Mathematical Optimization Theory Review

Yinyu Ye

http://www.stanford.edu/~yyye

Chapters 1, 2.1-6, 3.1-6, 6.1-4, 7.2, 11.3, 11.6-8, 14.1-2, Appendix A, B.

Structured/Disciplined Convex Optimization Again: Conic Linear Programming (CLP)

$$\begin{array}{ll} (CLP) & \mbox{minimize} & \mathbf{C} \bullet \mathbf{X} \\ & \mbox{subject to} & \mathbf{a}_i \bullet \mathbf{X} = b_i, i = 1, 2, ..., m, \ \mathbf{X} \in K, \\ & (\ \mathcal{A}^T \mathbf{X} = \mathbf{b} \), \end{array}$$

where K is a closed and pointed convex cone.

Linear Programming (LP): **c**, $\mathbf{a}_i, \mathbf{x} \in \mathcal{R}^n$ and $K = \mathcal{R}^n_+$

Second-Order Cone Programming (SOCP): $\mathbf{c}, \mathbf{a}_i, \mathbf{x} \in \mathcal{R}^n$ and $K = SOC = \{\mathbf{x} : x_1 \ge \|\mathbf{x}_{-1}\|_2\};$ where \mathbf{x}_{-1} is the vector $(x_2; ...; x_n) \in \mathbb{R}^{n-1}$.

Semidefinite Programming (SDP): $\mathbf{c}, \mathbf{a}_i, \mathbf{x} \in \mathcal{S}^n$ and $K = \mathcal{S}^n_+$

Cone *K* can be also a product of different cones, that is, $\mathbf{x} = (\mathbf{x}_1; \mathbf{x}_2; ...)$ where $\mathbf{x}_1 \in K_1$, $\mathbf{x}_2 \in K_2$,... and so on with linear constraints:

$$\mathcal{A}_1 \mathbf{x}_1 + \mathcal{A}_2 \mathbf{x}_2 + \ldots = \mathbf{b}.$$

Cone, Convex Cone and Dual

- A set K is a cone if $\mathbf{x} \in K$ implies $\alpha \mathbf{x} \in K$ for all $\alpha > 0$
- The intersection of cones is a cone
- A convex cone is a cone and also a convex set
- A pointed cone is a cone that does not contain a line
- Dual of Cone K:

 $K^* := \{ \mathbf{y} : \mathbf{x} \bullet \mathbf{y} \ge 0 \quad \text{for all} \quad \mathbf{x} \in K \}.$

Theorem 1 The dual is always a closed convex cone, and the dual of the dual is the closure of convex hall of K.

Cone Examples

- Example 1: The *n*-dimensional non-negative orthant, $\mathcal{R}^n_+ = \{\mathbf{x} \in \mathcal{R}^n : \mathbf{x} \ge \mathbf{0}\}$, is a convex cone. Its dual is itself.
- Example 2: The set of all PSD matrices in S^n , S^n_+ , is a convex cone, called the PSD matrix cone. Its dual is itself.
- Example 3: The set $\{(t; \mathbf{x}) \in \mathcal{R}^{n+1} : t \ge \|\mathbf{x}\|_p\}$ for a $p \ge 1$ is a convex cone in \mathcal{R}^{n+1} , called the p-order cone. Its dual is the q-order cone with $\frac{1}{p} + \frac{1}{q} = 1$.
- The dual of the second-order cone (p = 2) is itself.

Recall LP, SOCP, and SDP Examples

$$(LP)$$
 minimize $2x_1 + x_2 + x_3$
subject to $x_1 + x_2 + x_3 = 1,$
 $(x_1; x_2; x_3) \ge \mathbf{0}.$

(SOCP) minimize
$$2x_1 + x_2 + x_3$$

subject to $x_1 + x_2 + x_3 = 1$,
 $x_1 - \sqrt{x_2^2 + x_3^2} \ge 0$.

 $(SDP) \quad \text{minimize} \quad 2x_1 + x_2 + x_3$ subject to $x_1 + x_2 + x_3 = 1,$ $\begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix} \succeq \mathbf{0}.$

(SDP) can be structurally rewritten as

 $\begin{array}{ll} \text{minimize} & \left(\begin{array}{cc} 2 & .5 \\ .5 & 1 \end{array}\right) \cdot \left(\begin{array}{cc} x_1 & x_2 \\ x_2 & x_3 \end{array}\right) \\ \text{subject to} & \left(\begin{array}{cc} 1 & .5 \\ .5 & 1 \end{array}\right) \cdot \left(\begin{array}{cc} x_1 & x_2 \\ x_2 & x_3 \end{array}\right) = 1, \\ \left(\begin{array}{cc} x_1 & x_2 \\ x_2 & x_3 \end{array}\right) \succeq \mathbf{0}, \end{array}$

that is

$$\mathbf{c} = \left(\begin{array}{cc} 2 & .5 \\ .5 & 1 \end{array} \right) \quad \text{and} \quad \mathbf{a}_1 = \left(\begin{array}{cc} 1 & .5 \\ .5 & 1 \end{array} \right).$$

Dual of Conic LP

$$(CLD)$$
 maximize $\mathbf{b}^T \mathbf{y}$
subject to $\sum_i^m y_i \mathbf{a}_i + \mathbf{s} = \mathbf{c}, \ (\mathcal{A}^T \mathbf{y} + \mathbf{s} = \mathbf{c}), \ \mathbf{s} \in K^*,$

where $\mathbf{y} \in \mathcal{R}^m$, **s** is called the dual slack vector/matrix, and K^* is the dual cone of K. Here, operator $\mathcal{A}\mathbf{x}$ and Adjoint-Operator $\mathcal{A}^T\mathbf{y}$ mimic matrix-vector production $A\mathbf{x}$ and its transpose operation $A^T\mathbf{y}$, where

$$\mathcal{A} = (\mathbf{a}_1; \mathbf{a}_2; ...; \mathbf{a}_m), \quad \mathcal{A}\mathbf{x} = (\mathbf{a}_1 \bullet \mathbf{x}; ...; \mathbf{a}_m \bullet \mathbf{x}), \quad \text{and} \quad A^T \mathbf{y} = \sum_i y_i \mathbf{a}_i^T.$$

