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Structured/Disciplined Convex Optimization Again: Conic Linear Programming (CLP)

(CLP ) minimize c • x

subject to ai • x = bi, i = 1, 2, ...,m, x ∈ K,

(AT x = b ),

whereK is a closed and pointed convex cone.

Linear Programming (LP): c, ai, x ∈ Rn andK = Rn
+

Second-Order Cone Programming (SOCP): c, ai, x ∈ Rn andK = SOC = {x : x1 ≥ ∥x−1∥2};
where x−1 is the vector (x2; ...;xn) ∈ Rn−1.

Semidefinite Programming (SDP): c, ai, x ∈ Sn andK = Sn
+

ConeK can be also a product of different cones, that is, x = (x1; x2; ...) where x1 ∈ K1, x2 ∈ K2,...
and so on with linear constraints:

A1x1 +A2x2 + ... = b.
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Cone, Convex Cone and Dual

• A setK is a cone if x ∈ K implies αx ∈ K for all α > 0

• The intersection of cones is a cone

• A convex cone is a cone and also a convex set

• A pointed cone is a cone that does not contain a line

• Dual of Cone K:
K∗ := {y : x • y ≥ 0 for all x ∈ K}.

Theorem 1 The dual is always a closed convex cone, and the dual of the dual is the closure of convex
hall ofK .



Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #02 4

Cone Examples

• Example 1: The n-dimensional non-negative orthant,Rn
+ = {x ∈ Rn : x ≥ 0}, is a convex

cone. Its dual is itself.

• Example 2: The set of all PSD matrices in Sn, Sn
+, is a convex cone, called the PSD matrix cone.

Its dual is itself.

• Example 3: The set {(t; x) ∈ Rn+1 : t ≥ ∥x∥p} for a p ≥ 1 is a convex cone inRn+1, called
the p-order cone. Its dual is the q-order cone with 1

p + 1
q = 1.

• The dual of the second-order cone (p = 2) is itself.
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Recall LP, SOCP, and SDP Examples

(LP ) minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,

(x1;x2;x3) ≥ 0.

(SOCP ) minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,

x1 −
√

x2
2 + x2

3 ≥ 0.

(SDP ) minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1, x1 x2

x2 x3

 ⪰ 0.
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(SDP) can be structurally rewritten as

minimize

 2 .5

.5 1

 ·

 x1 x2

x2 x3


subject to

 1 .5

.5 1

 ·

 x1 x2

x2 x3

 = 1, x1 x2

x2 x3

 ⪰ 0,

that is

c =

 2 .5

.5 1

 and a1 =

 1 .5

.5 1

 .
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Dual of Conic LP

(CLD) maximize bT y

subject to
∑m

i yiai + s = c, (AT y + s = c), s ∈ K∗,

where y ∈ Rm, s is called the dual slack vector/matrix, andK∗ is the dual cone ofK .

Here, operatorAx and Adjoint-OperatorAT y mimic matrix-vector productionAx and its transpose
operationAT y, where

A = (a1; a2; ...; am), Ax = (a1 • x; ...; am • x), and AT y =
∑
i

yia
T
i .
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LP, SOCP, and SDP Examples Again

min 2x1 + x2 + x3

s. t. x1 + x2 + x3 = 1,

(x1;x2;x3) ≥ 0.

max y

s.t. e · y + s = (2; 1; 1),

(s1; s2; s3) ≥ 0.

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1,

x1 −
√
x2
2 + x2

3 ≥ 0.

max y

s.t. e · y + s = (2; 1; 1),

s1 −
√

s22 + s23 ≥ 0.

For the SOCP case: 2− y ≥
√
2(1− y)2. Since y = 1 is feasible for the dual, y∗ ≥ 1 so that the

dual constraint becomes 2− y ≥
√
2(y − 1) or y ≤

√
2. Thus, y∗ =

√
2, and there is no duality

gap.
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minimize

 2 .5

.5 1

 ·

 x1 x2

x2 x3


subject to

 1 .5

.5 1

 ·

 x1 x2

x2 x3

 = 1, x1 x2

x2 x3

 ⪰ 0,

maximize y

subject to

 1 .5

.5 1

 y + s =

 2 .5

.5 1

 ,

s =

 s1 s2

s2 s3

 ⪰ 0.
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CLP Duality Theorems

Theorem 2 (Weak duality theorem) c • x − bT y = x • s ≥ 0 for any feasible x of (CLP) and (y, s) of
(CLD).

