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Structured/Disciplined Convex Optimization Again: Gonic Linear Programming (CLP)

(CLP) minimize cex

subjectto a, ex=20b;,1=1,2,....m, x € K,
(ATx=1),
where K is a closed and pointed convex cone.
Linear Programming (LP): ¢,a;,x € R™ and K = R}
Second-Order Cone Programming (SOCP): ¢,a;,x € R" and K = SOC = {x: x1 > ||[x_1]|2};
where X_ 1 is the vector (15 ...;2,,) € R" 1.
Semidefinite Programming (SDP): ¢, a;,x € 8" and ' = S

Cone K can be also a product of different cones, that is, X = (X1;Xo;...) where x; € K1, % € Ko,...
and so on with linear constraints:
Alxl + ./42)(2 +...=h
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Cone, Gonvex Cone and Dual I

A set K isaconeifx € K implies ax € K forallaw > 0

The intersection of cones is a cone

A convex cone is a cone and also a convex set

A pointed cone is a cone that does not contain a line

Dual of Cone K:
K*:={y: xey>0 foral xe€ K}.

Theorem 1 The dual is always a closed convex cone, and the dual of the dual is the closure of convex
hall of K.
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Cone Examples .

Example 1: The n-dimensional non-negative orthant, R} = {x € R" : x > 0}, is a convex

cone. lts dual is itself.

Example 2: The set of all PSD matrices in S, 8!, is a convex cone, called the PSD matrix cone.
+

Its dual is itself.

Example 3: The set { (t;x) € R""! : ¢ > ||x||,} forap > 1is a convex conein R" ", called

the p-order cone. Its dual is the g-order cone with ]% + é = 1.

The dual of the second-order cone (p = 2) is itself.
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Recall LP, SOCP, and SDP Examples .

(LP) minimize  2x1 + 9 + x3

subjectto x1 + xo + 3 = 1,

(x1;x2;23) > 0.

(SOCP) minimize  2x1 + 9 + x3

subjectto x1 + xo + 3 = 1,
r1 — /a3 + 25 > 0.

(SDP) minimize 201 + 19 + xrs
subjectto  x1 + X2 + x3 = 1,

L1 X2 <0

Ly X3
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(SDP) can be structurally rewritten as

2 D 1 X2
minimize .

D 1 o X3

1 D 1 X2
subject to : =1,

D 1 ro X3

L1 T2

>~ 0,
ro X3
that is
2 .0 1 .5

c = and a; =
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Dual of Gonic LP '

(CLD) maximize b'y
subjectto > " ya; +s=¢, (A'y+s=¢), s € K*,
wherey € R, s is called the dual slack vector/matrix, and /X * is the dual cone of K .

Here, operator .Ax and Adjoint-Operator ATy mimic matrix-vector production Ax and its transpose

operation A”'y, where

A= (ay;a9;...;a,,), Ax= (a;ex;...;a, ex), and ATy:Zyia;-r.
i
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LP, SOCP, and SDP Examples Again .

min  2x1 + x9 + x3 max Y

s.t. x1+x9+x3=1, st. e-y+s=1(2;1;1),
(Zlfl;ilj‘g;ilj‘g) Z 0. (Sl; 59, Sg) Z 0.

min  2x1 + x9 + x3 max Y

st. x1 +x9+x3 =1, st. e-y+s=(2;1;1),

1 — /x5 + a3 > 0. s1— /85 + s3> 0.

For the SOCP case: 2 — y > \/2(1 — 1/)?. Since y = 1 is feasible for the dual, y* > 1 so that the
dual constraint becomes 2 — y > v/2(y — 1) ory < /2. Thus, 4" = /2, and there is no duality

gap.
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o 2 .0 1 T2 \

minimize

5) 1 Lo X3

1 5 1 T2
subject to =1,

D 1 Lo X3 )

x x

S Y )

o X3
maximize Yy

1 .5 2 .0
subject to Yy+8= ;

5 1 5 1

S S
g — ! 2 ~ 0
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CLP Duality Theorems '

Theorem 2 (Weak duality theorem)c @ x — b’y = x @ s > ( for any feasible x of (CLP) and (y, s) of
(CLD).

The weak duality theorem shows that a feasible solution to either problem yields a bound on the value

of the other problem. We callc ® x — b’y the duality gap.

Corollary 1 Letx* € F,, and (v*,s*) € F,. Then,c e x* = b’ y* implies thatx* is optimal for (CLP)
and (y*,s") is optimal for (CLD).