LP, SOCP, and SDP Examples Again

- $\begin{array}{lll} \min & 2x_1 + x_2 + x_3 & \max & y \\ \text{s. t.} & x_1 + x_2 + x_3 = 1, & \text{s.t.} & \mathbf{e} \cdot y + \mathbf{s} = (2; \ 1; \ 1), \\ & (x_1; x_2; x_3) \geq \mathbf{0}. & (s_1; s_2; s_3) \geq \mathbf{0}. \end{array}$
- $\begin{array}{lll} \min & 2x_1 + x_2 + x_3 & \max & y \\ \text{s.t.} & x_1 + x_2 + x_3 = 1, & \text{s.t.} & \mathbf{e} \cdot y + \mathbf{s} = (2; \ 1; \ 1), \\ & x_1 \sqrt{x_2^2 + x_3^2} \ge 0. & s_1 \sqrt{s_2^2 + s_3^2} \ge 0. \end{array}$

For the SOCP case: $2 - y \ge \sqrt{2(1 - y)^2}$. Since y = 1 is feasible for the dual, $y^* \ge 1$ so that the dual constraint becomes $2 - y \ge \sqrt{2}(y - 1)$ or $y \le \sqrt{2}$. Thus, $y^* = \sqrt{2}$, and there is no duality gap.

 $\begin{array}{ll} \text{minimize} & \left(\begin{array}{ccc} 2 & .5 \\ .5 & 1 \end{array}\right) \cdot \left(\begin{array}{ccc} x_1 & x_2 \\ x_2 & x_3 \end{array}\right) \\ \text{subject to} & \left(\begin{array}{ccc} 1 & .5 \\ .5 & 1 \end{array}\right) \cdot \left(\begin{array}{ccc} x_1 & x_2 \\ x_2 & x_3 \end{array}\right) = 1, \\ \left(\begin{array}{ccc} x_1 & x_2 \\ x_2 & x_3 \end{array}\right) \succeq \mathbf{0}, \end{array}$

maximize ysubject to $\begin{pmatrix} 1 & .5 \\ .5 & 1 \end{pmatrix} y + \mathbf{s} = \begin{pmatrix} 2 & .5 \\ .5 & 1 \end{pmatrix}$, $\mathbf{s} = \begin{pmatrix} s_1 & s_2 \\ s_2 & s_3 \end{pmatrix} \succeq \mathbf{0}.$

CLP Duality Theorems

Theorem 2 (Weak duality theorem) $\mathbf{c} \bullet \mathbf{x} - \mathbf{b}^T \mathbf{y} = \mathbf{x} \bullet \mathbf{s} \ge 0$ for any feasible \mathbf{x} of (CLP) and (\mathbf{y}, \mathbf{s}) of (CLD).

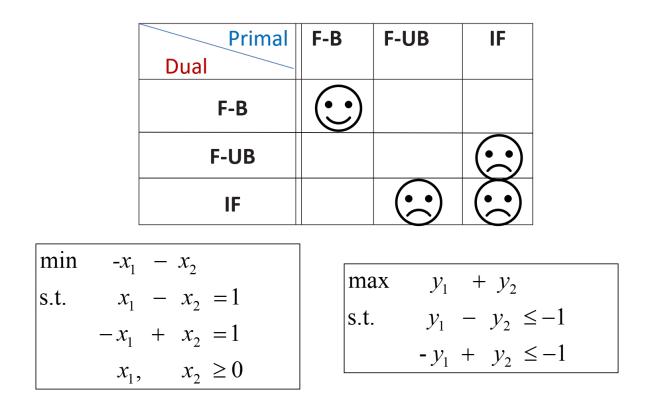
The weak duality theorem shows that a feasible solution to either problem yields a bound on the value of the other problem. We call $\mathbf{c} \bullet \mathbf{x} - \mathbf{b}^T \mathbf{y}$ the duality gap.

Corollary 1 Let $\mathbf{x}^* \in \mathcal{F}_p$ and $(\mathbf{y}^*, \mathbf{s}^*) \in \mathcal{F}_d$. Then, $\mathbf{c} \bullet \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^*$ implies that \mathbf{x}^* is optimal for (CLP) and $(\mathbf{y}^*, \mathbf{s}^*)$ is optimal for (CLD).

Is the reverse also true? That is, given \mathbf{x}^* optimal for (CLP), then there is $(\mathbf{y}^*, \mathbf{s}^*)$ feasible for (CLD) and $\mathbf{c} \bullet \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^*$?

This is called the Strong Duality Theorem: it is "rue" when $K = \mathcal{R}^n_+$, but not true in general CLP.

LP and LD Relations



A case that neither (LP) nor (LD) is feasible: $\mathbf{c} = (-1; 0), \quad A = (0, -1), \quad b = 1.$

How to test the LP or LD constraint set is feasible or not using the relation table? The Farkas Lemma!