The weak duality theorem shows that a feasible solution to either problem yields a bound on the value
of the other problem. We call c • x − bT y the duality gap.

Corollary 1 Let x∗ ∈ Fp and (y∗, s∗) ∈ Fd. Then, c • x∗ = bT y∗ implies that x∗ is optimal for (CLP)
and (y∗, s∗) is optimal for (CLD).

Is the reverse also true? That is, given x∗ optimal for (CLP), then there is (y∗, s∗) feasible for (CLD)
and c • x∗ = bT y∗?

This is called the Strong Duality Theorem: it is “rue” whenK = Rn
+, but not true in general CLP.
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LP and LD Relations

A case that neither (LP) nor (LD) is feasible: c = (−1; 0), A = (0, −1), b = 1.

How to test the LP or LD constraint set is feasible or not using the relation table? The Farkas Lemma!
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LP Optimality Conditions and Solution Support

(x, y, s) ∈ (Rn
+,Rm,Rn

+) :

cT x − bT y = 0

Ax = b

−AT y − s = −c

 ; or

x. · s = 0

Ax = b

−AT y − s = −c.

Let x∗ and s∗ be optimal solutions with zero duality gap. Then

|supp(x∗)|+ |supp(s∗)| ≤ n.

There always exist x∗ and s∗ such that the sum of support sizes of x∗ and s∗ equal n: called a strict
complemetarity pair. Geometrically, they are in the interior of the optimal solution sets.

If there is one s∗ such that |supp(s∗)| ≥ n− d, then the support size for all x∗ is at most d,
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The CLP and CLD Relations

min

 0 0

0 0

 •X

s.t.

 0 0

0 1

 •X = 0 0 1

1 0

 •X = 2

X ⪰ 0

max 2y2

s.t. y1

 0 0

0 1

+ y2

 0 1

1 0

+ S =

 0 0

0 0


S ⪰ 0

The Dual is feasible and bounded, but Primal is infeasible.

Test the CLP or CLD constraint set feasibility?
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Optimality and Complementarity Conditions for SDP

c •X − bT y = 0

AX = b

−AT y − S = −c

X,S ⪰ 0

, (1)

XS = 0

AX = b

−AT y − S = −c

X,S ⪰ 0

(2)
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Transportation Dual: Economic Interpretation

min
∑m

i=1

∑n
j=1 cijxij

s.t.
∑n

j=1 xij = si, ∀i = 1, ...,m∑m
i=1 xij = dj , ∀j = 1, ..., n

xij ≥ 0, ∀i, j.

max
∑m

i=1 siui +
∑n

j=1 djvj

s.t. ui + vj ≤ cij , ∀i, j.
ui: supply site unit price

vi: demand site unit price

ui + vj ≤ cij : incentive/competitiveness
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Algorithmic Applications: Optimal Value Function and Shadow Prices

z(b) = minimize cT x

subject to Ax = b, x ≥ 0.

Suppose a new right-hand-vector b+ such that

b+k = bk + δ and b+i = bi, ∀i ̸= k.

Then, the optimal dual solution y∗ has a property

y∗k = (z(b+)− z(b))/δ

as long as y∗ remains the dual optimal solution for b+, because

z(b+) = (b+)T y∗ = z(b) + δ · y∗k.

Thus, the optimal dual value is the rate of the net change of the optimal objective value over the net
change of an entry of the right-hand-vector resources, i.e.,

∇z(b) = y∗.
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Application in the Wassestein Barycenter Problem

Find distribution of xi, i = 1, 2, 3, 4 to minimize

min WDl(x) +WDm(x) +WDr(x)

s.t. x1 + x2 + x3 + x4 = 9, xi ≥ 0, i = 1, 2, 3, 4.

The objective is a nonlinear function, but its gradient vector∇WDl(x),∇WDm(x) and∇WDl(x)

are shadow prices of the three sub-transportation problems –popularly used in Hierarchy Optimization.

