
Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 1

More First-Order Algorithms: Dual, Primal-Dual and “1.5-Order” Acceleration

Yinyu Ye

http://www.stanford.edu/~yyye

(Chapters 8, 9, 14, 15)

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 2

The Lagrangian Method with Multipliers (LMM)

We consider

f∗ := minx f(x) s.t. h(x) = 0, x ∈ X. (1)

Recall the Lagrangian function:
L(x, y) = f(x)− yT h(x).

and the dual function:
ϕ(y) := min

x∈X
L(x, y); (2)

and the dual problem

(f∗ ≥)ϕ∗ := maxy ϕ(y). (3)

In many cases, one can find y∗ of dual problem (3), a unconstrained optimization problem, then go
ahead to find x∗ using (2).

Although this would be guaranteed for only convex optimization, one can always construct a local
convex region constraint in (2) around a local minimizer so that the approach still works.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 3

The Gradient and Hessian of ϕ

Let x(y) be a minimizer of (2). Then

ϕ(y) = f(x(y))− yT h(x(y))

Thus,

∇ϕ(y) = ∇f(x(y))T∇x(y)− yT∇h(x(y))∇x(y)− h(x(y))

= (∇f(x(y))T − yT∇h(x(y)))∇x(y)− h(x(y))

= −h(x(y)).

Similarly, we can derive

∇2ϕ(y) = −∇h(x(y))
(
∇2

x L(x(y), y)
)−1∇h(x(y))T ,

where∇2
x L(x(y), y) is the Hessian of the Lagrangian function that is assumed to be positive definite at

any (local) minimizer.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 4

A Toy Example

minimize (x1 − 1)2 + (x2 − 1)2

subject to x1 + 2x2 − 1 = 0, 2x1 + x2 − 1 = 0.

L(x, y) = (x1 − 1)2 + (x2 − 1)2 − y1(x1 + 2x2 − 1)− y2(2x1 + x2 − 1).

x1 = 0.5y1 + y2 + 1, x2 = y1 + 0.5y2 + 1.

ϕ(y) = −1.25y21 − 1.25y22 − 2y1y2 − 2y1 − 2y2.

∇ϕ(y) =

 2.5y1 + 2y2 + 2

2y1 + 2.5y21 + 2

 ,

∇2ϕ(y) = −

 1 2

2 1

 2 0

0 2

−1  1 2

2 1

T

= −

 2.5 2

2 2.5



Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 5

A Fisher Market Example

minimize −5 log(2x1 + x2)− 8 log(3x3 + x4)

subject to x1 + x3 = 1, x2 + x4 = 1, x ≥ 0.

L(x(≥ 0), y) = −5 log(2x1 + x2)− 8 log(3x3 + x4)− y1(x1 + x3 − 1)− y2(x2 + x4 − 1).

Start from y0 > 0, at the kth step, compute xk+1 from

xk+1 = arg min
x≥0

L(x(≥ 0), yk),

then let

yk+1 = yk − 1

β
(Axk+1 − b).

(FisherexampleLMM.m of Chapter 14)

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 6

The Augmented Lagrangian Function

In both theory and practice, we often consider an Augmented Lagrangian function (ALF)

La(x, y) = f(x)− yT h(x) +
β

2
∥h(x)∥2,

which corresponds to an equivalent problem of (1):

f∗ := min f(x) + β
2 ∥h(x)∥

2 s.t. h(x) = 0, x ∈ X.

where a quadratic penalty term on constraint violation is added, besides the original linear penalty term.

Note that, although at feasibility the additional square term in objective is redundant, it helps to improve
convexity of the Lagrangian function

For the Fisher example, the function is

La(x(≥ 0), y)

= −5 log(2x1 + x2)− 8 log(3x3 + x4)− y1(x1 + x3 − 1)− y2(x2 + x4 − 1)

+β
2 ((x1 + x3 − 1)2 + (x2 + x4 − 1)2).

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 7

The Augmented Lagrangian Dual

Now the dual function:
ϕa(y) = min

x∈X
La(x, y); (4)

and the dual problem

(f∗ ≥)ϕ∗
a := max ϕa(y). (5)

Note that the dual function approximately satisfies 1
β -Lipschitz condition (see Chapter 14 of L&Y).

For the convex optimization case, say h(x) = Ax− b, we have

∇2La(x, y) = ∇2f(x) + β(ATA).