LP Optimality Conditions and Solution Support

$$\begin{cases} \mathbf{c}^T \mathbf{x} - \mathbf{b}^T \mathbf{y} = \mathbf{0} \\ (\mathbf{x}, \mathbf{y}, \mathbf{s}) \in (\mathcal{R}^n_+, \mathcal{R}^m, \mathcal{R}^n_+) : & A\mathbf{x} = \mathbf{b} \\ & -A^T \mathbf{y} - \mathbf{s} = -\mathbf{c} \end{cases}; \text{ or}$$
$$\mathbf{x} \cdot \mathbf{s} = \mathbf{0}$$

$$A \mathbf{x} = \mathbf{b}$$

 $-A^T \mathbf{y} - \mathbf{s} = -\mathbf{c}.$

Let \mathbf{x}^* and \mathbf{s}^* be optimal solutions with zero duality gap. Then

 $|\mathrm{supp}(\mathbf{X}^*)|+|\mathrm{supp}(\mathbf{S}^*)|\leq n.$

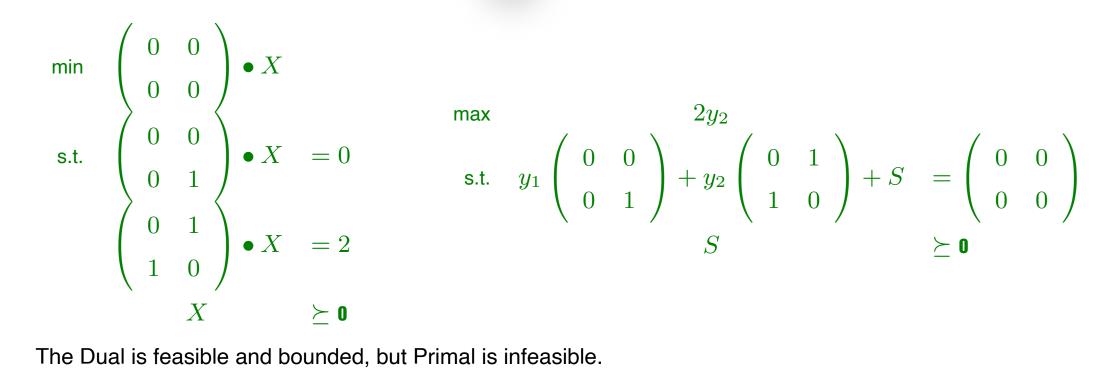
There always exist \mathbf{x}^* and \mathbf{s}^* such that the sum of support sizes of \mathbf{x}^* and \mathbf{s}^* equal *n*: called a strict complementarity pair. Geometrically, they are in the interior of the optimal solution sets.

If there is one \mathbf{s}^* such that $|\operatorname{supp}(\mathbf{s}^*)| \ge n - d$, then the support size for all \mathbf{x}^* is at most d,

Short Course on Math Optimization

The CLP and CLD Relations

Primal	F-B	F-UB	IF
Dual			
F-B	\bigcirc		(\cdot)
F-UB			\bigcirc
IF			



Test the CLP or CLD constraint set feasibility?

Optimality and Complementarity Conditions for SDP

$$\mathbf{c} \bullet X - \mathbf{b}^T \mathbf{y} = 0$$

$$\mathcal{A}X = \mathbf{b}$$

$$-\mathcal{A}^T \mathbf{y} - S = -\mathbf{c}$$

$$X, S \succeq \mathbf{0}$$
(1)

$$\begin{array}{rcl} XS &= & \mathbf{0} \\ \mathcal{A}X &= & \mathbf{b} \\ -\mathcal{A}^T \mathbf{y} - S &= & -\mathbf{c} \\ X, S &\succeq & \mathbf{0} \end{array}$$

(2)

Transportation Dual: Economic Interpretation

$$\begin{array}{ll} \min & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \\ \text{s.t.} & \sum_{j=1}^{n} x_{ij} \\ & \sum_{i=1}^{m} x_{ij} \\ & x_{ij} \end{array} = s_i, \ \forall i = 1, \dots, m \\ & a_j, \ \forall j = 1, \dots, n \\ & x_{ij} \\ \end{array}$$

$$\begin{array}{ll} \max & \sum_{i=1}^{m} s_{i} u_{i} + \sum_{j=1}^{n} d_{j} v_{j} \\ \text{s.t.} & u_{i} + v_{j} & \leq c_{ij}, \ \forall i, j. \end{array}$$

 u_i : supply site unit price

 v_i : demand site unit price

 $u_i + v_j \le c_{ij}$: incentive/competitiveness

Algorithmic Applications: Optimal Value Function and Shadow Prices

$$z(\mathbf{b}) =$$
minimize $\mathbf{c}^T \mathbf{x}$
subject to $A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}.$

Suppose a new right-hand-vector \mathbf{b}^+ such that

$$b_k^+ = b_k + \delta$$
 and $b_i^+ = b_i, \forall i \neq k.$

Then, the optimal dual solution \mathbf{y}^* has a property

$$y_k^* = (z(\mathbf{b}^+) - z(\mathbf{b}))/\delta$$

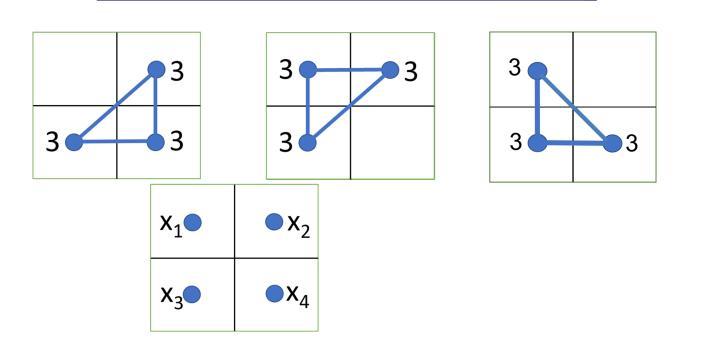
as long as y^* remains the dual optimal solution for b^+ , because

$$z(\mathbf{b}^+) = (\mathbf{b}^+)^T \mathbf{y}^* = z(\mathbf{b}) + \delta \cdot y_k^*.$$

Thus, the optimal dual value is the rate of the net change of the optimal objective value over the net change of an entry of the right-hand-vector resources, i.e.,

$$\nabla z(\mathbf{b}) = \mathbf{y}^*.$$

Application in the Wassestein Barycenter Problem



Find distribution of $x_i, i = 1, 2, 3, 4$ to minimize

$$\begin{array}{ll} \min & WD_l(\mathbf{x}) + WD_m(\mathbf{x}) + WD_r(\mathbf{x}) \\ \text{s.t.} & x_1 + x_2 + x_3 + x_4 = 9, \qquad x_i \geq 0, \ i = 1, 2, 3, 4 \end{array}$$

The objective is a nonlinear function, but its gradient vector $\nabla WD_l(\mathbf{x})$, $\nabla WD_m(\mathbf{x})$ and $\nabla WD_l(\mathbf{x})$ are shadow prices of the three sub-transportation problems –popularly used in Hierarchy Optimization.