(WBCgradient3.m of Chapter 8)
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The Dual of the Reinforcement Learning LP

Recall the cost-to-go value of the reinforcement learning LP problem:

maximizey

∑m
i=1 yi

subject to y1 − γpTj y ≤ cj , j ∈ A1

...

yi − γpTj y ≤ cj , j ∈ Ai

...

ym − γpTj y ≤ cj , j ∈ Am.

minimizex

∑
j∈A1

cjxj+ ... +
∑

j∈Am
cjxj

subject to
∑

j∈A1
(e1 − γpj)xj+ ... +

∑
j∈Am

(em − γpj)xj = e,

... xj ... ≥ 0, ∀j,

where ei is the unit vector with 1 at the ith position and 0 everywhere else.
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Interpretation of the Dual of the RL-LP

Variable xj , j ∈ Ai, is the state-action frequency or called flux, or the expected present value of the
number of times that an individual is in state i and takes state-action j.

Thus, solving the problem entails choosing a state-action frequencies/fluxes that minimizes the
expected present value of total costs for the infinite horizon, where the RHS is (1; 1; 1; 1; 1; 1):

x: (01) (02) (11) (12) (21) (22) (31) (32) (41) (51) b

c: 0 0 0 0 0 0 0 0 1 0

(0) 1 1 0 0 0 0 0 0 0 0 1

(1) −γ 0 1 1 0 0 0 0 0 0 1

(2) 0 −γ/2 −γ 0 1 1 0 0 0 0 1

(3) 0 −γ/4 0 −γ/2 −γ 0 1 1 0 0 1

(4) 0 −γ/8 0 −γ/4 0 −γ/2 −γ 0 1 0 1

(5) 0 −γ/8 0 −γ/4 0 −γ/2 0 −γ −γ 1− γ 1

where state 5 is the absorbing state that has a infinite loops to itself.
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The optimal dual solution is

x∗
01 = 1, x∗

11 = 1 + γ, x∗
21 = 1 + γ + γ2, x∗

32 = 1 + γ + γ2 + γ3, x∗
41 = 1,

x∗
51 = 1+2γ+γ2+γ3+γ4

1−γ .

(Sect2_2MazerunLP.m of Chapter 2)
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The Maze Runner Example: Complementarity Condition

The LP optimal Cost-to-Go values are y∗1 = 0, y∗1 = 0, y∗2 = 0, y∗3 = 0, y∗4 = 1:

maximizey y0 + y1 + y2 + y3 + y4 + y5

subject to y0 − γy1 ≤ 0, (x∗
01 = 1)

y0 − γ(0.5y2 + 0.25y3 + 0.125y4) ≤ 0, (x∗
02 = 0)

y1 − γy2 ≤ 0, (x∗
11 = 1 + γ)

y1 − γ(0.5y3 + 0.25y4) ≤ 0, (x∗
12 = 0)

y2 − γy3 ≤ 0, (x∗
21 = 1 + γ + γ2)

y2 − γ(0.5y4) ≤ 0, (x∗
22 = 0)

y3 − γy4 ≤ 0, (x∗
31 = 0)

y3 ≤ 0, (x∗
32 = 1 + γ + γ2 + γ3)

y4 − γy5 ≤ 1, (x∗
41 = 1)

y5 − γy5 = 0. (x∗
51 = 1+2γ+γ2+γ3+γ4

1−γ )
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Dual of Information Markets

max πT x − z

s.t. Ax − e · z ≤ 0,

x ≤ q,

x ≥ 0.

πT x: the optimistic amount can be collected.

z: the worst-case amount need to pay to the winning bids.

min qT y

s.t. AT p + y ≥ π,

eT p = 1,

(p, y) ≥ 0.

p represents the state prices or probability distributions.
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Dual Interpretation: Regression using Important Data Sampling

Note that
yj = max{0, πj − aTj p}, ∀j.

so that
min

∑
j max{0, πj − aTj p}

s.t. eT p = 1,

p ≥ 0.

The max{0, ·} is called ReLu function in AI.