Is the reverse also true? That is, given x* optimal for (CLP), then there is (¥, s™) feasible for (CLD)

andc e x* = bl y*?

This is called the Strong Duality Theorem: it is “rue” when /X = R"’, but not true in general CLP.
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LP and LD Relations '

Primal || F-B F-UB IF

F-B @
F-UB @
IF @ @

Dual

min  -x; — X,
s.t. x, — x, =1 maxoonow
-x; + x, =1 st R
X, x, 20 -y + oy, -1

A case that neither (LP) nor (LD) is feasible: ¢ = (—1; 0), A= (0, —1), b=1.

How to test the LP or LD constraint set is feasible or not using the relation table? The Farkas Lemmal!
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LP Optimality Conditions and Solution Support '

( x—bvly = o0
q (y,8) € (RY,R™,RY) - Ax = b [ or
\ —ATy—s = —¢ )
X.-8 = 0
Ax = b
—Aly—s = —e.

Let x* and s™ be optimal solutions with zero duality gap. Then
|supp(x*)| + |supp(s™)| < n.

There always exist X* and s™ such that the sum of support sizes of x* and ™ equal n: called a strict

complemetarity pair. Geometrically, they are in the interior of the optimal solution sets.

If there is one s™ such that [supp(s™)| > n — d, then the support size for all x* is at most d,
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0

X

Short Course on Math Optimization

The GLP and CLD Relations '

Primal || F-B F-UB IF
Dual
| (© ©
F-UB . e
e & 6
o X
max 292
o X =0 0
st Y1 + Y2
0
o X =2 S
>~ 0

The Dual is feasible and bounded, but Primal is infeasible.

Test the CLP or CLD constraint set feasibility?

Lecture Note #02
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Optimality and Complementarity Conditions for SDP .

coe X —bly = 0
AX = b

~ATy— S = —¢
X, S ~ o
XS =0
AX = b

~Aly— S = —¢
X, = o

14
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Lecture Note #02

Transportation Dual: Economic Interpretation '

min - >0 D i CijTi
s.t. 2?21 Tij
D e Tig

xij

™m n
max  » ;- St + Zj:l djv;

s.t. Ui + Vj
U, supply site unit price
v;: demand site unit price

u; +v; < ¢;;: incentive/competitiveness

Si, Vi = 1, ceey 1M
= dj, Vj — 1,...772
>0, Vi, j.

S Cija VZ,]

15
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Algorithmic Applications: Optimal Value Function and Shadow Prices

z(h): minimize ch

subjectto Ax =h, x > 0.

Suppose a new right-hand-vector b such that
b =br,+J and b =b;, Vi# k.
Then, the optimal dual solution y* has a property

yi = (2(b7) — z(v)) /0

as long as y* remains the dual optimal solution for b, because

2(07) = 07) "y = 2(b) + 0 - .

16

Thus, the optimal dual value is the rate of the net change of the optimal objective value over the net

change of an entry of the right-hand-vector resources, i.e.,

Vz(b) =y".
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Application in the Wassestein Barycenter Problem '

3 3T— 3 3
3 —l3 3

X,® | ®X,

X0 | @X,

Find distribution of 2;, 2 = 1, 2, 3, 4 to minimize
min  WD;(x) + WD,,(x) + WD,(x)
s.t. 1+ T2+ a3+ 14 =9, x; >0,12=1,2,3,4.

The objective is a nonlinear function, but its gradient vector VIV D, (x), VIW D, (x) and VW D;(x)

are shadow prices of the three sub-transportation problems —popularly used in Hierarchy Optimization.

(WBCgradient3.m of Chapter 8)
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The Dual of the Reinforcement Learning LP .

Recall the cost-to-go value of the reinforcement learning LP problem:

. m
maximize, ) ._ Y

subjectto Y3 — vnfy < ¢j,jE€A

yi— iy < ¢ jEA

Ym — Y < ¢, JE A
minimizey ZjeAl C;T i+ + ZjeAm Cjlj
subject to ZjeAl (ep —ymj)x;+ ... + ZjeAm (& — ymj)T; =

where e; is the unit vector with 1 at the 7th position and 0 everywhere else.

0, V7,

18
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Interpretation of the Dual of the RL-LP '

Variable  ;, 7 € Aj;, is the state-action frequency or called flux, or the expected present value of the

number of times that an individual is in state 7 and takes state-action 7.

