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Introduction

Optimization algorithms tend to be iterative procedures. Starting from a given point x0, they generate a
sequence {xk} of iterates (or trial solutions) that converge to a “solution” – or at least they are designed
to be so.

Recall that scalars {xk} converges to 0 if and only if for all real numbers ε > 0 there exists a positive
integerK such that

|xk| < ε for all k ≥ K.

Then {xk} converges to solution x∗ if and only if {∥xk − x∗∥} converges to 0.

We study algorithms that produce iterates according to

• well determined rules–Deterministic Algorithm

• random selection process–Randomized Algorithm.

The rules to be followed and the procedures that can be applied depend to a large extent on the
characteristics of the problem to be solved.
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The Meaning of “Solution”

What is meant by a solution may differ from one algorithm to another.

In some cases, one seeks a local minimum; in some cases, one seeks a global minimum; in others, one
seeks a first-order and/or second-order stationary or KKT point of some sort as in the method of
steepest descent discussed below.

In fact, there are several possibilities for defining what a solution is. Once the definition is chosen, there
must be a way of testing whether or not an iterate (trial solution) belongs to the set of solutions. For
example, the residuals of the KKT conditions converge to zero.
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Generic Algorithms for Minimization and Global Convergence Theorem

A Generic Algorithm: A point to set mapping in a subspace ofRn.

Theorem 1 (Page 222, L&Y) Let A be an “algorithmic mapping” defined over set X , and let solution
sequence {xk}, starting from a given point x0, be generated from current or earlier point(s):

xk+1 ∈ A(xk), or xk+1 ∈ A(xk, xk−1, ...).

Let a solution set S ⊂ X be given, and suppose

i) all points {xk} are in a compact set;

ii) there is a continuous (merit) function z(x) such that if x ̸∈ S, then z(y) < z(x) for all y ∈ A(x);
otherwise, z(y) ≤ z(x) for all y ∈ A(x);

iii) the mapping A is closed at points outside S ( xk → x̄ ∈ X and A(xk) = yk → ȳ imply
ȳ ∈ A(̄x)).

Then, the limit of any convergent subsequences of {xk} is a solution in S.
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Descent Direction Methods

In this case, merit function z(x) = f(x), that is, just the objective itself.

(A1) Test for convergence If the termination conditions are satisfied at xk , then it is taken (accepted) as a
“solution.” In practice, this may mean satisfying the desired conditions to within some tolerance. If
so, stop. Otherwise, go to step (A2).

(A2) Compute a search direction, say dk ̸= 0. This might be a direction in which the function value is
known to decrease within the feasible region.

(A3) Compute a step-size or learning rate, say αk such that

f(xk + αkdk) < f(xk).

This may necessitate a one-dimensional (or line) search/optimization.

(A4) Define the new iterate by setting
xk+1 = xk + αkdk

and return to step (A1).
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Algorithm Complexity and Speeds I

The intrinsic computational cost/time of an algorithm depends on

• number of decision variables n: cost of the inner product of two vectors, cost of solving system of
linear equations

• number of constraintsm: cost of the product of a matrix and a vector, cost of the product of two
matrices

• number of nonzero data entries NNZ: sparse matrix/data representation

• the desired accuracy 0 ≤ ϵ < 1: the cost could be propotional to 1
ϵ2 ,

1
ϵ , log( 1ϵ ), log[log( 1ϵ )], ...

• problem difficulty or complexity measures such as the Lipschiz constant β, the condition number of
a matrix, etc



Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #03 7

Algorithm Complexity and Speeds II

• Finite versus infinite convergence. For some classes of optimization problems there are algorithms
that obtain an exact solution—or detect the unboundedness–in a finite number of iterations.

• Polynomial-time versus exponential-time. The solution time grows, in the worst-case, as a function
of problem sizes (number of variables, constraints, accuracy, etc.).

• Convergence order and rate. If there is a positive numberγ such that

∥xk − x∗∥ ≤ O(1)

kγ
∥x0 − x∗∥,

then {xk} converges arithmetically to x∗ with power γ. If there exists a number γ ∈ [0, 1) such
that

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥ (⇒ ∥xk − x∗∥ ≤ γk∥x0 − x∗∥),

then {xk} converges geometrically or linearly to x∗ with rate γ. If there exists a number γ ∈ [0, 1)

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥2 after γ∥xk − x∗∥ < 1

then {xk} converges quadratically to x∗ (such as
{
( 12 )

2k
}
).
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Algorithm Classes

Depending on information of the problem being used to create a new iterate, we have

(a) Zero-order algorithms. Popular when the gradient and Hessian information are difficult to obtain,
e.g., no explicit function forms are given, functions are not differentiable, etc.

(b) First-order algorithms. Most popular now-days, suitable for large scale data optimization with low
accuracy requirement, e.g., Machine Learning, Statistical Predictions...

(c) Second-order algorithms. Popular for optimization problems with high accuracy need, e.g., some
scientific computing, etc.
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One-Variable Optimization: Golden Section (Zero Order) Method

Assume that the one variable function f(x) is Unimodel in interval [a b], that is, for any point
x ∈ [ar bl] such that a ≤ ar < bl ≤ b, we have that f(x) ≤ max{f(ar), f(bl)}. How do we
find x∗ within an error tolerance ϵ?

0) Initialization: let xl = a, xr = b, and choose a constant 0 < r < 0.5;

1) Let two other points x̂l = xl + r(xr − xl) and x̂r = xl + (1− r)(xr − xl), and evaluate
their function values.

