y(x+) minimizes the squares)

= ∥e − (2X −X2S(x)s(x)∥2

=
∑n
j=1

(
1− 2xjsj(x) + x2j (sj(x))

2
)2

=
∑n
j=1(1− xjsj(x))

4

≤
(∑n

j=1(1− xjsj(x))
2
)2

= ∥e −Xs(x)∥4.

(ACprimal....m of Chapter 5)
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Analytic Volume and Cutting Plane for LP: Geometric Interpretation of IPM

AV (Fd) :=
n∏
j=1

s̄j =

n∏
j=1

(cj − aTj ȳ)

can be viewed as the analytic volume of polytope Fd or simply F in the rest of discussions.

If one inequality in F , say the first one, needs to be translated, change aT1 y ≤ c1 to aT1 y ≤ aT1 ȳ; i.e.,
the first inequality is parallelly moved and it now cuts through ȳ and divides F into two bodies.
Analytically, c1 is replaced by aT1 ȳ and the rest of data are unchanged. Let

F+ := {y : aTj y ≤ c+j , j = 1, ..., n},

where c+j = cj for j = 2, ..., n and c+1 = aT1 ȳ.
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Figure 2: Translation of a hyperplane to the AC.
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Analytic Volume Reduction of the New Polytope

Let ȳ+ be the analytic center of F+. Then, the analytic volume of F+

AV (F+) =
n∏
j=1

(c+j − aTj ȳ+) = (aT1 ȳ − aT1 ȳ+)
n∏
j=2

(cj − aTj ȳ+).

We have the following volume reduction theorem:

Theorem 4
AV (F+)

AV (F)
≤ exp(−1).

Now suppose we translate k(< n) hyperplanes, say 1, 2, ..., k, moved to cut the analytic center ȳ of
F , that is,

F+ := {y : aTj y ≤ c+j , j = 1, ..., n},

where c+j = cj for j = k + 1, ..., n and c+j = aTj ȳ for j = 1, ..., k.

Corollary 1
AV (F+)

AV (F)
≤ exp(−k).
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Barrier Regularization Function for LP: Algebraic Implementation of IPM

Consider the LP pair with the barrier function

(LPB) minimize cT x − µ
∑n
j=1 logxj

s.t. x ∈ intFp
<=>

(LDB) maximize bT y + µ
∑n
j=1 log sj

s.t. (y, s) ∈ intFd,

and they are primal-dual to each other and share a common set of KKT Optimality Conditions:

Xs = µe

Ax = b

−AT y − s = −c;

(8)

where barrier parameter

µ =
xT s

n
=

cT x − bT y

n
,

so that it’s the average of complementarity or duality gap. As µ varies, the optimizers form the LP
central paths in the primal and dual feasible regions, respectively.
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Figure 3: The central path of y(µ) in a dual feasible region.
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Central Path for Linear Programming

C = {(x(µ), y(µ), s(µ)) ∈ intF : Xs = µe, 0 < µ <∞} ;

is called the (primal and dual) central path of linear programming.

Theorem 5 Let both (LP) and (LD) have interior feasible points for the given data set (A, b, c). Then for
any 0 < µ <∞, the central path point pair (x(µ), y(µ), s(µ)) exists and is unique. Moreover, the
followings hold.

i) The central path point (x(µ), s(µ)) is bounded for 0 < µ ≤ µ0 and any given 0 < µ0.

ii) For 0 < µ′ < µ, cT x(µ′) < cT x(µ) and bT y(µ′) > bT y(µ) if both primal and dual have no
constant objective values.

iii) (x(µ), s(µ)) converges to an optimal solution pair for (LP) and (LD). Moreover, the limit point
x(0)P∗ > 0 and the limit point y(0), s(0)Z∗ > 0 are the analytic centers of the optimal solution
sets of primal and dual, respectively; where (P ∗, Z∗) is the strictly complementarity partition if
variable index set {1, 2, ..., n}.
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The Primal-Dual Path-Following Algorithm for LP

In general, we start from an (approximate) central path point (xk, yk, sk) ∈ F such that

∥Xksk − µke∥ ≤ σµk, for some σ ∈ [0, 1).