Therefore, the Hessian of the dual would be more likely be Positive Definite so that the convergence
speed may be accelerated.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 8

The Augmented Lagrangian Method with Multipliers (ALMM)

Start from any (x0 ∈ X, y0), we compute a new iterate pair

xk+1 = arg min
x∈X

La(x, y
k), and yk+1 = yk − βh(xk+1).

The computation of x is used to calculate the gradient vector of ϕa(y), which is a steepest ascent
direction.

The method converges just like the SDM, because the dual function satisfies 1
β -Lipschitz condition.

Other SDM strategies may be adapted to update y (the BB, ASDM, Conjugate, Quasi-Newton ...).

One drawback of ALMM is computing of x can be much more complicated!

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 9

Alternating Direction Method with Multipliers (ADMM) with Two-Blocks

Here we consider structured problem

min f1(x1) + f2(x2) s.t. A1x1 +A2x2 = b, x1 ∈ X1, x2 ∈ X2.

Consider

L(x1, x2, y) = f1(x1) + f2(x2)− yT (A1x1 +A2x2 − b) +
β

2
∥A1x1 +A2x2 − b∥2.

Then, for any given (xk1 , x
k
2 , y

k), we compute a new iterate

xk+1
1 = arg minx1∈X1

L(x1, x
k
2 , y

k),

xk+1
2 = arg minx2∈X2 L(x

k+1
1 , x2, y

k),

yk+1 = yk − β(A1x
k+1
1 +A2x

k+1
2 − b).

Again, we can prove that the iterates converge with the same speed for any convex objectives.

The ADMM method resembles the Block Coordinate Descent Method (BCD) in computing x = (x1; x2),
which produces an inexact dual gradient. However, the separate computation of (x1; x2) would be
much easier!

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 10

Direct Application of ADMM to Dual Linear Programming I

Consider the dual LP
maximize(y,s) bT y

s.t. AT y + s = c, s ≥ 0.

The augmented Lagrangian function would be

L(y, s, x) = −bT y− xT (AT y + s− c) +
β

2
∥AT y + s− c∥2,

where β is a positive parameter, and x is the multiplier vector.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 11

Direct Application of ADMM to Dual Linear Programming II

The ADMM for the dual is straightforward: starting from any y0, s0 ≥ 0, and multiplier x0,

• Update variable y:
yk+1 = arg min

y
L(y, sk, xk);

• Update slack variable s:
sk+1 = arg min

s≥0
L(yk+1, s, xk);

• Update multipliers x:
xk+1 = xk − β(AT yk+1 + sk+1 − c).

Note that the updates of y is a least-squares problem with constant matrix, and the update of s has a
simple close form. (Also note that x would be non-positive at the end, since we changed maximization
to minimization of the dual.) (ADMMDualLP.m of Chapter 14)

To split y into multi blocks and update cyclically in random order?

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 12

ADMM for Solving the Fisher Example

minimize −5 log(2x1 + x2)− 8 log(3x3 + x3)

subject to x1 + x3 = 1, x2 + x4 = 1, x ≥ 0.

minimize −5 log(u1)− 8 log(u2)

subject to x1 + x3 − 1 = 0, x2 + x4 − 1 = 0,

2x1 + x2 − u1 = 0, 3x3 + x4 − u2 = 0,

x− s = 0, s ≥ 0.

L(x, u, s(≥ 0), y) = −5 log(u1)− 8 log(u2)− y1(x1 + x3 − 1)− y2(x2 + x4 − 1)

−y3(2x1 + x2 − u1)− y4(3x3 + x4 − u2)− yT5:8(x− s)+

β
2 [(x1 + x3 − 1)2 + (x2 + x4 − 1)2 + (2x1 + x2 − u1)

2 + (3x3 + x4 − u2)
2 + ∥x− s∥2].

Let the first block primal variables be x and the second be (u, s). Then start from y0 repeat the ADMM
steps. Note that all primal variables have close-form solutions (FisherexanpleADMM.m of Chapter 14).

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 13

ADMM for SNL

Recall that SNL can be represented as a quartic polynomial minimization and it is a nonconvex problem.

Applying the variable-splitting, it becomes constrained bi-convex minimization problem

minxi,zi

∑
(i,j)∈Nx

((xi − xj)
T (zi − zj)− d2ij)

2 +
∑

(k,j)∈Na
((ak − xj)

T (ak − zj)− d̂2kj)
2

s.t. xi = zi, ∀i.