Thus, solving the problem entails choosing a state-action frequencies/fluxes that minimizes the

expected present value of total costs for the infinite horizon, where the RHS is (1; 1; 1;1; 1;1):

xt | (01)  (02) (1) (12) (21) (22) (31) (32) (41) (51) |
C: 0 0 0 0 0 0 0 0 1 0

0)| 1 1 0 0 0 0 0 0 0 0 |1
(1| =y 0 1 1 0 0 0 0 0 0 |1
2| 0 —/2 — 0 1 1 0 0 0 0 |1
3)] 0 —v/4 0 —v/2 —y 0 1 1 0 0 1
4] 0 —/8 0 —//4 0 —/2 —v 0 1 0 1
5)] 0 —/8 0 —yM4 0 —/2 0 -y -y 1—-7]1

where state O is the absorbing state that has a infinite loops to itself.
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The optimal dual solution is

2o =1, 27y =14+, 25 =1+y+7% 23 =1+ 7+7° +9°, 25, = 1,

1429477 4% 4o*
1—7 )

* _
Lyl —

(Sect2_2MazerunLP.m of Chapter 2)
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The Maze Runner Example: Complementarity Condition '

The LP optimal Cost-to-Go values are y; = 0,y] = 0,y5; = 0,y5 = 0,y; = 1:

maximize, Yo+tyr ty2+ys+ys+ys

subject to Yo — YY1 <0, (z5; =1)
yo — v(0.5ys + 0.25y3 + 0.125y4) <0, (xf, = 0)
Y1 — VY2 <0, (z7; =1+7)
y1 — v(0.5y3 + 0.25y4) <0, (zi5, =0)
Y2 — VY3 <0, (3 =14+7+7°)
y2 — 7(0.5y4) <0, (23, =0)
Y3 — VY4 <0, (z3; = 0)
Y3 <0, (@h =14+7+7"+7°)
Ya — VY5 <1, (z}; =1
Ys — VY5 = 0. (2, = L2



Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #02

Dual of Information Markets '

max 7TTX— <

st. Ax—e-z <0,
X <,
x >0.

71 the optimistic amount can be collected.

z: the worst-case amount need to pay to the winning bids.

min 'y
st. Alp+y >,
elp 1,
(m,y) >0.

b represents the state prices or probability distributions.
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Dual Interpretation: Regression using Important Data Sampling '

Note that
y; = max{0, m; — afp}, V7.
so that
min Zj max{0, m; — a;-rp}
s.t. elp =1,
p > 0.

The max{0, -} is called ReLu function in Al.

Dual Interpretation: Find the probability estimations such that low-bids are automatically
uncounted/removed. (Sect2_2WorldcupLP.m of Chapter 2)

23
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World Cup Information Market Resuit .

Order: #1 #2 | #3 | #4 #5 | State Price
Argentina 1 0 1 1 0 0.2
Brazil 1 0 0 1 1 0.35
ltaly 1 0 1 1 0 0.2
Germany 0 1 0 1 1 0.25
France 0 0 1 0 0 0
Bidding Price:r | 0.75 | 0.35 | 0.4 | 0.95 | 0.75
Quantity limit:q | 10 5 10 | 10 5
Order fill:x* 5 5 5 0 5!

Question: How to make the dual prices unique and the market Online?
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Recall SNL: SOCP Relaxation for SNL '

System of SOCP Feasibility for x; € R?:
% — x5l < dij, V(i,5) € Ngy i < J,
Hak? o xjH < dk]a v (ka.]) S Ncw
where a;. are points whose locations are known.

Consider the case where a single unknown point X; is connected to three anchorsa;,., £ = 1,2, 3
onR?:
Hak —XH < dk, k= 1,2,3
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Optimality Condition of the SOCP Relaxation: One Sensor and Three Anchors

Then, the optimality conditions would be

2, = (Ak/di) (@ — x)

and

> (Aw/di)(a —x) =0

k
where \.’s are the three dual variables. It represents a positive force in direction a;, — X, and the total

forces should be balanced along the three directions.

If the true location of the sensor, say b, is in the convex-hull of the three anchors, these conditions are

achievable so that the optimal solution of the SOCP relaxation is exact, that is, xX* = b.

What happen if it is NOT?
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Recall SDP Relaxation for SNL '

Find a symmetric matrix Z € R(2t7)%(247) gych that

£1:2.1:2 =1
(0701_33)(07EZ_EJ)T’Z :d%,V%JGNm Z<]7
(ag; —e;)(ay; —e;)T o Z =di;, Vk,j € N,

A >~ 0.