Then, let µk+1 = (1− η)µk for some η ∈ (0, 1], we aim to find a new pair (x, y, s) ∈ F such that
Xs = µk+1e.

We start from (xk, yk, sk) ∈ F and apply the Newton iteration for direction vectors (dx, dy, ds):

Skdx +Xkds = µk+1e −Xksk

Adx = 0

AT dy + ds = 0

,

then let xk+1 = xk + dx, yk+1 = yk + dy, sk+1 = sk + ds. Carefully choosing σ = O(1) and
η = O( 1√

n
) guarantees (xk+1, sk+1) > 0 and

∥Xk+1sk+1 − µk+1e∥ ≤ σµk+1, for the same σ ∈ [0, 1).

Too many restrictions when following a path... Is a function-driven interior-point algorithm?
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Primal-Dual Potential Function for LP

For (x, y, s) ∈ intF , the joint primal-dual potential function is defined by

ψn+ρ(x, s) := (n+ ρ) log(xT s)−
n∑
j=1

log(xjsj), for some ρ > 0.

ψn+ρ(x, s) = ρ log(xT s) + ψn(x, s) ≥ ρ log(xT s) + n logn,

then, for ρ > 0, ψn+ρ(x, s) → −∞ implies that xT s → 0. More precisely, we have

xT s ≤ exp(
ψn+ρ(x, s)− n logn

ρ
).

Given a pair (xk, yk, sk) ∈ intF , compute direction vectors (dx, dy, ds) from the Newton iteration:

Skdx +Xkds = (xk)T sk

n+ρ e −Xksk,

Adx = 0,

AT dy + ds = 0.

(9)

How to solve the equation system efficiently using the block structures?
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Block Structure in the KKT System

Skdx +Xkds = rk,

Adx = 0,

AT dy + ds = 0.

Scale the first block to: dx + (Sk)−1Xkds = (Sk)−1rk.

MultiplyingA to both sides and using the second block equations: A(Sk)−1Xkds = A(Sk)−1rk.

Applying the third block equations: −A(Sk)−1XkAT dy = A(Sk)−1rk.

This is anm×m positive definite system, and solve it for dy ; then ds from the third block; then dx from
the first block.

Matrix Factorization to solveQy = r:

• Cholesky: RTR = Q, whereR is a Right-Triangle matrix

• LDLT = Q, where L is a Left-Triangle matrix.



Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #05 36

Description of Algorithm for LP

Given (x0, y0, s0) ∈ intF . Set ρ ≥
√
n and k := 0.

While (xk)T sk ≥ ϵ do

1. Set (x, s) = (xk, sk) and compute (dx, dy, ds) from (12).

2. Let xk+1 = xk + αkdx, yk+1 = yk + αkdy , and sk+1 = sk + αkds where

αk = arg min
α≥0

ψn+ρ(x
k + αdx, s

k + αds).

3. Let k := k + 1 and return to Step 1.
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Theorem 6 Let ρ ≥
√
n. Then, the potential reduction algorithm generates the (interior) feasible solution

sequence {xk, yk, sk} such that

ψn+ρ(x
k+1, sk+1)− ψn+ρ(x

k, sk) ≤ −0.15.

Thus, if ψn+ρ(x0, s0) ≤ ρ log((x0)T s0) + n logn, the algorithm terminates in at most
O(ρ log((x0)T s0/ϵ)) iterations with (xk)T sk = cT xk − bT yk ≤ ϵ.

The proof used a key fact: dTx ds = −dTxA
T dy = 0 for the directions. Also

(xk)T sk ≤ exp(ψn+ρ(x
k,sk)−n logn
ρ )

≤ exp(ψn+ρ(x
0,s0)−n logn−ρ log((x0)T s0/ϵ)

ρ )

≤ exp(ρ log(x0,s0)−ρ log((x0)T s0/ϵ)
ρ )

= exp(log(ϵ)) = ϵ.