The augmented Lagrangian function would be

La(xi, zi, yi)

=
∑

(i,j)∈Nx
((xi − xj)

T (zi − zj)− d2ij)
2 +

∑
(k,j)∈Na

((ak − xj)
T (ak − zj)− d̂2kj)

2

−
∑

i y
T
i (xi − zi) +

β
2

∑
i ∥xi − zi∥2.

Then one can treat xi’s as the first block of variables and zi’s the second block, and apply ADMM.

Minimizer x’s of the Lagrangian function, when zi, yi’s are fixed, is the solution of a strongly convex
quadratic minimization.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 14

The ADMM with Three Blocks?

What about ADMM for

min f1(x1) + f2(x2) + f3(x3) s.t. A1x1 +A2x2 +A3x3 = b,

where the Lagrangian function

L(x1, x2, x3, y) = f1(x1) + f2(x2) + f3(x3)− yT (A1x1 +A2x2 +A3x3 − b)

+β
2 ∥A1x1 +A2x2 +A3x3 − b∥2.

Then, for any given (xk1 , x
k
2 , x

k
3 , y

k), we compute a new iterate

xk+1
1 = arg minx1 L(x1, x

k
2 , x

k
3 , y

k),

xk+1
2 = arg minx2 L(x

k+1
1 , x2, x

k
3 , y

k),

xk+1
3 = arg minx3 L(x

k+1
1 , xk+1

2 , x3, y
k),

yk+1 = yk − β(A1x
k+1 +A2x

k+1
2 +A3x

k+1
3 − b).

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 15

The Direct Extension does Not Converge

Theorem 1 There existing an example where the direct extension of ADMM of three blocks is not
necessarily convergent for any choice of β. Moreover, for any randomly generated initial point, ADMM
diverges with probability one.

The problem with unique solution x∗ = 0:

min 0 · x1 + 0 · x2 + 0 · x3 s.t.


1 1 1

1 1 2

1 2 2




x1

x2

x3

 = 0,

Does the smaller step-size (1 > γ > 0) dual update work? Answer: it remains divergent when solving

min 0 · x1 + 0 · x2 + 0 · x3 s.t.


1 1 1

1 1 1 + γ

1 1 + γ 1 + γ




x1

x2

x3

 = 0,

(ADMMdiverexm.m of Chapter 14)

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 16

The Algorithmic Mapping is Not Contracting

The ADMM with β = 1 is a linear matrix mapping

3 0 0 0 0 0

4 6 0 0 0 0

5 7 9 0 0 0

1 1 1 1 0 0

1 1 2 0 1 0

1 2 2 0 0 1



 xk+1

yk+1

 =



0 −4 −5 1 1 1

0 0 −7 1 1 2

0 0 0 1 2 2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



 xk

yk

 .

which can be reduced to 
xk+1
2

xk+1
3

yk+1

 = M


xk
2

xk
3

yk

 ,

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 17

where

M =
1

162



144 −9 −9 −9 18

8 157 −5 13 −8

64 122 122 −58 −64

56 −35 −35 91 −56

−88 −26 −26 −62 88


.

But the spectral radius of the matrix, ρ(M) = 1.0087 > 1, which implies that the mapping is not a contraction.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 18

Multi-Block Problems and ADMM

In general, consider a convex optimization problem

minx∈RN f1(x1) + · · ·+ fn(xn),

s.t. Ax := A1x1 + · · ·+Anxn = b,

xi ∈ Xi ⊂ Rdi , i = 1, . . . , n.

(6)

L(x1, . . . , xn; y) =
∑
i

fi(xi)− yT (
∑
i

Aixi − b) +
β

2
∥
∑
i

Aixi − b∥2

The direct Cyclic Extension Multi-block ADMM:

x1 ←− arg minx1∈X1 L(x1, . . . , xn; y),
...

xn ←− arg minxn∈Xn L(x1, . . . , xn; y),

y←− y− β(Ax− b),

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 19

Randomly Permuted ADMM

Random-Permuted ADMM (RP-ADMM): in each round, draw a random permutation
σ = (σ(1), . . . , σ(n)) of {1, . . . , n}, and use the

Update Order : xσ(1) → xσ(2) → · · · → xσ(n) → y.

• This is equivalent to a random sample without replacement so it costs nothing.