This is semidefinite programming feasibility system (with a null objective).
When this relaxation is exact?
One case is that the single unknown point X; is connected to three anchors a;., £ = 1, 2. 3.

In general, if the rank of a feasible /£ is 2, then it solves the original graph relaxation problem.
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Duality Theorem for SNL .

Theorem 8 Let Z be a feasible solution for SDP and U be an optimal slack matrix of the dual. Then,

1. complementarity condition holds: ) U — 0 or 7 (7 = 0;

2. Rank(Z) 4+ Rank(U) < 2 +n;

3. Rank(Z) > 2 and Rank(U) < n.

An immediate result from the theorem is the following:

Corollary 2 If an optimal dual slack matrix has rank 1, then every solution of the SDP has rank 2, that is,

the SDP relaxation solves the original problem exactly.
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Theoretical Analyses on SNL-SDP Relaxation '

A sensor network is 2-universally-localizable (UL) if there is a unique localization in R and there is no
xj € R". j = 1,...,n, where h > 2, such that
—xi||* =d%, Vi, j € Ny, i <j
sz '/’U]H 197 (2] xy b J>
(ax;0) — 2;||* = di;, Vk,j € Na.

The latter says that the problem cannot be localized in a higher dimension space where anchor points

are simply augmented to (a;,;0) € R, k = 1,...,m.



Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #02 30

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.05

|
[
|
o
[e0]
|
o
»
|
SL .
£
|
o
N
O ¥

0.2 0.4 0.6 0.8 1

Figure 1: One sensor-Two anchors: Not Localizable
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Figure 2: Two sensor-Three anchors: (Strongly) Localizable
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16

Figure 3: Two sensor-Three anchors: Not Localizable

32
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16

Figure 4: Two sensor-Three anchors: (Strongly) Localizable

33
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Universally-Localizahle Problems (ULP) .

Theorem 4 The following SNL problems are Universally-Localizable:

- If every edge length is specified, then the sensor network is 2-universally-localizable (Schoenberg

1942).

- There is a sensor network (trilateral graph), with O (n.) edge lengths specified, that is

2-universally-localizable (So 2007).

- If one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is

2-universally-localizable (So and Y 2005).

(SDPsnldsdp.m of Chapter 6)
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ULPs Gan he Localized as Gonvex Optimization .

Theorem 8 (So and Y 2005) The following statements are equivalent:
1. The sensor network is 2-universally-localizable;
2. The max-rank solution of the SDP relaxation has rank 2;
3. The solution matrix has Y = X1 X or T{HY — X1 X) =0.
When an optimal dual (stress) slack matrix has rank 7, then the problem is

2-strongly-localizable-problem (SLP). This is a sub-class of ULP.

Example: if one sensor with its edge lengths to three anchors (in general positions) are specified, then it

is 2-strongly-localizable.
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Unstructured Optimization I

Now consider the general (constrained) optimization (GCO) problem:
(P) minimize  f(x)

subjectto  c;(x) (<, =>)0 i=1,....m

Optimality Condition Theories help to identify and verify when a solution is optimal.

36
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General Optimization: First-Order Necessary Conditions for Constrained Optimization

Consider constraints {x : h(x) =0, ¢(x) > 0.}
Theorem 6 (First-Order or KKT Optimality Condition) Let X be a (local) minimizer of (GCO) and it is a
regular point of {x : h(x) =0, ¢;(x) = 0,7 € Ay}. Then, for some multipliers (y,s > 0)

V(%) = v/ Vn(x) + 57 Ve(x) (3)

and (complementarity slackness)

§Z'Cz'(i) — O, V1.

X being a regular point is often referred as a Constraint Qualification condition.

A solution who satisfies these conditions is called an KKT point or solution of (GCO) — any local

minimizer X, if it is also a regular point, must be an KKT solution; but the reverse may not be true.
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KKT via the Lagrangian Function '

It is more convenient to introduce the Lagrangian Function associated with generally constrained

optimization:
L(X, Y, S) — f()() o vTh<x) o STC()O,
where multipliers y of the equality constraints are “free” and s = 0 for the “greater or equal to” inequality

constraints, so that the KKT condition (3) can be written as
ViL(X,y,8) = 0.