2) Update the triple points xr = x̂r, x̂r = x̂l, xl = xl if f(x̂l) < f(x̂r); otherwise update the
triple points xl = x̂l, x̂l = x̂r, xr = xr ; and return to Step 1.

In either cases, the length of the new interval after one golden section step is (1− r). If we set
(1− 2r)/(1− r) = r, then only one point is new in each step and needs to be evaluated. This give
r = 0.382 and the linear convergence rate is 0.618.
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Figure 1: Illustration of Golden Section
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One-Variable Optimization: Bisection (First Order) Method

For a one variable problem, an KKT point is the root of g(x) := f ′(x) = 0.

Assume we know an interval [a b] such that a < b, and g(a)g(b) < 0. Then we know there exists an
x∗, a < x∗ < b, such that g(x∗) = 0; that is, interval [a b] contains a root of g. How do we find x
within an error tolerance ϵ, that is, |x− x∗| ≤ ϵ?

0) Initialization: let xl = a, xr = b.

1) Let xm = (xl + xr)/2, and evaluate g(xm).

2) If g(xm) = 0 or xr − xl < ϵ stop and output x∗ = xm. Otherwise, if g(xl)·g(xm) > 0 set
xl = xm; else set xr = xm; and return to Step 1.

The length of the new interval containing a root after one bisection step is 1/2 which gives the linear
convergence rate is 1/2, and this establishes a linear convergence rate 0.5.
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Figure 2: Illustration of Bisection

K-section in Parallel?
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One-Variable Optimization: Newton’s (Second Order) Method

For functions of a single real variable x, the KKT condition is g(x) := f ′(x) = 0.When f is twice
continuously differentiable then g is once continuously differentiable, Newton’s method can be a very
effective way to solve such equations and hence to locate a root of g. Given a starting point x0,
Newton’s method for solving the equation g(x) = 0 is to generate the sequence of iterates from
one-point mapping:

xk+1 = xk − g(xk)

g′(xk)
.

The iteration is well defined provided that g′(xk) ̸= 0 at each step.

For strictly convex function, Newton’s method has a linear convergence rate and, when the point is
“close” to the root, the convergence becomes quadratic, which leads to the iterations bound of
log[log( 1ϵ )].
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Figure 3: Illustration of Newton’s Method
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Hybrid of Bisection and Newton

Consider finding a root in (0, R). When a containing interval with qudratic convergence becomes wider
and wider at a geometric rate if the root is increased, we can construct a sequence of points:

x̂0 = ϵ, x̂1 = (1 + 1/α)x̂0, ..., and x̂j = (1 + 1/α)x̂j−1, ...

until x̂j = x̂J ≥ R. Obviously the total number of points, J , of these points is bounded by
O(log(R/ϵ)). Also, define a sequence of intervals

Ij = [x̂j−1, x̂j ] = [x̂j−1, (1 + 1/α)x̂j−1].

Now if the root x̄ of g is in any one of these intervals, say in Ij , then start at any point x̂j−1 in the
interval, Newton’s method generates an x with |x− x̄| ≤ ϵ inO(log log(1/ϵ)) iterations.

How to identify the interval that contains x̄? This time, we bisect the number of intervals, that is,
evaluate function value at point x̂jm where jm = [J/2]. Thus, each bisection reduces the total
number of the intervals by a half. Since the total number of intervals isO(log(R/ϵ)), in at most
O(log log(R/ϵ)) bisection steps we shall locate the interval that contains x̄. Thus the total number
iterations, including both bisection and Newton methods, isO(log log(R/ϵ)) iterations.

Here we take advantage of the global convergence property of Bisection and local quadratic
convergence property of Newton, and we would see more of these features later...
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Example: Spherical Constrained Nonconvex Quadratic Minimization

min
1

2
xTQx + cT x, s.t. ∥x∥2 = (≤)1.

whereQ ∈ Sn is any symmetric data matrix. If c = 0 this problem becomes finding the least
eigenvalue ofQ.

The necessary and sufficient condition (can be proved using the SDP Rank Theorem) for x being a
global minimizer of the problem is

(Q+ λI)x = −c, (Q+ λI) ⪰ 0, ∥x∥22 = 1,

which implies λ ≥ −λmin(Q) > 0 where λmin(Q) is the least eigenvalue ofQ. This can be cast
as a one-dimetnional root finding problem of scalar variable λ.

Theorem 2 The 1-spherical constrained quadratic minimization can be computed in O(log log(∥c∥/ϵ))
iterations where each iteration solve a symmetric (positive definite) system of linear equations of n
variables.

What about 2-spherical constrained quadratic minimization, that is, quadratic minimization with 2
ellipsoidal constraints: Remains Open.
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Multi-Variable Zero-Order Algorithms: the Finite-Difference Gradient or Surrogate Objective based on Sampling

∇f(xk)j ∼
1

δ

(
f(xk + δej)− f(xk)

)
∀j

for a small δ(> 0), and they can be estimated in parallel.

Randomized Finite-Difference Gradient Randomly select a block of variablesB ⊂ of{1, 2, ..., n} and
approximate the gradient vector by

∇f(xk) ∼ n

|B|
∑
j∈B

[
1

δ

(
f(xk + δej)− f(xk)

)
]ej .