(WBCgradient3.m of Chapter 8)

The Dual of the Reinforcement Learning LP

Recall the cost-to-go value of the reinforcement learning LP problem:

maximize_y $\sum_{i=1}^{m} y_i$ subject to $y_1 - \gamma \mathbf{p}_i^T \mathbf{y} \leq c_i, \ j \in \mathcal{A}_1$ $y_i - \gamma \mathbf{p}_i^T \mathbf{y} \leq c_i, \ j \in \mathcal{A}_i$ $y_m - \gamma \mathbf{p}_j^T \mathbf{y} \leq c_j, \ j \in \mathcal{A}_m.$ $\sum_{j \in \mathcal{A}_1} c_j x_j + \dots + \sum_{j \in \mathcal{A}_m} c_j x_j$ minimize_x subject to $\sum_{j \in \mathcal{A}_1} (\mathbf{e}_1 - \gamma \mathbf{p}_j) x_j + \dots + \sum_{j \in \mathcal{A}_m} (\mathbf{e}_m - \gamma \mathbf{p}_j) x_j = \mathbf{e},$ $x_j \qquad \dots \qquad \geq \quad 0, \, \forall j,$

where \mathbf{e}_i is the unit vector with 1 at the *i*th position and 0 everywhere else.

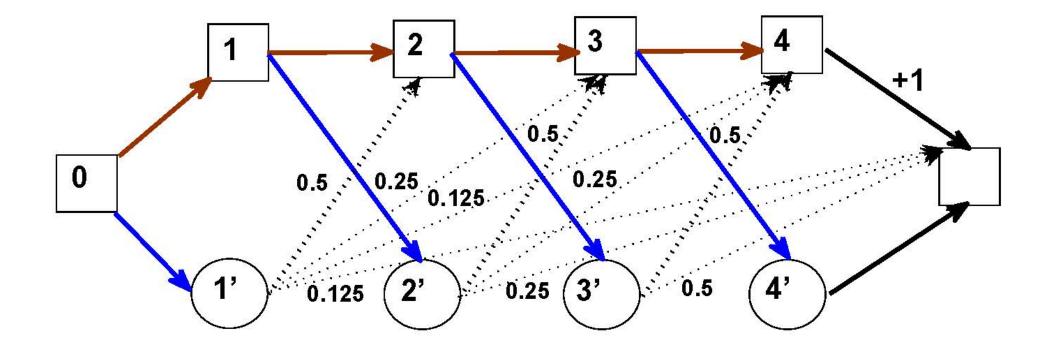
Interpretation of the Dual of the RL-LP

Variable x_j , $j \in A_i$, is the state-action frequency or called flux, or the expected present value of the number of times that an individual is in state i and takes state-action j.

Thus, solving the problem entails choosing a state-action frequencies/fluxes that minimizes the expected present value of total costs for the infinite horizon, where the RHS is (1; 1; 1; 1; 1; 1; 1):

x:	(0_1)	(0_2)	(1_1)	(1_2)	(2_1)	(2_2)	(3_1)	(3_2)	(4_1)	(5_1)	b
c:	0	0	0	0	0	0	0	0	1	0	
(0)	1	1	0	0	0	0	0	0	0	0	1
(1)	$-\gamma$	0	1	1	0	0	0	0	0	0	1
(2)	0	$-\gamma/2$	$-\gamma$	0	1	1	0	0	0	0	1
(3)	0	$-\gamma/4$	0	$-\gamma/2$	$-\gamma$	0	1	1	0	0	1
(4)	0	$-\gamma/8$	0	$-\gamma/4$	0	$-\gamma/2$	$-\gamma$	0	1	0	1
(5)	0	$-\gamma/8$	0	$-\gamma/4$	0	$-\gamma/2$	0	$-\gamma$	$-\gamma$	$1-\gamma$	1

where state 5 is the absorbing state that has a infinite loops to itself.



The optimal dual solution is

$$\begin{aligned} x_{01}^* &= 1, \ x_{11}^* = 1 + \gamma, \ x_{21}^* = 1 + \gamma + \gamma^2, \ x_{32}^* = 1 + \gamma + \gamma^2 + \gamma^3, \ x_{41}^* = 1, \\ x_{51}^* &= \frac{1 + 2\gamma + \gamma^2 + \gamma^3 + \gamma^4}{1 - \gamma}. \end{aligned}$$

(Sect2_2MazerunLP.m of Chapter 2)

The Maze Runner Example: Complementarity Condition

The LP optimal Cost-to-Go values are $y_1^* = 0, y_1^* = 0, y_2^* = 0, y_3^* = 0, y_4^* = 1$:

$$\begin{array}{ll} \text{maximize}_{\textbf{y}} & y_0 + y_1 + y_2 + y_3 + y_4 + y_5 \\ \text{subject to} & y_0 - \gamma y_1 & \leq 0, \ (x_{01}^* = 1) \\ & y_0 - \gamma (0.5y_2 + 0.25y_3 + 0.125y_4) & \leq 0, \ (x_{02}^* = 0) \\ & y_1 - \gamma y_2 & \leq 0, \ (x_{11}^* = 1 + \gamma) \\ & y_1 - \gamma (0.5y_3 + 0.25y_4) & \leq 0, \ (x_{12}^* = 0) \\ & y_2 - \gamma y_3 & \leq 0, \ (x_{21}^* = 1 + \gamma + \gamma^2) \\ & y_2 - \gamma (0.5y_4) & \leq 0, \ (x_{22}^* = 0) \\ & y_3 - \gamma y_4 & \leq 0, \ (x_{31}^* = 0) \\ & y_3 & \leq 0, \ (x_{32}^* = 1 + \gamma + \gamma^2 + \gamma^3) \\ & y_4 - \gamma y_5 & \leq 1, \ (x_{41}^* = 1) \\ & y_5 - \gamma y_5 & = 0. \ (x_{51}^* = \frac{1 + 2\gamma + \gamma^2 + \gamma^3 + \gamma^4}{1 - \gamma}) \end{array}$$