Dual Interpretation: Find the probability estimations such that low-bids are automatically
uncounted/removed. (Sect2_2WorldcupLP.m of Chapter 2)
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World Cup Information Market Result

Order: #1 #2 #3 #4 #5 State Price

Argentina 1 0 1 1 0 0.2

Brazil 1 0 0 1 1 0.35

Italy 1 0 1 1 0 0.2

Germany 0 1 0 1 1 0.25

France 0 0 1 0 0 0

Bidding Price:π 0.75 0.35 0.4 0.95 0.75

Quantity limit:q 10 5 10 10 5

Order fill:x∗ 5 5 5 0 5

Question: How to make the dual prices unique and the market Online?
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Recall SNL: SOCP Relaxation for SNL

System of SOCP Feasibility for xi ∈ R2:

∥xi − xj∥ ≤ dij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥ ≤ dkj , ∀ (k, j) ∈ Na,

where ak are points whose locations are known.

Consider the case where a single unknown point x1 is connected to three anchors ak, k = 1, 2, 3

onR2:

∥ak − x∥ ≤ dk, k = 1, 2, 3
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Optimality Condition of the SOCP Relaxation: One Sensor and Three Anchors

Then, the optimality conditions would be

zk = (λk/dk)(ak − x)

and ∑
k

(λk/dk)(ak − x) = 0

where λk ’s are the three dual variables. It represents a positive force in direction ak − x, and the total
forces should be balanced along the three directions.

If the true location of the sensor, say b, is in the convex-hull of the three anchors, these conditions are
achievable so that the optimal solution of the SOCP relaxation is exact, that is, x∗ = b.

What happen if it is NOT?
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Recall SDP Relaxation for SNL

Find a symmetric matrix Z ∈ R(2+n)×(2+n) such that

Z1:2,1:2 = I

(0; ei − ej)(0; ei − ej)
T • Z = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)(ak;−ej)
T • Z = d2kj , ∀ k, j ∈ Na,

Z ⪰ 0.

This is semidefinite programming feasibility system (with a null objective).

When this relaxation is exact?

One case is that the single unknown point x1 is connected to three anchors ak, k = 1, 2, 3.

In general, if the rank of a feasible Z is 2, then it solves the original graph relaxation problem.



Yinyu Ye, SIMIS/Staford Short Course on Math Optimization Lecture Note #02 28

Duality Theorem for SNL

Theorem 3 Let Z̄ be a feasible solution for SDP and Ū be an optimal slack matrix of the dual. Then,

1. complementarity condition holds: Z̄ • Ū = 0 or Z̄Ū = 0;

2. Rank(Z̄) + Rank(Ū) ≤ 2 + n;

3. Rank(Z̄) ≥ 2 and Rank(Ū) ≤ n.

An immediate result from the theorem is the following:

Corollary 2 If an optimal dual slack matrix has rank n, then every solution of the SDP has rank 2, that is,
the SDP relaxation solves the original problem exactly.
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Theoretical Analyses on SNL-SDP Relaxation

A sensor network is 2-universally-localizable (UL) if there is a unique localization in R2 and there is no
xj ∈ Rh, j = 1, ..., n, where h > 2, such that

∥xi − xj∥2 = d2ij , ∀ i, j ∈ Nx, i < j,

∥(ak; 0)− xj∥2 = d̂2kj , ∀ k, j ∈ Na.

The latter says that the problem cannot be localized in a higher dimension space where anchor points
are simply augmented to (ak; 0) ∈ Rh, k = 1, ...,m.
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Figure 1: One sensor-Two anchors: Not Localizable
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Figure 2: Two sensor-Three anchors: (Strongly) Localizable
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Figure 3: Two sensor-Three anchors: Not Localizable
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Figure 4: Two sensor-Three anchors: (Strongly) Localizable
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Universally-Localizable Problems (ULP)

Theorem 4 The following SNL problems are Universally-Localizable:

• If every edge length is specified, then the sensor network is 2-universally-localizable (Schoenberg
1942).

• There is a sensor network (trilateral graph), withO(n) edge lengths specified, that is
2-universally-localizable (So 2007).

• If one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is
2-universally-localizable (So and Y 2005).

(SDPsnldsdp.m of Chapter 6)
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ULPs Can be Localized as Convex Optimization

Theorem 5 (So and Y 2005) The following statements are equivalent:

1. The sensor network is 2-universally-localizable;

2. The max-rank solution of the SDP relaxation has rank 2;

3. The solution matrix has Y = XTX or Tr(Y −XTX) = 0 .

When an optimal dual (stress) slack matrix has rank n, then the problem is
2-strongly-localizable-problem (SLP). This is a sub-class of ULP.