• Interpretation: Force “absolute fairness” among blocks.

• Simulation Test Result on solving linear equations: always converges!

Any theory behind the success?

We produced a positive result for ADMM on solving the system of linear equations.

(ADMMrandperm.m of Chapter 14)

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 20

Random Permuted ADMM for Linear Systems

Consider solving a nonsingular square system of linear equations (fi = 0, ∀i).

minx∈RN 0,

s.t. A1x1 + · · ·+Anxn = b,

RP-ADMM generates zk , an r.v., depending on

ξk = (σ1, . . . , σk), zi = Mσi
zi−1, i = 1, ..., k,

where σi is the random permutation at i-th round.

Denote the expected iterate ϕk := Eξk
(zk)

Theorem 2 The expected output converges to the unique solution of the linear system equations any
integerN ≥ 1.

Remark: Expected convergence ̸= convergence, but is a strong evidence for convergence for solving
most problems, e.g., when iterates are bounded.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 21

The Average Mapping is a Contraction

• The update equation of RP-ADMM is
zk+1 = Mσz

k,

whereMσ ∈ R2N×2N depend on σ.

• Define the expected update matrix as

M = Eσ(Mσ) =
1

n!

∑
σ

Mσ.

Theorem 3 The spectral radius ofM , ρ(M), is strictly less than 1 for any integerN ≥ 1.

Remark: ForA in the divergence example, ρ(Mσ) > 1 for any σ
– Averaging Helps, a lot.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 22

RP-ADMM for Linear Constrained Convex QP

In general, consider a convex quadratic optimization problem

minx∈RN cT1 x1 + · · ·+ cTn xn + 1
2 x

TQx,

s.t. Ax := A1x1 + · · ·+Anxn = b.
(7)

Theorem 4 Under some technical assumptions, the expected output of randomly permuted ADMM
converges to the solution of the original problem for any integerN ≥ 1.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 23

Extensions and Research Directions (Suggested Optional Project)

• Non-square system of linear equations – “yes”

• Non-separable convex quadratic minimization with linear equality constraints – “yes”

• Convergence w.h.p.??

• Generalize to inequality systems or convex optimization at large??

• Generalize to non-convex optimization??

• ADMM where, in every iteration, each block are randomly assembled without replacement??

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 24

Software Implementation Based on ADMM

SCS: http://www.stanford.edu/~boyd/cvx for CLP

ABIP+: https://github.com/sepvar/ABIP for solving LP

RACQP: https://github.com/kmihic/RACQP for quadratic minimization with mixed continuous
and integer decision variables.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 25

Primal-Dual Hybrid Gradient (PDHG) Method

For the standard-form LP:
(Primal) min c⊤x s.t. Ax = b , x ≥ 0

Instead of directly dealing with the original problem, we deal with the primal-dual form to avoid doing
expensive projections onto the feasible set {x : Ax = b, x ≥ 0}. With the

(Dual) max b⊤ y s.t. A⊤y ≤ c

we construct Lagrangian:

(Primal-dual) min
x≥0

max
y

L(x, y) := c⊤x + b⊤y− x⊤A⊤y

Saddle point: The (x⋆, y⋆) with x⋆ ≥ 0 is a saddle point of L(x, y) if for any x ≥ 0 and y:
L(x⋆, y) ≤ L(x⋆, y⋆) ≤ L(x, y⋆)

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 26

Figure 1: Saddle point

Classical Gradient Descent-Ascent:

xk+1 = Projx≥0

(
xk − η

(
c−A⊤yk

))
=

(
xk − η

(
c−A⊤yk

))+
yk+1 = yk + η

(
b−Axk

)

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 27

Gradient Descent-Ascent May Not Converge

For example, in the saddle point problem maxx≥0 miny xy, we have closed form of each iteration: xk

yk

 =

 1 η

−η 1

k  x0

y0



The determinant of

 1 η

−η 1

 is always strictly larger than 1 no matter how small η is, which

means this approach never converges.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 28

Primal-Dual Hybrid Gradient (PDHG) Method

xk+1 = Projx≥0

(
xk − η

(
c−A⊤yk

))
yk+1 = yk + η

(
b−A(2xk+1 − xk)

)
The update of yk uses the idea of momentum or two-point mapping.