Randomly generate nk i.i.d. Gaussian vectors ui, i = 1, ..., nk and and approximate the gradient
vector by

∇f(xk) ∼ n

nk

nk∑
i=1

[
1

δ

(
f(xk + δui)− f(xk)

)
]ui.

Surrogate objective based on Sampling sample a number of point ans use their function values to build a (local)
quadratic surrogate-objective function to optimize.

(SOLNP+, ongoing work)
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First-Order Algorithms: the Steepest Descent Method (SDM)

Let f be a differentiable function and assume we can compute gradient (column) vector∇f . We want
to solve the unconstrained minimization problem

min
x∈Rn

f(x).

In the absence of further information, we seek a first-order KKT or stationary point of f , that is, a point
x∗ at which∇f(x∗) = 0. Here we choose direction vector dk = −∇f(xk) as the search direction at
xk , which is the direction of steepest descent.

The number αk ≥ 0, called step-size or learning rate, is chosen “appropriately” such as one-point
mapping:

αk ∈ argminf(xk − α∇f(xk)).

Then the new iterate is defined as xk+1 = xk − αk∇f(xk).

In some implementations, step-size αk is fixed through out the process – independent of iteration count
k
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SDM Example: Unconstrained Convex Quadratic Optimization

Let f(x) = 1
2 xTQx + cT x whereQ ∈ Rn×n is symmetric and positive definite. This implies that the

eigenvalues ofQ are all positive. The unique minimum x∗ of f(x) exists and is given by the solution of
the system of linear equations

∇f(x)T = Qx + c = 0,

or equivalently
Qx = −c.

The iterative scheme becomes, from dk = −(Qxk + c),

xk+1 = xk + αkdk = xk − αk(Qxk + c);

where

αk =
∥dk∥2

(dk)TQdk
.

Note that minimizing a strictly convex quadratic function is equivalent to solve a system of equation
with a positive definite matrix on the left. The iterative method maybe preferable if the system only
needs to be solved approximately and it is very large.

(linesteepestqp.m of Chapter 8)



Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #03 20

Iterate Convergence of the Steepest Descent Method

The following theorem gives some conditions under which the steepest descent method will generate a
sequence of iterates that converge .

Theorem 3 Let f : Rn → R be given. For some given point x0 ∈ Rn, let the level set

X0 = {x ∈ Rn : f(x) ≤ f(x0)}

be bounded. Assume further that f is continuously differentiable on the convex hull of X0. Let {xk}
be the sequence of points generated by the steepest descent method initiated at x0. Then every
accumulation point of {xk} is a stationary point of f .

Remark According to this theorem, the steepest descent method initiated at any point of the level setX0

will converge to a stationary point of f , which property is called global convergence.

This proof can be viewed as a special form of Theorem 1: the SDM algorithm mapping is closed and the
objective function is strictly decreasing if not optimal yet.
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Convergence Speed of the SDM for Strongly Convex QP

The convergence rate of the steepest descent method applied to convex quadratic functions is known
to be linear. SupposeQ is a symmetric positive definite matrix of order n and let its eigenvalues be
0 < λ1 ≤ · · · ≤ λn. Obviously, the global minimizer of the quadratic form f(x) = 1

2 xTQx is at the
origin.

It can be shown that when the steepest descent method is started from any nonzero point x0 ∈ Rn,
there will exist constants c1 and c2 such that (page 235, L&Y)

0 < c1 ≤
f(xk+1)

f(xk)
≤ c2 ≤

(
λn − λ1

λn + λ1

)2

< 1, k = 0, 1, . . . .

λn/λ1 is called condition number of the Hessian matrix. Intuitively, the slow rate of linear convergence
of the steepest descent method can be attributed the fact that the successive search directions are
perpendicular.

Consider an arbitrary iterate xk . At this point we have the search direction dk = −∇f(xk). To find the
next iterate xk+1 we minimize f(xk − α∇f(xk)) with respect to α ≥ 0. At the minimum αk , the
derivative of this function will equal zero. Thus, we obtain∇f(xk+1)T∇f(xk) = 0.
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Convergence Speed of the SDM for Minimizing Lipschitz Functions

Let f(x) be differentiable every where and satisfy the (first-order) β-Lipschitz condition, that is, for any
two points x and y

∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥ (1)

for a positive real constant β. Then, we have

f(x)− f(y)−∇f(y)T (x− y) ≤ β

2
∥x− y∥2 (2)

so that at the kth step of SDM, we have

f(x)− f(xk) ≤ ∇f(xk)T (x− xk) +
β

2
∥x− xk∥2.

Let us minimize the quadratic function and then it has a close form: xk+1 = xk − 1
β∇f(xk) which is

the SDM with the fixed step-size 1
β . One can prove

Theorem 4 (Error Convergence Estimate Theorem) Let the objective function p∗ = inf f(x) be finite and
let us stop the SDM as soon as ∥∇f(xk)∥ ≤ ϵ for a given tolerance ϵ ∈ (0 1). Then the SDM
terminates in 2β(f(x0)−p∗)

ϵ2 steps.

The convergence speed can be improved to β(f(x0)−p∗)
ϵ steps if the quadratic function is convex.