Example: if one sensor with its edge lengths to three anchors (in general positions) are specified, then it
is 2-strongly-localizable.
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Unstructured Optimization

Now consider the general (constrained) optimization (GCO) problem:

(P) minimize f(x)

subject to ci(x) (≤, =≥) 0 i = 1, ...,m

Optimality Condition Theories help to identify and verify when a solution is optimal.
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General Optimization: First-Order Necessary Conditions for Constrained Optimization

Consider constraints {x : h(x) = 0, c(x) ≥ 0.}

Theorem 6 (First-Order or KKT Optimality Condition) Let x̄ be a (local) minimizer of (GCO) and it is a
regular point of {x : h(x) = 0, ci(x) = 0, i ∈ Ax̄}. Then, for some multipliers (̄y, s̄ ≥ 0)

∇f (̄x) = ȳT∇h(̄x) + s̄T∇c(̄x) (3)

and (complementarity slackness)
s̄ici(̄x) = 0, ∀i.

x̄ being a regular point is often referred as a Constraint Qualification condition.

A solution who satisfies these conditions is called an KKT point or solution of (GCO) – any local
minimizer x̄, if it is also a regular point, must be an KKT solution; but the reverse may not be true.
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KKT via the Lagrangian Function

It is more convenient to introduce the Lagrangian Function associated with generally constrained
optimization:

L(x, y, s) = f(x)− yT h(x)− sT c(x),

where multipliers y of the equality constraints are “free” and s ≥ 0 for the “greater or equal to” inequality
constraints, so that the KKT condition (3) can be written as

∇xL(̄x, ȳ, s̄) = 0.

Lagrangian Function can be viewed as a “Penalty” function aggregated with the original objective
function plus the penalized terms on constraint violations.

In theory, one can adjust the penalty multipliers (y, s ≥ 0) to repeatedly solve the following so-called
Lagrangian Relaxation Problem:

(LRP ) minx L(x, y, s).
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Summary of KKT Conditions for More General GCO

(GCO)
min f(x)

s.t. ci(x) (≤,=,≥) 0, i = 1, ...,m, (Original Problem Constraints (OPC))

the Lagrangian Function is given by

L(x, y) = f(x)− yT c(x) = f(x)−
m∑
i=1

yici(x).

For any feasible point x of (GCO) define the active constraint set byAx = {i : ci(x) = 0}. Let x̄ be a
local minimizer for (GCO) and x̄ is a regular point on the hypersurface of the active constraints Then
there exist multipliers ȳ such that

∇f (̄x) = ȳT∇c(̄x) (Lagrangian Derivative Conditions (LDC))

ȳi (≤,′ free′,≥) 0, i = 1, ...,m, (Multiplier Sign Constraints (MSC))

ȳici(̄x) = 0, (Complementarity Slackness Conditions (CSC)).
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Second-Order Necessary Conditions for Constrained Optimization

Now in addition we assume all functions are in C2, that is, twice continuously differentiable. Recall the
tangent linear sub-space at x̄:

Tx̄ := {z : ∇h(̄x)z = 0, ∇ci(̄x)z = 0 ∀i ∈ Ax̄}.

Theorem 7 Let x̄ be a (local) minimizer of (GCO) and a regular point of hypersurface
{x : h(x) = 0, ci(x) = 0, i ∈ Ax̄}, and let ȳ, s̄ denote Lagrange multipliers such that (̄x, ȳ, s̄)
satisfies the (first-order) KKT conditions of (GCO). Then, it is necessary to have

dT ∇2
x L(̄x, ȳ, s̄)d ≥ 0 ∀ d ∈ Tx̄.

The Hessian of the Lagrangian function need to be positive semidefinite on the tangent-space.
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Second-Order Sufficient Conditions for GCO

Theorem 8 Let x̄ be a regular point of (GCO) with equality constraints only and let ȳ be the Lagrange
multipliers such that (̄x, ȳ) satisfies the (first-order) KKT conditions of (GCO). Then, if in addition

dT ∇2
x L(̄x, ȳ)d > 0 ∀ 0 ̸= d ∈ Tx̄,

then x̄ is a local minimizer of (GCO).

See the proof in Chapter 11.5 of LY.