For the small saddle point problem maxx≥0 miny xy, we also have closed form of each iteration: xk

yk

 =

 1 η

−η 1− 2η2

k  x0

y0



The modulus of eigenvalues of

 1 η

−η 1− 2η2

 are smaller than 1 if η < 1, so PDHG

converges.

“A first-order primal-dual algorithm for convex problems with applications to imaging,” Chambolle/Pock,
Journal of mathematical imaging and vision, 2011.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 29

Trajectory of PDHG forminx maxy xy

Figure 2: Final iterates of PDHG . Figure courtesy Lu.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 30

Average Trajectory of PDHG forminx maxy xy

Figure 3: Average iterates of PDHG . Figure courtesy Lu.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 31

Restart Trajectory of PDHG forminx maxy xy

Figure 4: Restarted iterates of PDHG . Figure courtesy Lu.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 32

PHDG with Restarts

Restart Scheme: Fixed frequency restart, adaptive restart ...

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 33

Restart Strategies I

Fixed Frequency Restart:

Suppose α and ∥A∥ are known to the user, restart the algorithm every⌈
8∥A∥
α

⌉
iterations

Adaptive Restart:

Restart the algorithm whenever the normalized duality gap has sufficient decay

ρ
(∥∥̄zn,t − zn,0

∥∥ ; z̄n,t) ≤ 0.5 · ρ
(∥∥zn,0 − zn−1,0

∥∥ ; zn,0) .

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 34

Restart Strategies II

With either of the above restart schemes, we have the following linear convergence guarantee:

Theorem 5 (Applegate et al. 2023) The restarted PDHG finds a solution z such that dist(z, Z⋆) ≤ ε within

O

(
∥A∥
α
· log

(
1

ε

))
iterations.

An important research question: How to explain and understand α? And how to improve α? [see
Xiong/Freund arXiv:2312.14774, Lu/Yang arXiv:2307.03664, Hinders arXiv:2309.03988]

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 35

Numerical Experiments

LP relaxation of a quadratic assignment problem:

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 36

FOMs on GPU I

FOM requires only matrix-vector multiplication:

1. Matrix-vector multiplication is very suitable for utilizing modern hardware and distributed
computation

2. Matrix factorization free. The memory usage is relatively low.

FOM is particularly good at solving large instances

With help of GPU, recent research shows PDHG is fast when the problem becomes large, see

• “cuPDLP. jl: A GPU implementation of restarted primal-dual hybrid gradient for linear programming
in Julia”, Lu/Yang, arXiv:2311.12180, 2023.

• “cuPDLP-C: A Strengthened Implementation of cuPDLP for Linear Programming by C language,”
Lu et al. arXiv:2312.14832, 2023.

“Accelerating Low-Rank Factorization-Based Semidefinite Programming Algorithms on GPU” Han et al.,
arXiv:2407.15049.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 37

Figure 5: Geometric average runtime on problems from LP relaxations of MIPLIB 2017 (termination
tolerance 10−4)

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 38

FOMs on GPU II

The SDP FOMs, based on ALMM and ADMM, also show dramatic speedup using GPU:

Figure 6: Solving a classic Max-Cut SDP relaxation Problems

Many ongoing projects and more improvements are expected!

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 39

1.5-Order Algorithm: Quasi-Newton Method I

xk+1 = xk − Sk∇f(xk),

for a symmetric matrix Sk with a step-size αk . When Sk can be a nonnegative diagonal matrix, then it
is the scaled steepest descent method we described earlier. In general, when Sk is positive definite,
direction−Sk∇f(xk) is a descent direction (why?).

For convex quadratic minimization, the linear convergence rate then depends on λmax and λmin

represent the largest and smallest eigenvalues of a matrix. Thus, Sk can be viewed as a
Preconditioner–typically an approximation of the Hessian matrix inverse, and can be learned from a
regression model: let pk = xk+1 − xk and
qk := g(xk+1)− g(xk) = Q(xk+1 − xk) = Qpk, k = 0, 1, We actually learnQ−1 from
Q−1qk = pk, k = 0, 1, ... The process start withHk , k = 0, 1, ..., where the rank ofHk is k, that
is, we each step lean a rank-one update: givenHk−1, qk, pk we solve
(h0 ·Hk−1 + hk(hk)T)qk = pk for vector hk . Then after n iterations, we build upHn = Q−1.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 40

1.5-Order Algorithm: Quasi-Newton Method II

One can simply let

xk+1 = xk − αk(
n− k

n
I +

k

n
Hk)g(xk),

which is similar to the Conjugate Gradient method.