Dual of Information Markets

$$\begin{array}{ll} \max & \pi^T \mathbf{X} - z \\ \text{s.t.} & A \mathbf{X} - \mathbf{e} \cdot z & \leq \mathbf{0}, \\ & \mathbf{X} & \leq \mathbf{q}, \\ & \mathbf{x} & > 0. \end{array}$$

 $\pi^T \mathbf{x}$: the optimistic amount can be collected.

z: the worst-case amount need to pay to the winning bids.

$$\begin{array}{ll} \min & \mathbf{q}^T \mathbf{y} \\ \text{s.t.} & A^T \mathbf{p} + \mathbf{y} & \geq \pi, \\ & \mathbf{e}^T \mathbf{p} & = 1, \\ & (\mathbf{p}, \mathbf{y}) & \geq 0. \end{array}$$

p represents the state prices or probability distributions.

Dual Interpretation: Regression using Important Data Sampling

Note that

$$y_j = \max\{0, \ \pi_j - \mathbf{a}_j^T \mathbf{p}\}, \ \forall j.$$

so that

$$\begin{array}{ll} \min & \sum_{j} \max\{0, \ \pi_{j} - \mathbf{a}_{j}^{T}\mathbf{p}\} \\ \text{s.t.} & \mathbf{e}^{T}\mathbf{p} & = 1, \\ & \mathbf{p} & \geq 0. \end{array}$$

The max $\{0, \cdot\}$ is called ReLu function in AI.

Dual Interpretation: Find the probability estimations such that low-bids are automatically uncounted/removed. (Sect2_2WorldcupLP.m of Chapter 2)

World Cup Information Market Result

Order:	#1	#2	#3	#4	#5	State Price
Argentina	1	0	1	1	0	0.2
Brazil	1	0	0	1	1	0.35
Italy	1	0	1	1	0	0.2
Germany	0	1	0	1	1	0.25
France	0	0	1	0	0	0
Bidding Price: π	0.75	0.35	0.4	0.95	0.75	
Quantity limit: q	10	5	10	10	5	
Order fill: x *	5	5	5	0	5	

Question: How to make the dual prices unique and the market Online?

Recall SNL: SOCP Relaxation for SNL

System of SOCP Feasibility for $\mathbf{x}_i \in R^2$:

$$\begin{aligned} \|\mathbf{x}_i - \mathbf{x}_j\| &\leq d_{ij}, \ \forall \ (i,j) \in N_x, \ i < j, \\ \|\mathbf{a}_k - \mathbf{x}_j\| &\leq d_{kj}, \ \forall \ (k,j) \in N_a, \end{aligned}$$

where \mathbf{a}_k are points whose locations are known.

Consider the case where a single unknown point \mathbf{x}_1 is connected to three anchors \mathbf{a}_k , k = 1, 2, 3 on \mathbb{R}^2 :

$$\|\mathbf{a}_k - \mathbf{x}\| \le d_k, \ k = 1, 2, 3$$

Optimality Condition of the SOCP Relaxation: One Sensor and Three Anchors

Then, the optimality conditions would be

$$\mathbf{z}_k = (\lambda_k/d_k)(\mathbf{a}_k - \mathbf{x})$$

and

$$\sum_{k} (\lambda_k/d_k) (\mathbf{a}_k - \mathbf{x}) = \mathbf{0}$$

where λ_k 's are the three dual variables. It represents a positive force in direction $\mathbf{a}_k - \mathbf{x}$, and the total forces should be balanced along the three directions.

If the true location of the sensor, say **b**, is in the convex-hull of the three anchors, these conditions are achievable so that the optimal solution of the SOCP relaxation is exact, that is, $\mathbf{x}^* = \mathbf{b}$.

What happen if it is NOT?

Recall SDP Relaxation for SNL

Find a symmetric matrix $Z \in \mathbf{R}^{(2+n) \times (2+n)}$ such that

$$\begin{split} Z_{1:2,1:2} &= I \\ (\mathbf{0}; \mathbf{e}_i - \mathbf{e}_j) (\mathbf{0}; \mathbf{e}_i - \mathbf{e}_j)^T \bullet Z &= d_{ij}^2, \ \forall \ i, j \in N_x, \ i < j, \\ (\mathbf{a}_k; - \mathbf{e}_j) (\mathbf{a}_k; - \mathbf{e}_j)^T \bullet Z &= d_{kj}^2, \ \forall \ k, j \in N_a, \\ Z & \succeq \mathbf{0}. \end{split}$$

This is semidefinite programming feasibility system (with a null objective).

When this relaxation is exact?

One case is that the single unknown point \mathbf{x}_1 is connected to three anchors \mathbf{a}_k , k = 1, 2, 3. In general, if the rank of a feasible Z is 2, then it solves the original graph relaxation problem. **Duality Theorem for SNL**

Theorem 3 Let \overline{Z} be a feasible solution for SDP and \overline{U} be an optimal slack matrix of the dual. Then, 1. complementarity condition holds: $\overline{Z} \bullet \overline{U} = 0$ or $\overline{Z}\overline{U} = 0$;

- 2. $\textit{Rank}(\bar{Z}) + \textit{Rank}(\bar{U}) \leq 2 + n;$
- 3. $\operatorname{Rank}(\bar{Z}) \geq 2$ and $\operatorname{Rank}(\bar{U}) \leq n.$

An immediate result from the theorem is the following:

Corollary 2 If an optimal dual slack matrix has rank n, then every solution of the SDP has rank 2, that is, the SDP relaxation solves the original problem exactly.