Lagrangian Function can be viewed as a “Penalty” function aggregated with the original objective

function plus the penalized terms on constraint violations.

In theory, one can adjust the penalty multipliers (y, s > 0) to repeatedly solve the following so-called

Lagrangian Relaxation Problem:

(LRP) miny, L(x,y,s).
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Summary of KKT Conditions for More General GCO '

min  f(x)

st. ¢i(x) (£,=,>) 0,i=1,...,m, (Original Problem Constraints (OPC))

(GCO)

the Lagrangian Function is given by

L(x,y):f()—y B Zyzcz

For any feasible point x of (GCO) define the active constraint set by A, = {7 : ¢;(x) = 0}. LetX be a
local minimizer for (GCO) and X is a regular point on the hypersurface of the active constraints Then

there exist multipliers y such that

V f(x) = v Ve(x) (Lagrangian Derivative Conditions (LDC))
v (<Jfree’,>) 0,i=1,....m, (Multiplier Sign Constraints (MSC))

yici(X) — 0, (Complementarity Slackness Conditions (CSC)).
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Second-Order Necessary Gonditions for Gonstrained Optimization

Now in addition we assume all functions are in CQ, that is, twice continuously differentiable. Recall the

tangent linear sub-space at X:

Ti =41: Vh(x)z =0, Vc;(x)z = 0 Vi € Ay}

Theorem 7 Let X be a (local) minimizer of (GCO) and a regular point of hypersurface
{x: h(x) =0, ¢c;(x) = 0,2 € Ay}, and lety, s denote Lagrange multipliers such that (X, V, s)

satisfies the (first-order) KKT conditions of (GCO). Then, it is necessary to have

d! V2L(X,y,8)d > 0 Ve T;

The Hessian of the Lagrangian function need to be positive semidefinite on the tangent-space.
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Second-Order Sufficient Conditions for GGO '

Theorem 8 Let X be a regular point of (GCO) with equality constraints only and /ety be the Lagrange
multipliers such that (X, V) satisfies the (first-order) KKT conditions of (GCO). Then, if in addition

a! V2L, y)d > 0 Vo #£dc T
then X is a local minimizer of (GCO,).

See the proof in Chapter 11.5 of LY.

The SOSC for general (GCO) is proved in Chapter 11.8 of LY.

41
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min (561)2 -+ (262)2 S.t. (561)2/4 + (5132)2 —1=0

Figure 5: FONC and SONC for Constrained Minimization

42
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More General Lagrangian Functions and The Lagrangian Dual '

Consider the general constrained optimization again:

(GCO)

For Lagrange Multipliers.
Y ={y, (< free!,>) 0,71=1,...,m},

the Lagrangian Function is again given by

L(x,y) = f(x) —y"e(x) E:yzcZ ,yey.

We now develop the Lagrangian Duality theory as an alternative to Conic Duality theory. For general

nonlinear constraints, the Lagrangian Duality theory is more applicable.



= (1 — 1%+ (w2 — 1% —y1(21 + 220 — 1) — 42221 + 22 — 1), (y1592) <0

where
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Toy Example Again '

minimize (27 — 1)% + (22 — 1)?

subject to r1+ 2x0 — 1 <0,
2515‘1 + X9 — 1 S 0.

L(x,y):f()—y G Zyzcz —

201 — 1) — — 2
VLx(x,v): (1 ) Y1 Y2

2(x2 — 1) — 2y1 — yo

44
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The Lagrangian Relaxation Problem '

For given multipliers y € Y, consider problem

(LRP) inf L(x,y) = f(x) —yle(x)
st. xe R".

Again, y; can be viewed as a penalty weight/parameter to penalize constraint violation of ¢; (x)

In the toy example, for given (y/1;72) < 0, the LRP is:

inf (33'1 — 1)2 + (QCQ — 1)2 — yl(ilfl -+ 25132 — 1) — y2<2£€1 + X9 — 1)
st. (z1;79) € R?,

and it has a close form solution x for any given y:

2 2
:ylz 2211 and 2o = y12+y2+1

L1

with the minimal or infimum value function = —1.25¢y% — 1.25y3 — 2uy192 — 2y1 — 2o.
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Inf-Value Function as the Dual Objective .

Foranyy € Y, the minimal value function (including unbounded from below or infeasible cases) and

the Lagrangian Dual Problem (LDP) are given by:
o(y) ;= infy, L(xy), st x& R".

(LDP) sup, ¢(y), st yeYy.