A popular method, BFGS, is given as follows (thre are multiple typos in the text): start from x0 and set
S0 = I , let

dk = −Skg(xk) = −Sk∇f(xk),

and iterate
xk+1 = xk + αkdk.

Then update

Sk+1 = Sk +

(
1 +

(qk)TSkqk

(pk)T qk

)
pk(pk)T

(pk)T qk
− pk(qk)TSk + Skqk(pk)T

(pk)T qk
.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 41

1.5-Order Algorithm: The Ellipsoid Method

Ellipsoids are just sets of the form

E = {y ∈ Rm : (y− ȳ)TB−1(y− ȳ) ≤ 1}

where ȳ ∈ Rm is a given point (called the center) andB is a symmetric positive definite matrix of
dimensionm. We can use the notation ell(̄y, B) to specify the ellipsoid E defined above. Note that

vol(E) = (detB)1/2vol(S(0, 1)).

where S(0, 1) is the unit sphere in Rm.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 42

A Half-Ellipsoid

By a Half-Ellipsoid of E, we mean the set

1
2Ea := {y ∈ E : aT y ≤ aT ȳ}

for a given non-zero vector a ∈ Rm where ȳ is the center of E – the intersection of the ellipsoid and a
plane cutting through the center.

We are interested in finding a new ellipsoid containing 1
2Ea with the least volume.

• How small could it be?

• How easy could it be constructed?

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 43

The New Containing Ellipsoid

The new ellipsoid E+ = ell(̄y+, B+) can be constructed as follows. Define

τ :=
1

m+ 1
, δ :=

m2

m2 − 1
, σ := 2τ.

And let
ȳ+ := ȳ− τ

(aTBa)1/2
Ba,

B+ := δ

(
B − σ

BaaTB

aTBa

)
.

Theorem 6 Ellipsoid E+ = ell(̄y+, B+) defined as above is the ellipsoid of least volume containing
1
2Ea. Moreover,

vol(E+)

vol(E)
≤ exp

(
− 1

2(m+ 1)

)

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 44

Figure 7: The least volume ellipsoid containing a half ellipsoid

(Ellip...LP...m of Chapter 10)

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 45

The Ellipsoid Method for Minimizing a Convex Function

Consider minx f(x):

• Initialization: Set the initial ellipsoid (ball) asB0 = 1
R2 I centered at an initial solution x0 whereR

is sufficiently large such it contains an optimal solution.

• For k = 0, 1, . . . do

If not terminated:

– Compute the (sub)gradient vector∇f(xk),
– Let the cutting-plane be {x : ∇f(xk)T x ≤ f(xk)T xk} and form the half ellipsoid; and update

xk andBk as described earlier.

(Ellip...QP...m of Chapter 10)

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 46

1.5-Order Algorithm: ADAM - Adaptive Learning-Rate and Moment Estimation

The most popular method using Stochastic Gradient ĝk at the kth iteration such as

dk = (1− β1)̂g
k + β1d

k−1

sk = (1− β2)̂g
k. ∗ ĝk + β2s

k−1

xk+1 = xk − αk Diag(sk)−1/2dk.

for some parameters β1 and β2.

One can see that the Scaling Matrix is Diagonal and Positive Definite.

ADAMW: update by adding the regularization 0, 5λ∥x∥2 to the loss function:

xk+1 = xk − αk(Diag(sk)−1/2dk + λxk).

ADAM_mini: according to the Block-Diagonal Structure of Hessian, each block use the same
learning-rate/scaling-weight to save memories.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 47

The Gradient Method (GM) with Online-Scaling

Consider unconstrained convex optimization problem

f∗ = min
x∈Rn

f(x)

• f(x) is L-smooth and µ-strongly convex (for convex QP, they are the max and min e-values of
Hessian)

f(y) +∇f(y)⊤(x− y) + µ
2 ∥x− y∥2 ≤ f(x) ≤ f(y) +∇f(y)⊤(x− y) + L

2 ∥x− y∥2

• Recall gradient descent with 1/L stepsize: xk+1 = xk − 1
L∇f(x

k) gives linear convergence

f(xk+1)− f(x∗) ≤ (1− µ
L)(f(x

k)− f(x∗))

• where κ = L/µ is known as the condition number and greatly affects practical algorithm
performance