29

Theoretical Analyses on SNL-SDP Relaxation

A sensor network is 2-universally-localizable (UL) if there is a unique localization in \mathbb{R}^2 and there is no $x_j \in \mathbb{R}^h, j = 1, ..., n$, where h > 2, such that

$$\|x_i - x_j\|^2 = d_{ij}^2, \ \forall i, j \in N_x, \ i < j,$$
$$\|(a_k; \mathbf{0}) - x_j\|^2 = \hat{d}_{kj}^2, \ \forall k, j \in N_a.$$

The latter says that the problem cannot be localized in a higher dimension space where anchor points are simply augmented to $(a_k; \mathbf{0}) \in \mathbf{R}^h$, k = 1, ..., m.

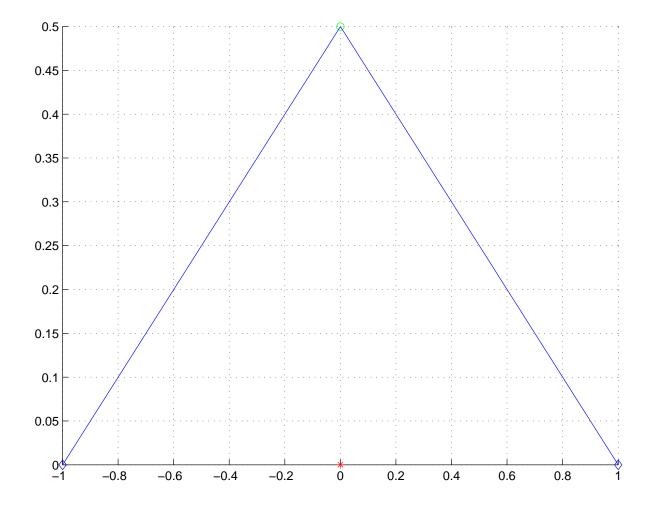


Figure 1: One sensor-Two anchors: Not Localizable

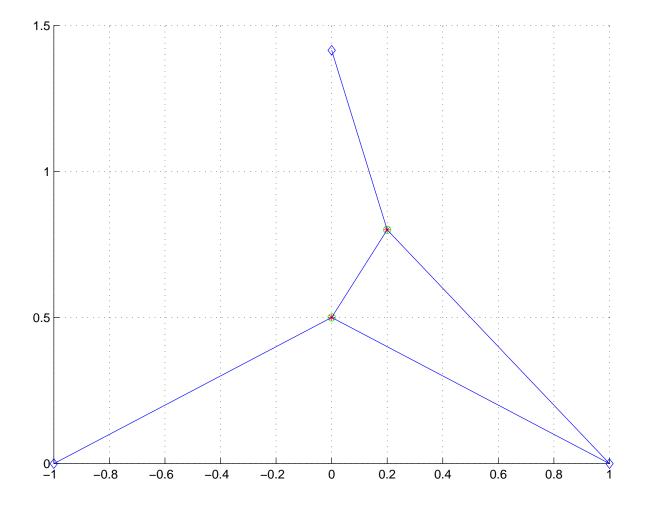


Figure 2: Two sensor-Three anchors: (Strongly) Localizable

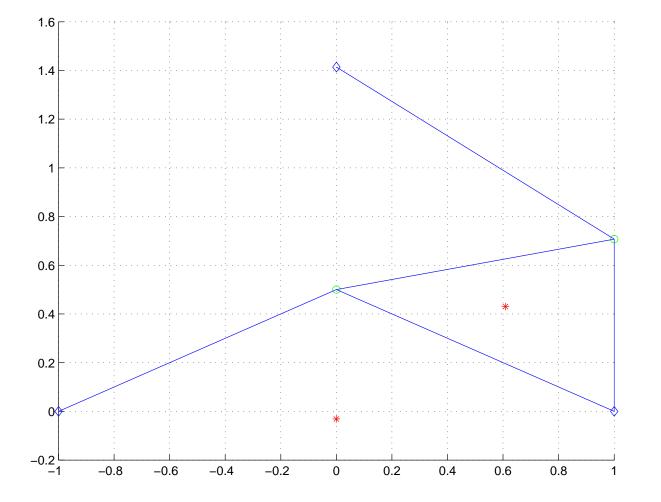


Figure 3: Two sensor-Three anchors: Not Localizable

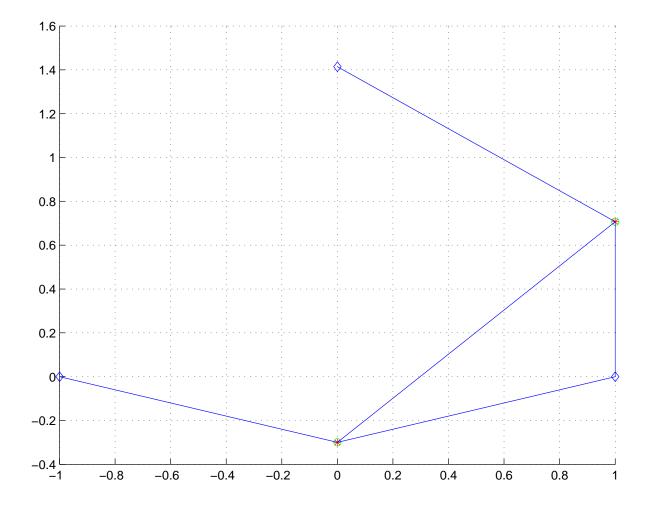


Figure 4: Two sensor-Three anchors: (Strongly) Localizable

34

Universally-Localizable Problems (ULP)

Theorem 4 The following SNL problems are Universally-Localizable:

- If every edge length is specified, then the sensor network is 2-universally-localizable (Schoenberg 1942).
- There is a sensor network (trilateral graph), with O(n) edge lengths specified, that is 2-universally-localizable (So 2007).
- If one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is 2-universally-localizable (So and Y 2005).