The role of ρ? And more aggressive step size?

(LPpdpath...m and LPpdpotential.m of Chapter 5)
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Initialization

• Combining the primal and dual into a single linear feasibility problem, then applying LP algorithms
to find a feasible point of the problem. Theoretically, this approach can retain the currently best
complexity result.

• The bigM method, i.e., add one or more artificial column(s) and/or row(s) and a huge penalty
parameterM to force solutions to become feasible during the algorithm.

• Phase I-then-Phase II method, i.e., first try to find a feasible point (and possibly one for the dual
problem), and then start to look for an optimal solution if the problem is feasible and bounded.

• Combined Phase I-Phase II method, i.e., approach feasibility and optimality simultaneously. To our
knowledge, the “best” complexity of this approach isO(n log((x0)T s0/ϵ)).
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Homogeneous and Self-Dual Algorithm

• It solves the linear programming problem without any regularity assumption concerning the
existence of optimal, feasible, or interior feasible solutions, while it retains the currently best
complexity result

• It can start at any positive primal-dual pair, feasible or infeasible, near the central ray of the positive
orthant (cone), and it does not use any bigM penalty parameter or lower bound.

• Each iteration solves a system of linear equations whose dimension is almost the same as that
solved in the standard (primal-dual) interior-point algorithms.

• If the LP problem has a solution, the algorithm generates a sequence that approaches feasibility
and optimality simultaneously; if the problem is infeasible or unbounded, the algorithm will produce
an infeasibility certificate for at least one of the primal and dual problems.
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Primal-Dual Alternative Systems

Recall that a pair of LP has two alternatives

(Solvable) Ax − b = 0

−AT y + c ≥ 0,

bT y − cT x = 0,

y free, x ≥ 0

or

(Infeasible) Ax = 0

−AT y ≥ 0,

bT y − cT x > 0,

y free, x ≥ 0

(HP ) Ax − bτ = 0

−AT y + cτ = s ≥ 0,

bT y − cT x = κ ≥ 0,

y free, (x; τ) ≥ 0

where the two alternatives are:

(Solvable) : (τ > 0, κ = 0) or (Infeasible) : (τ = 0, κ > 0)
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Let’s Find a Feasible Solution of (HP)

Given x0 = e > 0, s0 = e > 0, and y0 = 0, we formulate a self-dual LP problem:

(HS −DP ) min (n+ 1)θ

s.t. Ax −bτ +b̄θ = 0,

−AT y +cτ −c̄θ ≥ 0,

bT y −cT x +z̄θ ≥ 0,

−b̄T y +c̄T x −z̄τ = −(n+ 1),

y free, x ≥ 0, τ ≥ 0, θ free.

Note that (y = 0, x = e, τ = 1, θ = 1) is a strictly feasible point for (HSDP). Moreover, one can
show that the constraints imply

eTx+ eT s+ τ + κ− (n+ 1)θ = (n+ 1),

which serves as a normalizing constraint for (HSDP) to prevent the all-zero solution.
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Main Result

Theorem 7 The interior-point algorithm solves (HS-DP) inO(
√
n log nϵ ) steps and each step solves a

system of linear equations as the same size as in feasible algorithms, and it always produces an
optimal solution (y∗, x∗, τ∗, s∗, κ∗, θ∗ = 0) where τ∗ + κ∗ > 0. If τ∗ > 0 then it produces an
optimal solution pair for the original LP problem; if κ∗ > 0, then it produces a certificate to prove (at
least) one of the pair is infeasible.

(HSDLPsolver....m)
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Extensions to Solving SDP: Potential Function

For anyX ∈ intFp and (y, S) ∈ intFd, let parameter ρ > 0 and

ψn+ρ(X,S) := (n+ ρ) log(X • S)− log(det(X) · det(S)),

ψn+ρ(X,S) = ρ log(X • S) + ψn(X,S) ≥ ρ log(X • S) + n logn.