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 48

Effect of Condition Number on Gradient Descent

Condition number characterizes the heterogeneity of the optimization landscape:

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

Gradient Descent on Well-Conditioned Quadratic
Gradient Descent Path
Start
End
Optimal Solution

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

Gradient Descent on Ill-Conditioned Quadratic

Figure 8: Gradient descent on left: x2+ y2 and right: x2+100y2. A highly heterogeneous landscape
slows down convergence

A large condition number implies slow convergence for GM. A standard way of alleviation is
preconditioning.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 49

Preconditioning and Optimal Preconditioner

Preconditioning reduces the heterogeneity of the landscape by applying a scaling matrix S, known as
preconditioner, to the GM update

xk+1 = xk − S∇f(xk).

– Applying an affine transformation to the problem to get an improved condition number κS < κ

– Given a set of candidate scaling matrices S , the optimal preconditioner S∗ solves

κ∗ = min
S∈S

κS = min
κ

κ subject to 1
κI ⪯ S∇2f(x)S ⪯ I for all x

and optimally scaled (preconditioned) gradient descent xk+1 = xk − S∗∇f(xk) gives

f(xk+1)− f(x∗) ≤ (1− 1
κ∗)(f(x

k)− f(x∗))

andO(κ∗ log(1/ε)) complexity.

Optimal scaling matrix S∗, even restricted to diagonal matrices, can greatly improve convergence.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 50

0 20 40 60 80 100

Iteration
10 6

10 5

10 4

10 3

10 2

10 1

100

Fu
nc

tio
n

Va
lu

e
Ga

p
(lo

g
sc

al
e) Function Value Gap: Original

Original

0 20 40 60 80 100

Iteration
10 6

10 5

10 4

10 3

10 2

10 1

100 Function Value Gap: Preconditioned
Preconditioned

Figure 9: Optimal scaling matrix greatly improves the convergence of gradient descent

However, even for a quadratic function, finding S∗ requires solving an SDP of dimension n.

Is it possible to achieveO(κ∗ log(1/ε)) convergence without even computing S∗?

Answer: although we don’t know S∗, we can learn it on the fly with online learning.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 51

Online Learning Preliminaries

Consider a sequential game with a Principal and an Agent. At round k,

• Principal makes decision Sk

• Agent gives Principal feedback ℓk(Sk)

• Principal adjusts based on the ℓk(Sk) using online learning algorithmA

If the feedbacks {ℓk(Sk)} satisfy certain regularity/truthful conditions, online learning algorithms
generate a sequence of {Sk} such that the cumulative regret

K∑
k=1

ℓk(S
k)− min

S∈S

K∑
k=1

ℓk(S) ≤ ρK

and ρK is sublinear inK : limK→∞ ρK/K = 0.

– We can do as well as the optimal hindsight on average.

– GM fits in the framework and can be viewed as such a collaborative game!

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 52

Gradient Descent as a Collaborative Game

Consider a sequential game with a Scaling Planner (SP) and an Gradient Executioner (GE)

• Scaling Planner decides a scaling matrix Sk : xk+1 = xk − Sk∇f(xk)

• Gradient Executioner gives SP feedback ℓk(Sk) (?)

• SP adjusts based on the ℓk(Sk) using online learning algorithmA (?)

Q1. What feedback should we choose? Since we want to get fast linear convergence:

f(xk+1)− f(x∗) ≤ (1− 1
κ∗)(f(x

k)− f(x∗))

A very natural choice is the linear convergence rate after one step:

ℓx(S) =
f(x−S∇f(x))−f(x∗)

f(x)−f(x∗)

Q2. How to update S? (Online) Gradient Descent suffices:

Sk+1 = Sk − η∇ℓk(Sk)

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 53

Online Scaled Gradient Method (OSGM)

At iteration k

• SP passes matrix Sk to GE: xk+1 = xk − Sk∇f(xk)

• GE gives player feedback ℓk(Sk) = f(xk−Sk∇f(xk))−f(x∗)
f(xk)−f(x∗)

• SP performs the OGD step

Sk+1 = Sk − η∇ℓk(Sk) = Sk − η∇f(xk−Sk∇f(xk))∇f(xk)⊤

f(xk)−f(x∗)

Lemma 1 ℓx(S) is 2L2-smooth, convex and lower bounded by 0.