(SDPsnldsdp.m of Chapter 6)

ULPs Can be Localized as Convex Optimization

Theorem 5 (So and Y 2005) The following statements are equivalent:

- 1. The sensor network is 2-universally-localizable;
- 2. The max-rank solution of the SDP relaxation has rank 2;
- 3. The solution matrix has $Y = X^T X$ or $Tr(Y X^T X) = 0$.

When an optimal dual (stress) slack matrix has rank n, then the problem is 2-strongly-localizable-problem (SLP). This is a sub-class of ULP.

Example: if one sensor with its edge lengths to three anchors (in general positions) are specified, then it is 2-strongly-localizable.

Unstructured Optimization

Now consider the general (constrained) optimization (GCO) problem:

(P) minimize $f(\mathbf{x})$ subject to $c_i(\mathbf{x})~(\leq,~=\geq)~0~~i=1,...,m$

Optimality Condition Theories help to identify and verify when a solution is optimal.

General Optimization: First-Order Necessary Conditions for Constrained Optimization

Consider constraints $\{x : h(x) = 0, c(x) \ge 0.\}$

Theorem 6 (*First-Order or KKT Optimality Condition*) Let $\overline{\mathbf{x}}$ be a (local) minimizer of (GCO) and it is a regular point of $\{\mathbf{x} : \mathbf{h}(\mathbf{x}) = \mathbf{0}, c_i(\mathbf{x}) = 0, i \in A_{\overline{\mathbf{x}}}\}$. Then, for some multipliers $(\overline{\mathbf{y}}, \overline{\mathbf{s}} \ge \mathbf{0})$

$$\nabla f(\bar{\mathbf{x}}) = \bar{\mathbf{y}}^T \nabla \mathbf{h}(\bar{\mathbf{x}}) + \bar{\mathbf{s}}^T \nabla \mathbf{c}(\bar{\mathbf{x}})$$
(3)

and (complementarity slackness)

 $\bar{s}_i c_i(\bar{\mathbf{x}}) = 0, \ \forall i.$

 $\overline{\mathbf{x}}$ being a regular point is often referred as a Constraint Qualification condition.

A solution who satisfies these conditions is called an KKT point or solution of (GCO) – any local minimizer \overline{x} , if it is also a regular point, must be an KKT solution; but the reverse may not be true.

KKT via the Lagrangian Function

It is more convenient to introduce the Lagrangian Function associated with generally constrained optimization:

$$L(\mathbf{x},\mathbf{y},\mathbf{s}) = f(\mathbf{x}) - \mathbf{y}^T \mathbf{h}(\mathbf{x}) - \mathbf{s}^T \mathbf{c}(\mathbf{x}),$$

where multipliers **y** of the equality constraints are "free" and $s \ge 0$ for the "greater or equal to" inequality constraints, so that the KKT condition (3) can be written as

 $\nabla_{\mathbf{x}} L(\overline{\mathbf{x}},\overline{\mathbf{y}},\overline{\mathbf{s}}) = \mathbf{0}.$

Lagrangian Function can be viewed as a "Penalty" function aggregated with the original objective function plus the penalized terms on constraint violations.

In theory, one can adjust the penalty multipliers $(\mathbf{y}, \mathbf{s} \ge \mathbf{0})$ to repeatedly solve the following so-called Lagrangian Relaxation Problem:

 $(LRP) \quad \min_{\mathbf{X}} \quad L(\mathbf{X},\mathbf{Y},\mathbf{S}).$

Summary of KKT Conditions for More General GCO

(GCO)

min
$$f(\mathbf{x})$$

s.t. $c_i(\mathbf{x})$ $(\leq,=,\geq)$ 0, i=1,...,m, (Original Problem Constraints (OPC))

the Lagrangian Function is given by

$$L(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) - \mathbf{y}^T \mathbf{c}(\mathbf{x}) = f(\mathbf{x}) - \sum_{i=1}^m y_i c_i(\mathbf{x}).$$

For any feasible point **x** of (GCO) define the active constraint set by $A_{\mathbf{x}} = \{i : c_i(\mathbf{x}) = 0\}$. Let $\overline{\mathbf{x}}$ be a local minimizer for (GCO) and $\overline{\mathbf{x}}$ is a regular point on the hypersurface of the active constraints Then there exist multipliers $\overline{\mathbf{y}}$ such that

$$\nabla f(\bar{\mathbf{x}}) = \bar{\mathbf{y}}^T \nabla \mathbf{c}(\bar{\mathbf{x}})$$
 (Lagrangian Derivative Conditions (LDC))

$$\bar{y}_i \quad (\leq,' \text{ free}', \geq) \quad 0, \ i = 1, ..., m,$$
 (Multiplier Sign Constraints (MSC))

$$\bar{y}_i c_i(\bar{\mathbf{x}}) = 0,$$
 (Complementarity Slackness Conditions (CSC)).

Second-Order Necessary Conditions for Constrained Optimization

Now in addition we assume all functions are in C^2 , that is, twice continuously differentiable. Recall the tangent linear sub-space at $\overline{\mathbf{x}}$:

$$T_{\overline{\mathbf{x}}} := \{ \mathbf{z} : \nabla \mathbf{h}(\overline{\mathbf{x}}) \mathbf{z} = \mathbf{0}, \ \nabla c_i(\overline{\mathbf{x}}) \mathbf{z} = 0 \ \forall i \in \mathcal{A}_{\overline{\mathbf{x}}} \}.$$

Theorem 7 Let $\overline{\mathbf{x}}$ be a (local) minimizer of (GCO) and a regular point of hypersurface $\{\mathbf{x} : \mathbf{h}(\mathbf{x}) = \mathbf{0}, c_i(\mathbf{x}) = 0, i \in A_{\overline{\mathbf{x}}}\}$, and let $\overline{\mathbf{y}}, \overline{\mathbf{s}}$ denote Lagrange multipliers such that $(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{s}})$ satisfies the (first-order) KKT conditions of (GCO). Then, it is necessary to have

 $\mathbf{d}^T \, \nabla^2_{\mathbf{X}} L(\bar{\mathbf{X}}, \bar{\mathbf{y}}, \bar{\mathbf{s}}) \mathbf{d} \geq 0 \qquad \forall \, \mathbf{d} \in T_{\bar{\mathbf{X}}}.$

The Hessian of the Lagrangian function need to be positive semidefinite on the tangent-space.