Then, ψn+ρ(X,S) → −∞ implies thatX • S → 0. More precisely, we have

X • S ≤ exp(
ψn+ρ(X,S)− n logn

ρ
).
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Primal-Dual SDP Alternative Systems

A pair of SDP has two alternatives under mild conditions

(Solvable) AX − b = 0

−AT y + C ⪰ 0,

bT y − C •X = 0,

y free, X ⪰ 0

or

(Infeasible) AX = 0

−AT y ⪰ 0,

bT y − C •X > 0,

y free, X ⪰ 0
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An Integrated Homogeneous System

The two alternative systems can be homogenized as one:

(HSDP ) AX − bτ = 0

−AT y + Cτ = s ≥ 0,

bT y − C •X = κ ≥ 0,

y free, X ⪰ 0, τ ≥ 0,

where the three alternatives are

(Solvable) : (τ > 0, κ = 0)

(Infeasible) : (τ = 0, κ > 0)

(All others) : (τ = κ = 0).
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Primal-Dual Interior-Point Algorithms for General Convex Optimization I

We now present an algorithm for solving more general convex optimization problems:

min f(x) s.t. x ≥ 0

where, with the notationX = diag(x), we look for a constrained root of

Xg(x) = 0, x ≥ 0, g(x) ≥ 0, where g(x) = ∇f(x).

Vector function g(x) would be a monotone mapping and the solution is also called the monotone
complemtarity point.

We assume that f meets a Scaled Lipschitz condition: for any point x > 0

∥X (g(x + d)− g(x)−∇g(x)d) ∥ ≤ βαd
T∇g(x)d, whenever ∥X−1d∥ ≤ α(< 1). (10)
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Examples of Scaled Lipschitz Functions

• f(x) = − log(x), g(x) = −1
x and g′(x) = 1

x2 : Not Lipschitz but Scaled Lipschitz

−1

x+ d
− −1

x
− d

x2
=

1

x

( ∞∑
p=2

(
−d
x

)p

)
≤ d2

x3
1

1− α
⇒ βα =

1

1− α
.

• f(x) = x log(x), g(x) = 1 + log(x) and g′(x) = 1
x : Not Lipschitz but Scaled Lipschitz.

• f(x) = ex, g(x) = ex and ex: Both Lipschitz and Scaled Lipschitz at Bounded x.
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Interior-Point Algorithms for General Convex Optimization II

We start from a solution xk > 0 and g(xk) > 0 and they approximately satisfy the equations

Xs = µke, s = g(x), for some µk > 0. (11)

Such a solution exists because it is the (unique) optimal solution for the problem with logarithmic barrier

min f(x)− µk
∑
j

log(xj).

We replace µk by µk+1 = (1− η√
n
)µk and aim to find a solution x > 0 such that g(x) > 0

Xs = µk+1e, s = g(x).

Starting from (xk, sk), we apply the Newton iteration using the auxiliary variables s = g(x)

(sk = g(xk)):

Xkds + Skdx = (1− η√
n
)µke −Xksk,

ds = ∇g(xk)dx.
(12)

One can analyze the quality of the new iterate x+ = xk + dx together with s+ = g(x+) when the
operator g(xk) is monotonic.
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There is also a Homogeneous and Self-Dual Algorithm for solving the monotone complementarity
problem, which is a basic solver of MOSEK. The algorithm produces a certificate if no complementarity
solution exists. (HOmcp.m, mcpfun.m and mcpJacobian.m of Chapter 15)
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Software Implementation

Cplex-Barrier IBM, GUROBI, COPT

SEDUMI: http://sedumi.mcmaster.ca/

MOSEK: http://www.mosek.com/products_mosek.html

SDDPT3: http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

DSDP (Dual Semidefinite Programming Algorithm): http://www.stanford.edu/~yyye/Col.html

CVX/ECOS: http://www.stanford.edu/~boyd/cvx

hsdLPsolver and more: http://www.stanford.edu/~yyye/matlab.html