(steepestqp.m of Chapter 8)
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The Barzilai and Borwein Method: Two-Point Algorithm Mapping

There is a steepest descent method (Barzilai and Borwein 88) that chooses the step-size based on the
two past points/solutions as follows:

∆k
x = xk − xk−1 and ∆k

g = ∇f(xk)−∇f(xk−1), (3)

αk =
(∆k

x)
T∆k

g

(∆k
g)

T∆k
g

or αk =
(∆k

x)
T∆k

x

(∆k
x)

T∆k
g

,

Then
xk+1 = xk − αk∇f(xk). (4)

For convex quadratic minimization with HessianQ,∆k
g = Q∆k

x, the two step size formula become

αk =
(∆k

x)
TQ∆k

x

(∆k
x)

TQ2∆k
x

or αk =
(∆k

x)
T∆k

x

(∆k
x)

TQ∆k
x

and it is between the reciprocals of the largest and smallest non-zero eigenvalues ofQ (Rayleigh
quotient). (BBsteepestqp.m of Chapter 8)
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Another Two-Point Algorithm Mapping: The QP Heavy-Ball Method (Polyak 64)

xk+1 = xk − 4

(
√
λn +

√
λ1)2
∇f(xk) +

( √
λn −

√
λ1√

λn +
√
λ1)

)
(xk − xk−1).

where the convergence rate can be improved to(√
λn −

√
λ1√

λn +
√
λ1

)2

.

This is also called the Parallel-Tangent or Conjugate Direction method, where the second
direction-term in the formula is nowadays called “acceleration” or “momentum” direction
(HBsteepestqp.m of Chapter 8).

More generally, let momentum direction dk = (xk − xk−1) and

xk+1 = xk − α1∇f(xk) + α2dk = xk + d(α),

where the pair of step-sizes α = (α1;α2) can be chosen from

min
(α)
∇f(xk)d(α) +

1

2
d(α)∇2f(xk)d(α),

where x1 can be computed from the SDM step.

The momentum dirction can be viwed as an aggregation of all past gradients.
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Dimension-Reduced Second-Order Method: Implicit Three-Point Algorithm Mapping

Let dk = xk − xk−1, gk = ∇f(xk) andHk = ∇2f(xk), then the step-sizes can be explicitly
computed from (gk)THkgk −(dk)THkgk

−(dk)THkgk (dk)THkdk

 αg

αm

 =

 ∥gk∥2

−(gk)T dk

 .

If the Hessian∇2f(xk) is not available, one can approximate

Hkgk ∼ ∇(xk + gk)− gk and Hkdk ∼ ∇(xk + dk)− gk ∼ −(gk−1 − gk);

or for some small ϵ > 0:

Hkgk ∼ 1

ϵ
(∇(xk + ϵgk)− gk) and Hkdk ∼ 1

ϵ
(∇(xk + ϵdk)− gk).

For convex quadratic minimization, the method becomes the Conjugate-Gradient or Parallel-Tangent
method. (DRSOMqp.m of Chapter 8)
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The Accelerated Steepest Descent Method (ASDM)

There is an accelerated steepest descent method (Nesterov 83) that works as follows:

λ0 = 0, λk+1 =
1 +

√
1 + 4(λk)2

2
, αk =

1− λk

λk+1
, (5)

x̃k+1 = xk − 1

β
∇f(xk), xk+1 = (1− αk )̃xk+1 + αk x̃k. (6)

Note that (λk)2 = λk+1(λk+1 − 1), λk > k/2 and αk ≤ 0.

One can prove:

Theorem 5

f (̃xk+1)− f(x∗) ≤ 2β

k2
∥x0 − x∗∥2, ∀k ≥ 1.

(accelsteepestqp.m of Chapter 8)

Applications: Federated Regression Learning of using FOM and DRSOM, Chapter 8.
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First-Order Algorithms for Conic Constrained Optimization (CCO)

Consider the conic nonlinear optimization problem: min f(x) s.t. x ∈ K.

• Nonnegative Linear Regression: given data A ∈ Rm×n and b ∈ Rm

min f(x) =
1

2
∥Ax− b∥2 s.t. x ≥ 0; where∇f(x) = AT (Ax− b).

• Semidefinite Linear Regression: given data Ai ∈ Sn for i = 1, ...,m and b ∈ Rm

min f(X) =
1

2
∥AX − b∥2 s.t.X ⪰ 0; where∇f(X) = AT (AX − b).

AX =


A1 •X

...

Am •X

 and AT y =
∑
i=1

yiAi.

Suppose we start from a feasible solution x0 orX0.
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SDM Followed by the Conic-Region-Projection

• x̂k+1 = xk − 1
β∇f(xk)

• xk+1 = ProjK (̂xk+1): Solve minx∈K ∥x− x̂k+1∥2.

For examples:

• ifK = {x : x ≥ 0}, then

xk+1 = ProjK (̂xk+1) = max{0, x̂k+1}.

• IfK = {X : X ⪰ 0}, then factorize X̂k+1 =
∑n

j=1 λjvjvTj and let

Xk+1 = ProjK(X̂k+1) =
∑

j:λj>0

λjvjvTj .

(The drawback is that the total eigenvalue-factorization may be costly...)

Does the method converge? What is the convergence speed?

(steepestnnqp.m of Chapter 8)
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SDM Followed by the Convex-Region-Projection

Consider the convex-region-constrained nonlinear optimization problem: min f(x) s.t. Ax = b. that
isK = {x : Ax = b}.

The projection method becomes, starting from a feasible solution x0 and let direction

dk = −(I −AT (AAT )−1A)∇f(xk)

xk+1 = xk + αkdk; (7)

where the stepsize can be chosen from line-search or again simply let

αk =
1

β

and β is the (global) Lipschitz constant.