The SOSC for general (GCO) is proved in Chapter 11.8 of LY.
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min (x1)
2 + (x2)

2 s.t. (x1)
2/4 + (x2)

2 − 1 = 0

vv

v

Figure 5: FONC and SONC for Constrained Minimization
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More General Lagrangian Functions and The Lagrangian Dual

Consider the general constrained optimization again:

(GCO)
min f(x)

s.t. ci(x) (≤,=,≥) 0, i = 1, ...,m,

For Lagrange Multipliers.

Y := {yi (≤,′ free′,≥) 0, i = 1, ...,m},

the Lagrangian Function is again given by

L(x, y) = f(x)− yT c(x) = f(x)−
m∑
i=1

yici(x), y ∈ Y.

We now develop the Lagrangian Duality theory as an alternative to Conic Duality theory. For general
nonlinear constraints, the Lagrangian Duality theory is more applicable.
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Toy Example Again

minimize (x1 − 1)2 + (x2 − 1)2

subject to x1 + 2x2 − 1 ≤ 0,

2x1 + x2 − 1 ≤ 0.

L(x, y) = f(x)− yT c(x) = f(x)−
2∑

i=1

yici(x) =

= (x1 − 1)2 + (x2 − 1)2 − y1(x1 + 2x2 − 1)− y2(2x1 + x2 − 1), (y1; y2) ≤ 0

where

∇Lx(x, y) =

 2(x1 − 1)− y1 − 2y2

2(x2 − 1)− 2y1 − y2


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The Lagrangian Relaxation Problem

For given multipliers y ∈ Y , consider problem

(LRP ) inf L(x, y) = f(x)− yT c(x)

s.t. x ∈ Rn.

Again, yi can be viewed as a penalty weight/parameter to penalize constraint violation of ci(x).

In the toy example, for given (y1; y2) ≤ 0, the LRP is:

inf (x1 − 1)2 + (x2 − 1)2 − y1(x1 + 2x2 − 1)− y2(2x1 + x2 − 1)

s.t. (x1;x2) ∈ R2,

and it has a close form solution x for any given y:

x1 =
y1 + 2y2

2
+ 1 and x2 =

2y1 + y2
2

+ 1

with the minimal or infimum value function= −1.25y21 − 1.25y22 − 2y1y2 − 2y1 − 2y2.
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Inf-Value Function as the Dual Objective

For any y ∈ Y , the minimal value function (including unbounded from below or infeasible cases) and
the Lagrangian Dual Problem (LDP) are given by:

ϕ(y) := infx L(x, y), s.t. x ∈ Rn.

(LDP ) supy ϕ(y), s.t. y ∈ Y.

Theorem 9 The Lagrangian dual objective ϕ(y) is a concave function.

Proof: For any given two multiply vectors y1 ∈ Y and y2 ∈ Y ,

ϕ(αy1 + (1− α)y2) = infx L(x, αy1 + (1− α)y2)

= infx[f(x)− (αy1 + (1− α)y2)T c(x)]

= infx[αf(x) + (1− α)f(x)− α(y1)T c(x)− (1− α)(y2)T c(x)]

= infx[αL(x, y1) + (1− α)L(x, y2)]

≥ α[infx L(x, y1)] + (1− α)[infx L(x, y2)]

= αϕ(y1) + (1− α)ϕ(y2),
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Dual Objective Establishes a Lower Bound

Theorem 10 (Weak duality theorem) For every y ∈ Y , the Lagrangian dual function ϕ(y) is less or equal
to the infimum value of the original GCO problem.

Proof:
ϕ(y) = infx {f(x)− yT c(x)}

≤ infx {f(x)− yT c(x) s.t. c(x)(≤,=,≥)0 }
≤ infx {f(x) : s.t. c(x)(≤,=,≥)0 }.

The first inequality is from the fact that the unconstrained inf-value is no greater than the constrained
one.

The second inequality is from c(x)(≤,=,≥)0 and y(≤,′ free′,≥)0 imply−yT c(x) ≤ 0.
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Lagrangian Strong Duality Theorem

Theorem 11 Let (GCO) be a convex minimization problem and the infimum f∗ of (GCO) be finite, and the
suprermum of (LDP) be ϕ∗. In addition, let (GCO) have an interior-point feasible solution with respect
to inequality constraints, that is, there is x̂ such that all inequality constraints are strictly held. Then,
f∗ = ϕ∗, and (LDP) admits a maximizer y∗ such that

ϕ(y∗) = f∗.