Theorem 8 The Lagrangian dual objective ¢ (V) is a concave function.

Prool: For any given two multiply vectors y' € Y andy? € Y,

dlay' + (1 —a)y’) =infy L(x,an' 4 (1 — a)y?)
= infy[f (X) — (ay* + (1 — )y?)Te(x)]
= inf[af(x) + (1 — a) fF(x) — a(y")Te() — (1 — a)(y?)Te(x)]
= inf[aL(x,y") + (1 — ) L(x,y?)]
> afinf, Lx,y1)] + (1 — a)linf, L(x,y?)]
= ap(yt) + (1 — a)p(v?),
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Dual Objective Establishes a Lower Bound '

Theorem 10 (Weak duality theorem) For everyy € Y, the Lagrangian dual function ¢(y) is less or equal

to the infimum value of the original GCO problem.

Proof:

oty {70 — ¥7e(0)}
infy { £(x) —yle(x) ste(x)(<,=,>)0}
ot {F(0) ¢ st o) (<, =, > }.

The first inequality is from the fact that the unconstrained inf-value is no greater than the constrained

o(y)

IA A

one.

The second inequality is from ¢(x) (<, =, >)0 and y(<, free’, > )0 imply —y’ ¢(x) < 0.
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Lagrangian Strong Duality Theorem .

Theorem 11 Let (GCO) be a convex minimization problem and the infimum {* of (GCO) be finite, and the
suprermum of (LDP) be ¢*. In addition, let (GCO) have an interior-point feasible solution with respect
to inequality constraints, that is, there is X such that all inequality constraints are strictly held. Then,

f* = ¢*, and (LDP) admits a maximizery* such that

o) = 1.

Furthermore, if (GCO) admits a minimizer X", then

yici(x') =0, Vi=1,...,m.

The assumption of “interior-point feasible solution” is called Constraint Qualification condition, which

was also needed as a condition to prove the strong duality theorem for general Conic Linear
Optimization.

Note that the problem would be a convex minimization problem if all equality constraints are hyperplane

or affine functions ¢; (x) = a;,x — b;, all other level sets are convex.
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The Lagrangian Dual with Primal Constraints .

Consider the constrained problem with convex set constraints

(GCO) inf  f(x)
st. ¢(x) (<, =,>)0,1=1,...,m,
xec ) C R™

Typically, () has a simple form such as the cone

Using the (partial) Lagrangian Function:
L(x,y) = f(x) — v e(x), y € Y
we can define the dual objective function of y be

o(y) := infy  L(x,y)

st x € ().

The similar weak and strong duality theorem also holds.

49
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Rules to Construct the Explicit Lagrangian Dual .

(GCO)
st. X)) (<,=,>) 0,i=1,...,m,

+ All multipliers are dual variables.

* Derive the LDC
Vix) =y Ve(x)

If no X appeared in an equation, set it as an equality constraint for the dual; otherwise, express X in
terms of y and replace x in the Lagrange function, which becomes the Dual objective. (This may be

very difficult ...)

« Add the MSC as dual constraints.
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The Lagrangian Dual of LP with the Log-Barrier | '

For a fixed 11 > 0, consider the problem

min ¢'x— Y7 log(;)
s.t. Ax = b,
x>0

Again, the non-negativity constraints can be “ignored” if the feasible region has an ”interior”, that is, any

minimizer must have k(1) > 0. Thus, the Lagrangian function would be simply given by

L(x,y) = ch—,uZIog(:Ej) — vy (Ax—b) = (e — Aly)'x - Zlog ;) +uly.
j=1

Then, the Lagrangian dual objective (we implicitly need x > 0 for the function to be defined)

o(y) ::ir;fL(x,y):irxﬁ (e — Aly) x—,uZlog z;)+bly

71=1
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The Lagrangian Dual of LP with the Log-Barrier Il '

First, from the view point of the dual, the dual needs to choose y such that ¢ — ATy > 0, since

otherwise the primal can choose X > 0 to make ¢(y) go to —o0.