Does the method converge? What is the convergence speed? See more details in HW3.
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SDM Followed by the Nonconvex-Region-Projection

• K ⊂ Rn whose support size is no more than d(< n): x = ProjK (̂x) contains the largest d
absolute entries of x̂ and set the rest of them to zeros.

• K ⊂ Rn
+ and its support size is no more than d(< n): x = ProjK (̂x) contains the largest no

more than d positive entries of x̂ and set the rest of them to zeros.

• K ⊂ Sn whose rank is no more than d(< n): factorize
X̂ =

∑n
j=1 λjvjvTj with |λ1| ≥ |λ2| ≥ ... ≥ |λn| then ProjK(X̂) =

∑d
j=1 λjvjvTj .

• K ⊂ Sn
+ whose rank is no more than d(< n): factorize

X̂ =
∑n

j=1 λjvjvTj with λ1 ≥ λ2 ≥ ... ≥ λn then ProjK(X̂) =
∑d

j=1 max{0, λj}vjvTj .

Does the method converge? What is the convergence speed? What if f(·) is not a convex function?
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Multiplicative-Update I: “Mirror” SDM for CCO

At the kth iterate with xk > 0:

xk+1 = xk. ∗ exp(− 1

β
∇f(xk))

Note that xk+1 remains positive in the updating process.

The classical Projected SDM update can be viewed as

xk+1 = arg min
x≥0
∇f(xk)T x +

β

2
∥x− xk∥2.

One can choose any strongly convex function h(·) and define

Dh(x, y) = h(x)− h(y)−∇h(y)T (x− y)

and define the update as

xk+1 = arg min
x≥0
∇f(xk)T x + βDh(x, xk).

The update above is the result of choosing (negative) entropy function h(x) =
∑

j xj log(xj).

(mirrorsteepestnnqp.m of Chapter 8)
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Multiplicative-Update II: Affine Scaling SDM for CCO

At the kth iterate with xk > 0, letDk be a diagonal matrix such that

Dk
jj = xk

j , ∀j

and

xk+1 = arg min
x≥0
∇f(xk)T x +

β

2
∥(Dk)−1(x− xk)∥2,

or
xk+1 = xk − αk(D

k)2∇f(xk) = xk. ∗ (e− αk∇f(xk). ∗ xk)

where variable step-sizes can be

αk = min{ 1

β max(xk)2
,

1

2∥xk. ∗ ∇f(xk)∥∞
}.

Is xk > 0, ∀k? Does it converge? What is the convergence speed? See more details in HW3.

Geometric Interpretation: inscribed ball vs inscribed ellipsoid.
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Reduced Gradient Method – the Simplex Algorithm for LP

LP: min cT x s.t.Ax = b, x ≥ 0,

whereA ∈ Rm×n has a full row rankm.

Theorem 6 (The Fundamental Theorem of LP in Algebraic form) Given (LP) and (LD) where A has full
row rank m,

i) if there is a feasible solution, there is a basic feasible solution (Carathéodory’s theorem) that is a
corner point of the feasible region;

ii) if there is an optimal solution, there is an optimal basic solution.

High-Level Idea:

1. Initialization Start at a BSF (corner point) of the feasible polyhedron and transform it to the “origin”.

2. Test for Optimality. Compute the reduced gradient vector at the corner. If no descent and feasible
direction can be found, stop and claim optimality at the current corner point; otherwise, select a new
corner point and go to Step 2.
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Figure 4: The LP Simplex Method
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The Frank-Wolf Algorithm: SLP

P: min f(x) s.t.Ax = b, x ≥ 0,

whereA ∈ Rm×n has a full row rankm.

Start with a feasible solution x0, and at the kth iterate do:

• Solve the LP problem
min ∇f(xk)T x s.t.Ax = b, x ≥ 0

and let x̃k+1 be an optimal solution.

• Choose a step-size 0 < αk ≤ 1 and let

xk+1 = xk + αk (̃xk+1 − xk).

This is also called sequential linear programming (SLP) method.
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First-Order Method for MDP (MGP): Value-Iteration of Fixed-Point Iteration

Let y ∈ Rm represent the cost-to-go values of them states, ith entry for ith state, of a given policy. The
MDP problem entails choosing the optimal value vector y∗ which is a fixed-point of:

y∗i = min(max)j∈Ai
{cj + γpTj y∗}, ∀i ∈ I ·,

The Value-Iteration (VI) Method is, starting from any y0, the iterative mapping:

yk+1
i = A(yk)j = min(max)j∈Ai{cj + γpTj yk}, ∀i ∈ I ·.

For MDP, if the initial y0 is strictly feasible for state i, that is, y0i < cj + γpTj y0, ∀j ∈ Ai, then yki
would be increasing in the VI iteration for all i and k.

On the other hand, if any of the inequalities is violated, then we have to decrease y1i at least to

min
j∈Ai

{cj + γpTj y0}

.
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Convergence of Value-Iteration for MDP

Theorem 7 Let the VI algorithm mapping be A(v)i = minj∈Ai{cj + γpTj v, ∀i}. Then, for any two
value vectors u ∈ Rm and v ∈ Rm and every state i:

|A(u)i −A(v)i| ≤ γ∥u− v∥∞, which implies ∥A(u)i −A(v)i∥∞ ≤ γ∥u− v∥∞

Let ju and jv be the two arg min actions for value vectors u and v, respectively. Assume that
A(u)i −A(v)i ≥ 0 where the other case can be proved similarly.