Lemma 2 For smooth, convex, and lower-bounded losses, online gradient descent generates a sequence
of scaling matrices {Sk} such that

1
K

∑K
k=1 ℓk(S

k)− minS∈S
1
K

∑K
k=1 ℓk(S) ≤ O(

1√
K
).

The SP is competitive with any fixed scaling matrix, including the hindsight or optimal S∗.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 54

Convergence Analysis

Convergence analysis in three lines:
By regret bound:

1
K

∑K
k=1 ℓk(S

k) ≤ minS∈S
1
K

∑K
k=1 ℓk(S) +O(

1√
K
)

By definition and arithmetic-geometric mean inequality:

f(xK+1)−f(x∗)
f(x1)−f(x∗) =

∏K
k=1

f(xk+1)−f(x∗)
f(xk)−f(x∗)

≤
(

1
K

∑K
k=1 ℓk(S

k)
)K

≤
(
minS∈S

1
K

∑K
k=1 ℓk(S) +

O(1)√
K

)K
minS∈S

1
K

∑K
k=1 ℓk(S) ≤

1
K

∑K
k=1 ℓk(S

∗) ≤ 1− O(1)
κ∗ and the convergence rate is

(1− 1
κ∗ + O(1)√

K
)K ≈ (1− 1

κ∗)
K .

We don’t know S∗, but we perform as well as it asK is large enough.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 55

More Online Scaled Gradient Method (OSGM)

At iteration k

• GE gives player feedback ℓk(Sk) = f(xk−Sk∇f(xk))−f(x∗)
f(xk)−f(x∗)

• SP performs the OGD step

Sk+1 = Sk − η∇ℓk(Sk) = Sk − η∇f(xk−Sk∇f(xk))∇f(xk)⊤

f(xk)−f(x∗)

• SP passes matrix Sk+1 to GE : xk+1 = xk − Sk+1∇f(xk)

Lemma 3 For smooth, convex, and lower-bounded losses, online gradient descent generates a sequence
of scaling matrices {Sk} such that

1
K

∑K
k=1 ℓk(S

k)− minS∈S
1
K

∑K
k=1 ℓk(S) ≤ O(

1
K).

SP becomes more competitive:

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 56

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 57

Other Convergence Properties of OSGM

Theorem 7 If f(x∗) is unknown, then OSGM hasO(κ∗ log2(1/ε)) complexity

Theorem 8 If S = Rn×n and f(x) has Lipschitz continuous Hessian, then OSGM has local superlinear
convergence: O((1√

K
)K).

Theorem 9 If S = Rn×n and under other regularity conditions, the scaling matrices {Sk} generated by
OSGM converge to (∇2f(x∗))−1.

Similar results appeared in Quasi-Newton methods, but the analysis in OSGM is much simpler.

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 58

Numerical Experiments

Linear least squares f(x) = 1
2∥Ax− b∥2

Three typical examples of S : scalar times identity, diagonal matrix, and full matrix

0 100 200 300 400 500 600 700 800
Iteration

10 20

10 17

10 14

10 11

10 8

10 5

10 2

101

Fu
nc

tio
n

Va
lu

e
Ga

p

OSGM-scalar
Gradient Descent

0 100 200 300 400 500 600 700 800
Iteration

10 20

10 17

10 14

10 11

10 8

10 5

10 2

101

Fu
nc

tio
n

Va
lu

e
Ga

p

OSGM-diag
Gradient Descent

0 100 200 300 400 500 600 700 800
Iteration

10 20

10 17

10 14

10 11

10 8

10 5

10 2

101

Fu
nc

tio
n

Va
lu

e
Ga

p

OSGM-full
Gradient Descent

Figure 10: Convergence of OSGM. Left: diagonal scaling matrix; right: full scaling matrix

A larger candidate set S gives a more competitive S∗.

(osgm...m of Chapter 8 or 10)

Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #04 59

Extensions and Future Directions

• “Gao, W., Chu, Y. C., Ye, Y., & Udell, M. (2024). Gradient Methods with Online Scaling. arXiv
preprint arXiv:2411.01803.”

Future work:

• Can the convergence be further accelerated toO(
√
κ∗ log(1/ε)) with momentum directions?

• How to reduce variances with reporting stochastic gradient descent?

• How to do constrained optimization?

• What happens in a nonconvex landscape?

• Connection with Quasi-Newton methods?

• Generalization to other, such as high-order, iterative methods?