Now for any given y such that ¢ — ATy > 0, the inf problem has a unique finite close-form minimizer x

L
(e — ATy);’

iCj = \V/j = 1, ceey NN

Thus,
¢(v) ="y + 1Y log(e — A'y); + np(1 — log(p)).
j=1
Therefore, the dual problem, for any fixed (i, can be written as
max () = nu(1 —log(1t)) + max by + 1) log(e — ATy);].

y :
J=1

This is actually the LP dual with the Log-Barrier on dual inequality constraints ¢ — ATy > 0.
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The gradient and Hessian of the Dual Objective ¢ I

Let x(v) be a minimizer. Then

Thus,

Similarly, we can derive
V26(y) = —Va(x(y) (VZL(x(y),¥)) " Vh(x(¥))",

where VZL(x(y),y) is the Hessian of the Lagrangian function that is assumed to be positive definite at

any (local) minimizer.
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The Toy Example '

minimize (1 — 1)? + (29 — 1)?

subjectto x1 +2x9 —1 =0, 2x1+x9—1=0.
Lxy) = (z1 — 1) 4 (29 — 1)* —y1 (21 + 220 — 1) — y2 (221 + 22 — 1).
1 =0.91 +yo+ 1, x99 =191 +0.5ys + 1.
¢(v) = —1.25y7 — 1.25y5 — 25192 — 2y1 — 2y

2.9Y1 + 2yo + 2

Vo(y) = :
2y1 + 2.5y21 + 2
—1 T
V2gb() 1 2 2 0 1 2 2.5 2
y = — g
2 1 0 2 2 1 2 2.5
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The Fisher Example again '

minimize ~ —5log(2x1 + x2) — 8log(3x3 + x4)

subjectto x1 +x3 =1, x9+x4 =1, x>0.

L(x(>10),y) = —blog(2x1 + x2) — 8log(3x3 + x4) —y1(x1 + 23 — 1) —y2 (w2 + 24 — 1).

Start from y” > 0, at the kth step, compute X1 from

X*t1 = argmin L(x(>0),y"),
x>0
then let
k-+1 kE l(Axk—l—l o h).

B

Note that X in each iteration has a close-form solution! (FisherexampleLMM.m of Chapter 14)
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Infeasihility Certificate (Farkas Lemma) for Nonlinear Constraints |

Consider the convex constrained system:

(ccs)
s.t. C@'(X> > 0,2=1,...,m,

where ¢; (.) are concave functions and the Lagrangian Function is given by

L(x,y) = —yle(x) = — Zyici(x), y > 0.

Again, let
o(y) = irx1fL(x, y).

Theorem 12 If there existsy > 0 such that ¢(y) > 0, then (CSS) is infeasible.

56

The proof is directly from the dual objective function gb(y) is @ homogeneous function and the dual has

its objective value unbounded from above.
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Infeasihility Certificate (Farkas Lemma) for Nonlinear Gonstraints Il

Consider the system, for a parameter b > 0,

—2f — (22— 1) +b>0, (y1 >0)
—2? — (22 +1)2+b>0, (y2>0)

L(xy) = y1 (27 + (x2 — 1)® = b) + ya(a] + (z2 + 1)° — b).
Then, if y1 + 1o = 0,

b(1) = dy1y2 — b(y1 + y2)?

, (y1,92) =20
Y1 + Y2 (1 2)

When b > 1, ¢(y) < 0; and, otherwise, one can choose y; = 72 = 3 > 0 such that

o(v) =2(1—b)y >0

which implies that the original constrained system is infeasible.

57
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The Augmented Lagrangian Function '

For equality constraints {x : h(x) = 0}, in both theory and practice, we can consider an augmented

Lagrangian function (ALF)
P
La(x,3,8) = f(x) —y"h(x) —s"e(x) + T [In(x)]
for some positive parameter p, which corresponds to an equivalent problem of (2?):

f*r=min fx)+ 2 n®)|> st h@x) =o.

Note that, although at feasibility the additional square term in objective is redundant, it helps to improve

strict convexity of the Lagrangian function.

For the Fisher example:

L,(x(>10),y)
= —blog(2x1 + x2) — 8log(3x3 + x4) —y1(x1 + 23 — 1) — yo(x2 + x4 — 1)
—|—§(($1 + x5 — 1)? + (22 + 24 — 1)?).

Fisherexample using ALMM? Not close-form solution anymore - more on this issue latter.
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The Augmented Lagrangian Dual

e e )

Now the dual function:

®q(¥) = min

xe X
and the dual problem

Lo(x,y);

(f* =)y :=max  ¢a(y).

Note that the dual function approximately satisfies %

For the convex optimization case, say h(x) = Ax — b

Lipschitz condition (see Chapter 14 of L&Y).

, we have

V2L, (x,y) = VZf(x) + (AT A).

59