0 ≤ A(u)i −A(v)i = (cju + γpTjuu)− (cjv + γpTjv v)

≤ (cjv + γpTjv u)− (cjv + γpTjv v)

= γpTjv (u− v) ≤ γ∥u− v∥∞.

where the first inequality is from that ju is the arg min action for value vector u, and the last inequality
follows from the fact that the elements in pjv are non-negative and sum-up to 1.
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Value-Iteration for MDP II: Other Strategies

• One can choose i at random to update randomly in each iteration, either with or without
replacement.

• Aggregate states if they have very similar cost-to-go values: State-Trimming.

• State-values are updated in a unsynchronized manner: a state is updated based on the current
state-values of its neighborhood states, and it can be synchronized or unsynchronized.

Many research issues are listed in an optional Project.
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First-Order Method for Nonlinear Constrained Optimization I

We consider the general constrained optimization:

(GCO)

min f(x)

s.t. ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I.

• Convert it to an unconstrained problem by adding the Penalty or Barrier Term to the objective:

min f(x) + λ
∑
i∈E
|ci(x)| − γ

∑
i∈I

ci(x)− or min f(x) + λ
∑
i∈E
|ci(x)| − µ

∑
i∈I

log(ci(x))

where λ and γ are sufficiently large (µ is sufficiently small for the Barrier function). One can adjust
λ and µ dynamically.

• Descent-First and Feasible-Second: apply the SLP strategy to the first-order Taylor expansion to
compute a solution feasible for the linearized constraints, then project it onto the
nonlinear-constrained feasible region.
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Block Coordinate Descent Method for Unconstrained Optimization I

min
x∈RN

f(x) = f((x1; x2, ...; xn)), where x = (x1; x2; ...; xn).

For presentation simplicity, we let each xj be a scalar variable so thatN = n.

Let f(x) be differentiable every where and satisfy the (first-order) β-Coordinate Lipschitz condition, that
is, for any two vectors x and d

∥∇jf(x + ej . ∗ d)−∇jf(x)∥ ≤ βj∥ej . ∗ d∥ (8)

where ej is the unit vector that ej = 1 and zero everywhere else, and .∗ is the component-wise
product.

Cyclic Block Coordinate Descent (CBCD) Method (Gauss-Seidel) (CyclicBCDlls.m of Chapter 8)

x1 ←− arg minx1 f(x1, . . . , xn),
...

xn ←− arg minxn f(x1, . . . , xn).
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Aitken Double Sweep Method:

x1 ←− arg minx1 f(x1, . . . , xn),
...

xn ←− arg minxn f(x1, . . . , xn),

xn−1 ←− arg minxn−1 f(x1, . . . , xn),
...

x1 ←− arg minx1 f(x1, . . . , xn).

Gauss-Southwell Method:

• Compute the gradient vector∇f(x) and let i∗ = arg max{|∇f(x)j |}.

•

xi∗ ←− arg minxi f(x1, . . . , xn).
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Block Coordinate Descent Method for Unconstrained Optimization II

Randomly-Permuted Cyclic Block Coordinate Descent (RCBCD) Method

• Draw a random permutation σ = {σ(1), . . . , σ(n)} of {1, . . . , n};

•
xσ(1) ←− arg minxσ(1)

f(x1, . . . , xn),
...

xσ(n) ←− arg minxσ(n)
f(x1, . . . , xn).

Randomized Block Coordinate Descent (RBCD) Method (RABCDlls.m of Chapter 8)

• Randomly choose i∗ ∈ {1, 2, ..., n}.

•

xi∗ ←− arg minxi∗ f(x1, . . . , xn).
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Convergence Analyses of the BCD Methods

The following theorem gives some conditions under which the deterministic BCD method will generate a
sequence of iterates that converge.

Theorem 8 Let f : Rn → R be given. For some given point x0 ∈ Rn, let the level set

X0 = {x ∈ Rn : f(x) ≤ f(x0)}

be bounded. Assume further that f is continuously differentiable on the convex hull of X0. Let {xk}
be the sequence of points generated by the Cyclic Block Coordinate Descent Method initiated at x0.
Then every accumulation point of {xk} is a stationary point of f .

For strictly convex quadratic minimization with HessianQ, e.g., the linear convergence rate of
Gauss-Southwell is(

1− λmin(Q)

λmax(Q)(n− 1)

)n−1

≥ 1− λmin(Q)

λmax(Q)
≥
(
λmax(Q)− λmin(Q)

λmax(Q) + λmin(Q)

)2

.
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Worst-Case Convergence Comparison of BCDs

There is a convex quadratic minimization problem of dimension n:

min xTQx, where for γ ∈ (0, 1)

Q =


1 γ ... γ

γ 1 ... γ

... ... ... ...

γ γ ... 1

 .

• CBCD is n
2π2 times slower than SDM;

• CBCD is n2

2π2 times slower than RBCD (each iteration consists of n random selections);

• CBCD is n(n+1)
2π2 times slower than RCBCD;

Randomization makes a difference.
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Randomized Block Coordinate Gradient Descent Method

At the kth Iteration of RBCGD:

• Randomly choose ik ∈ {1, 2, ..., n}.

•
xk+1
ik

= xkik −
1

β
ik
∇ikf(xk),

xk+1
i = xki , ∀i ̸= ik.