Furthermore, if (GCO) admits a minimizer x∗, then

y∗i ci(x
∗) = 0, ∀i = 1, ...,m.

The assumption of “interior-point feasible solution” is called Constraint Qualification condition, which
was also needed as a condition to prove the strong duality theorem for general Conic Linear
Optimization.

Note that the problem would be a convex minimization problem if all equality constraints are hyperplane
or affine functions ci(x) = aix − bi, all other level sets are convex.
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The Lagrangian Dual with Primal Constraints

Consider the constrained problem with convex set constraints

(GCO) inf f(x)

s.t. ci(x) (≤,=,≥) 0, i = 1, ...,m,

x ∈ Ω ⊂ Rn.

Typically, Ω has a simple form such as the cone

Ω = Rn
+ = {x : x ≥ 0}.

Using the (partial) Lagrangian Function:

L(x, y) = f(x)− yT c(x), y ∈ Y ;

we can define the dual objective function of y be

ϕ(y) := infx L(x, y)

s.t. x ∈ Ω.

The similar weak and strong duality theorem also holds.
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Rules to Construct the Explicit Lagrangian Dual

(GCO)
min f(x)

s.t. cix) (≤,=,≥) 0, i = 1, ...,m,

• All multipliers are dual variables.

• Derive the LDC
∇f(x) = yT∇c(x)

If no x appeared in an equation, set it as an equality constraint for the dual; otherwise, express x in
terms of y and replace x in the Lagrange function, which becomes the Dual objective. (This may be
very difficult ...)

• Add the MSC as dual constraints.
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The Lagrangian Dual of LP with the Log-Barrier I

For a fixed µ > 0, consider the problem

min cT x − µ
∑n

j=1 log(xj)

s.t. Ax = b,

x ≥ 0

Again, the non-negativity constraints can be “ignored” if the feasible region has an ”interior”, that is, any
minimizer must have x(µ) > 0. Thus, the Lagrangian function would be simply given by

L(x, y) = cT x − µ
n∑

j=1

log(xj)− yT (Ax − b) = (c −AT y)T x − µ
n∑

j=1

log(xj) + bT y.

Then, the Lagrangian dual objective (we implicitly need x > 0 for the function to be defined)

ϕ(y) := inf
x
L(x, y) = inf

x

(c −AT y)T x − µ
n∑

j=1

log(xj) + bT y

 .
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The Lagrangian Dual of LP with the Log-Barrier II

First, from the view point of the dual, the dual needs to choose y such that c −AT y > 0, since
otherwise the primal can choose x > 0 to make ϕ(y) go to−∞.

Now for any given y such that c −AT y > 0, the inf problem has a unique finite close-form minimizer x

xj =
µ

(c −AT y)j
, ∀j = 1, ..., n.

Thus,

ϕ(y) = bT y + µ
n∑

j=1

log(c −AT y)j + nµ(1− log(µ)).

Therefore, the dual problem, for any fixed µ, can be written as

max
y

ϕ(y) = nµ(1− log(µ)) + max
y

[bT y + µ

n∑
j=1

log(c −AT y)j ].

This is actually the LP dual with the Log-Barrier on dual inequality constraints c −AT y ≥ 0.
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The gradient and Hessian of the Dual Objective ϕ

Let x(y) be a minimizer. Then
ϕ(y) = f(x(y))− yT h(x(y))

Thus,

∇ϕ(y) = ∇f(x(y))T∇x(y)− yT∇h(x(y))∇x(y)− h(x(y))

= (∇f(x(y))T − yT∇h(x(y)))∇x(y)− h(x(y))

= −h(x(y)).

Similarly, we can derive

∇2ϕ(y) = −∇h(x(y))
(
∇2

x L(x(y), y)
)−1 ∇h(x(y))T ,

where∇2
x L(x(y), y) is the Hessian of the Lagrangian function that is assumed to be positive definite at

any (local) minimizer.
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The Toy Example

minimize (x1 − 1)2 + (x2 − 1)2

subject to x1 + 2x2 − 1 = 0, 2x1 + x2 − 1 = 0.