Theorem 9 (Expected Error Convergence Estimate Theorem) Let the objective function f(x) be convex
and satisfy the (first-order) β-Coordinate Lipschitz condition, and admit a minimizer x∗. Then

Eξk [f(xk+1)]− f(x∗) ≤ n

n+ k + 1

(
1

2
∥x0 − x∗∥2β + f(x0)− f(x∗)

)
,

where random vector ξk−1 = (i0, i1, ..., ik−1) and norm-square ∥x∥2β =
∑

j βjx
2
j .

(RABCDlls,m, RABCDglls.m, RandBCDlls.m, RandBCDglls.m of Chapter 8)
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Stochastic-Gradient-Method for Minimizing a Large-Sum of Functions

In many applications, the objective value is partially determined by decision makers and partially
determined by “Nature”.

(OPT ) minx f(x, ω)

s.t. c(x, ω) ∈ K ⊂ Rm.
(9)

where ω represents uncertain data and x ∈ Rn is the decision vector, andK is a constraint set.

For deterministic optimization, we assume ξ is known and fixed. In reality, we may have

• the (exact) probability distribution ξ of data ω.

• the sample distribution and/or few moments of data ω.

• knowledge of ω belonging to a given uncertain set U .

In the following we consider the unconstrained case.



Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #03 47

Stochastic Optimization and Stochastic Gradient Descent (SGD) Methods

minx F (x) := Eξ[f(x, ω)].

Large-Sum of Functions – Sample Average Approximation (SAA):

minx FM (x) := 1
M

∑M
i=1 f(x, ωi).

Two Approaches:

• Sample-First and Iterate-Second, in particular, SAA: collect enough examples then search a solution
of an approximated deterministic optimization problem. The computation of the gradient vector:

∇FM (x) =
1

M

M∑
i=1

∇f(x, ωi) and xk+1 = xk − αk∇FM (xk).

• Sample and Iterate Concurrently – SGD: collect a sample set Sk of few samples of ω at iteration k:

ĝk =
1

|Sk|
∑
i∈Sk

∇f(xk, ωi) and xk+1 = xk − αk ĝk.

(SGDlls.m of Chapter 8)

Key Questions: how many samples are sufficient for an ϵ approximate solution to the original stochastic
optimization problem. This is the information/sample complexity issue in optimization.
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Special Case: Online Gradient-Descent and Regret

Consider more general convex minimization

f∗ := minx FM (x) := 1
M

∑M
i=1 f

i(x).

where each f i is a convex function.

OGD: Starting x1, for i = 1 toM , do

ĝi = ∇f i(xi) and xi+1 = xi − αk ĝi.

Provable Result: for a wide range problems,

1

M

M∑
i=1

f i(xi) ≤ f∗ +O(
1√
M

).

Under certain conditions, the regret/error can be further reduced!
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SGD and its Advantages

Apply SGD with one ωk sampled uniformly at iteration k:

ĝk = ∇f(xk, ωk) and xk+1 = xk − αk ĝk;

with the step size rule:

αk → 0 and

( ∞∑
k=0

αk

)
→∞ (e.g., αk = O(k−1)).

• A great technology to potentially reduce the computation complexity – need fewer samples at the
beginning.

• Potentially only select important and sensitive samples – learn where to sample.

• Dynamically incorporate new empirical observations to tune-up the probability distribution.

• May help to escape from the Saddle Points!

Various Variance Reduction Techniques were developed in Stochastic SGD! For example, let
dk = (1− β)̂gk + βdk−1 for some parameter β and then xk+1 = xk − αkdk .
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Case I: Variance Reduction in Stochastic Value Iteration for MDP

Let y ∈ Rm represent the cost-to-go values of them states, ith entry for ith state, of a given policy. The
MDP problem entails choosing the fixed-point value vector y∗ such that it satisfies:

y∗i = min
j∈Ai

{cj + γpTj y∗}, ∀i.

The Value-Iteration (VI) Method is, starting from any y0,

yk+1
i = min

j∈Ai

{cj + γpTj yk}, ∀i.

If the initial y0 is strictly feasible for state i, that is, y0i < cj + γpTj y0, ∀j ∈ Ai, then yki would be
increasing in the VI iteration for all i and k.

The computation work for state i at iteration k, is to compute pTj yk = µj(yk) for each j ∈ Ai. This
needsO(m) operations.

Could we approximate µj(yk) by sampling?
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Motivations

• In many practical applications, pj is unknown so that we have to approximate the mean pTj yk by
stochastic sampling,

• Even we know pj exactly, it may be too dense so that the computation of pTj yk takes up toO(m)

operations so that we would rather estimate the mean by sampling which can be easily parallelized.

• Since randomization is introduced in the algorithm, the iterative solution sequence becomes a
random sequence.

• One can analyze this performance using Hoeffding’s inequality and classic results on contraction
properties of value iteration. Moreover, we improve the final result using Variance Reduction and
Monotone Iteration.

• Variance Reduction enables us to update the values so that the needed number of samples is
decreased from iteration to iteration.
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Variance Reduction in Stochastic Value Iteration for MDP

We carry out the VI iteration as:

yk+1
i = min

j∈Ai

{cj + γpTj ỹk + γpTj (yk − ỹk)}, ∀i,

where ỹk is updated at the geometric pace as before. Or compute once a while for a hash vector

c̃kj = cj + γpTj ỹk, ∀j

and do
yk+1
i = min

j∈Ai

{c̃kj + γpTj (yk − ỹk)}, ∀i.

Then we only need to approximate

pTj (yk − ỹk) = µj(yk − ỹk).

Since y∗ ≥ yk ≥ ỹk during the period of k to 2k and (yk − ỹk) monotonically converges to zero, the
norm of (yk − ỹk) becomes smaller and smaller so that only a constant number of samples are needed
to estimate the mean for desired accuracy, which leads to a geometrically convergent algorithm with
high probability.
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Near-Optimal Randomized Value-Iteration Result

Few computation and sample complexity results based on Variance Reduction:

• Knowing pj :

O

(
(mn+

n

(1− γ)3
) log(

1

ϵ
) log(

1

δ
)

)
to compute an ϵ-optimal policy with probability at least 1− δ.

• Computation and sample complexity on the pure generative model:

O

(
n

(1− γ)3ϵ2
log(

1

δ
)

)
to compute an ϵ-optimal policy with probability at least 1− δ.

• Sample complexity lower bound: O
(

n
(1−γ)3ϵ2

)
.

• The method is also extended to computing ϵ-optimal policies for finite-horizon MDP with a
generative model and provide a nearly matching sample complexity lower bound.

S[ICML 2017] and [NIPS 2018].
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Case II: Online Linear Programming (OLP) Revisited

Primal
max r⊤x

s.t. Ax ≤ b

0 ≤ x ≤ e

Dual
min b⊤p + e⊤s

s.t. A⊤p + s ≥ r

p ≥ 0, s ≥ 0

where the decision variables are x ∈ Rn, p ∈ Rm, s ∈ Rn

Denote the offline primal/dual optimal solution as x∗ ∈ Rn, p∗n ∈ Rm, s∗ ∈ Rn

LP duality/complementarity tells that for j = 1, ..., n,

x∗
j =

 1, rj > a⊤j p∗n

0, rj < a⊤j p∗n

x∗
j may take a fractional value when rj = a⊤j p∗n.
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Equivalent Form of the Dual Problem (I)

The dual objective is a large-sum of functions:

min b⊤p +
∑n

j=1 sj

s.t. sj ≥ rj − a⊤j p, j = 1, ..., n; p, s ≥ 0

Equivalently, by removing sj ’s, we have
min
p≥0

b⊤p +
n∑

j=1

(
rj − a⊤j p

)+
where (·)+ is the ReLu function. Normalizing the objective, the large-sum functions become SAA:

min
p≥0

fn(p) := d⊤p +
1

n

n∑
j=1

(
rj − a⊤j p

)+
Implication for online LP when orders coming randomly:

• At time t, one can resolve ft(p) (based on all the observed samples) to obtain p∗t and decide xt

min
p≥0

ft(p) := d⊤p +
1

t

t∑
j=1

(
rj − a⊤j p

)+
• Simply apply one step of Stochastic Sub-Gradient Projection Method to decide xt and update p.
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The Simple and Fast Iterative OLP Algorithm

Instead of finding the optimal p∗t , we perform stochastic sub-gradient descent based on the newly
arrived order t in minimizing

min
p≥0

ft(p) := d⊤p +
1

t

t∑
j=1

(
rj − a⊤j p

)+
At time t, the sub-gradient constructed from the new observation is

∇p

(
d⊤p +

(
rt − a⊤t p

)+) ∣∣∣∣∣
p=pt

= d− atI(rt > a⊤t p)
∣∣∣

p=pt

= d− atxt

where pt is the current dual price vector at time t.
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Simple Online (SO) Algorithm for Solving (Binary) Online LP I

• Input: d = b/n and initialize p1 = 0

• For t = 1, 2, ..., n do

xt =

 1, if rt > a⊤t pt

0, if rt ≤ a⊤t pt

• Then compute

pt+1 = pt + αt (atxt − d)

pt+1 := pt+1 ∨ 0

• Return x = (x1, ..., xn)

This is Sample without Replacement Implementation of Stochastic Gradient Method with one Cycle
only, where the primal decision is made “on the fly”.

(fastOLP.m and fastOLPadap.m of Chapter 8)
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Simple Online (SO) Algorithm for Solving (Binary) Online LP II

• The algorithm is a first-order online algorithm and it does not involve any matrix inversion.

• It does not need even to store the data, the total number of operations is the number of nonzero
entries of all input data.

• αt is the step size and it is chosen to be 1√
n

(or 1√
t
) in the following analyses

• The algorithm does not require any prior knowledge besides d, the average inventory vector.

• May add “adaptiveness (action-history-dependent)” and/or “boosting (sample replacement)” ideas
to improve effectiveness

• May apply the Mirror-Descent and other first-order methods

The algorithm works for both the stochastic input model and the random permutation model following
where the performance is guaranteed in expectation.

Non-Stationary Data Input?
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Summary of the First-Order Methods

• Good global convergence property (e.g. starting from any (feasible) solution under mild technical
assumption...).

• Simple to implement and the computation cost is mainly compute the numerical gradient and
matrix-vector product; suitable on GPU

• Maybe difficult to decide step-size or learning rate

• The convergence speed can be slow: not suitable for high accuracy computation, certain
accelerations available; but Gradient-scaling or Preconditioning will help

• Can only guarantee converging to a first-order KKT solution, may need to add perturbation to
escape local minimums.

• Dimension reduced stochastic gradient and randomized block-coordinate are commonly used for
solving large-scale problems.