L(x, y) = (x1 − 1)2 + (x2 − 1)2 − y1(x1 + 2x2 − 1)− y2(2x1 + x2 − 1).

x1 = 0.5y1 + y2 + 1, x2 = y1 + 0.5y2 + 1.

ϕ(y) = −1.25y21 − 1.25y22 − 2y1y2 − 2y1 − 2y2.

∇ϕ(y) =

 2.5y1 + 2y2 + 2

2y1 + 2.5y21 + 2

 ,

∇2ϕ(y) = −

 1 2

2 1

 2 0

0 2

−1  1 2

2 1

T

= −

 2.5 2

2 2.5


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The Fisher Example again

minimize −5 log(2x1 + x2)− 8 log(3x3 + x4)

subject to x1 + x3 = 1, x2 + x4 = 1, x ≥ 0.

L(x(≥ 0), y) = −5 log(2x1 + x2)− 8 log(3x3 + x4)− y1(x1 + x3 − 1)− y2(x2 + x4 − 1).

Start from y0 > 0, at the kth step, compute xk+1 from

xk+1 = arg min
x≥0

L(x(≥ 0), yk),

then let

yk+1 = yk − 1

β
(Axk+1 − b).

Note that x in each iteration has a close-form solution! (FisherexampleLMM.m of Chapter 14)
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Infeasibility Certificate (Farkas Lemma) for Nonlinear Constraints I

Consider the convex constrained system:

(CCS)
min 0T x

s.t. ci(x) ≥ 0, i = 1, ...,m,

where ci(.) are concave functions and the Lagrangian Function is given by

L(x, y) = −yT c(x) = −
m∑
i=1

yici(x), y ≥ 0.

Again, let
ϕ(y) := inf

x
L(x, y).

Theorem 12 If there exists y ≥ 0 such that ϕ(y) > 0, then (CSS) is infeasible.

The proof is directly from the dual objective function ϕ(y) is a homogeneous function and the dual has
its objective value unbounded from above.
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Infeasibility Certificate (Farkas Lemma) for Nonlinear Constraints II

Consider the system, for a parameter b ≥ 0,

−x2
1 − (x2 − 1)2 + b ≥ 0, (y1 ≥ 0)

−x2
1 − (x2 + 1)2 + b ≥ 0, (y2 ≥ 0)

L(x, y) = y1(x
2
1 + (x2 − 1)2 − b) + y2(x

2
1 + (x2 + 1)2 − b).

Then, if y1 + y2 ̸= 0,

ϕ(y) =
4y1y2 − b(y1 + y2)

2

y1 + y2
, (y1, y2) ≥ 0

When b ≥ 1, ϕ(y) ≤ 0; and, otherwise, one can choose y1 = y2 = y > 0 such that

ϕ(y) = 2(1− b)y > 0

which implies that the original constrained system is infeasible.
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The Augmented Lagrangian Function

For equality constraints {x : h(x) = 0}, in both theory and practice, we can consider an augmented
Lagrangian function (ALF)

La(x, y, s) = f(x)− yT h(x)− sT c(x) +
ρ

2
∥h(x)∥2

for some positive parameter ρ, which corresponds to an equivalent problem of (??):

f∗ := min f(x) + β
2 ∥h(x)∥

2 s.t. h(x) = 0.

Note that, although at feasibility the additional square term in objective is redundant, it helps to improve
strict convexity of the Lagrangian function.

For the Fisher example:

La(x(≥ 0), y)

= −5 log(2x1 + x2)− 8 log(3x3 + x4)− y1(x1 + x3 − 1)− y2(x2 + x4 − 1)

+β
2 ((x1 + x3 − 1)2 + (x2 + x4 − 1)2).

Fisherexample using ALMM? Not close-form solution anymore - more on this issue latter.
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The Augmented Lagrangian Dual

Now the dual function:
ϕa(y) = min

x∈X
La(x, y); (4)

and the dual problem

(f∗ ≥)ϕ∗
a := max ϕa(y). (5)

Note that the dual function approximately satisfies 1
β -Lipschitz condition (see Chapter 14 of L&Y).

For the convex optimization case, say h(x) = Ax − b, we have

∇2La(x, y) = ∇2f(x) + β(ATA).