Second-Order Sufficient Conditions for GCO

Theorem 8 Let $\overline{\mathbf{x}}$ be a regular point of (GCO) with equality constraints only and let $\overline{\mathbf{y}}$ be the Lagrange multipliers such that $(\overline{\mathbf{x}}, \overline{\mathbf{y}})$ satisfies the (first-order) KKT conditions of (GCO). Then, if in addition

$$\mathbf{d}^T \, \nabla^2_{\mathbf{x}} L(\bar{\mathbf{x}}, \bar{\mathbf{y}}) \mathbf{d} > 0 \qquad \forall \, \mathbf{0} \neq \mathbf{d} \in T_{\bar{\mathbf{x}}},$$

then $\overline{\mathbf{x}}$ is a local minimizer of (GCO).

See the proof in Chapter 11.5 of LY.

The SOSC for general (GCO) is proved in Chapter 11.8 of LY.

min
$$(x_1)^2 + (x_2)^2$$
 s.t. $(x_1)^2/4 + (x_2)^2 - 1 = 0$

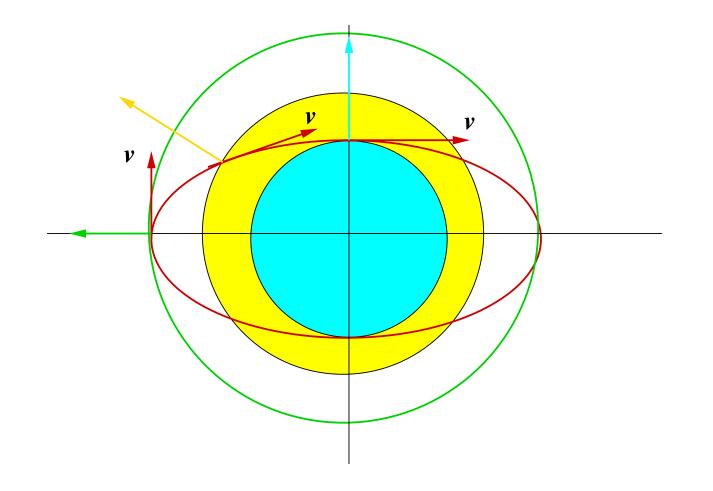


Figure 5: FONC and SONC for Constrained Minimization

More General Lagrangian Functions and The Lagrangian Dual

Consider the general constrained optimization again:

For Lagrange Multipliers.

$$Y := \{ y_i \quad (\leq,' \text{ free}', \geq) \quad 0, \ i = 1, ..., m \},\$$

the Lagrangian Function is again given by

$$L(\mathbf{x},\mathbf{y}) = f(\mathbf{x}) - \mathbf{y}^T \mathbf{c}(\mathbf{x}) = f(\mathbf{x}) - \sum_{i=1}^m y_i c_i(\mathbf{x}), \ \mathbf{y} \in Y.$$

We now develop the Lagrangian Duality theory as an alternative to Conic Duality theory. For general nonlinear constraints, the Lagrangian Duality theory is more applicable.

Toy Example Again

minimize
$$(x_1 - 1)^2 + (x_2 - 1)^2$$

subject to $x_1 + 2x_2 - 1 \le 0,$
 $2x_1 + x_2 - 1 \le 0.$

$$L(\mathbf{x},\mathbf{y}) = f(\mathbf{x}) - \mathbf{y}^T \mathbf{c}(\mathbf{x}) = f(\mathbf{x}) - \sum_{i=1}^2 y_i c_i(\mathbf{x}) =$$

 $= (x_1 - 1)^2 + (x_2 - 1)^2 - y_1(x_1 + 2x_2 - 1) - y_2(2x_1 + x_2 - 1), (y_1; y_2) \le \mathbf{0}$

where

$$\nabla L_x(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} 2(x_1 - 1) - y_1 - 2y_2 \\ 2(x_2 - 1) - 2y_1 - y_2 \end{pmatrix}$$

The Lagrangian Relaxation Problem

For given multipliers $\mathbf{y} \in Y$, consider problem

$$\begin{array}{ll} (LRP) & \mbox{inf} & L(\mathbf{x},\mathbf{y}) = f(\mathbf{x}) - \mathbf{y}^T \mathbf{c}(\mathbf{x}) \\ & \mbox{s.t.} & \mathbf{x} \in R^n. \end{array}$$

Again, \mathbf{y}_i can be viewed as a penalty weight/parameter to penalize constraint violation of $c_i(\mathbf{x})$. In the toy example, for given $(y_1; y_2) \leq \mathbf{0}$, the LRP is:

inf
$$(x_1 - 1)^2 + (x_2 - 1)^2 - y_1(x_1 + 2x_2 - 1) - y_2(2x_1 + x_2 - 1)$$

s.t. $(x_1; x_2) \in \mathbb{R}^2$,

and it has a close form solution **x** for any given **y**:

$$x_1 = \frac{y_1 + 2y_2}{2} + 1$$
 and $x_2 = \frac{2y_1 + y_2}{2} + 1$

with the minimal or infimum value function $= -1.25y_1^2 - 1.25y_2^2 - 2y_1y_2 - 2y_1 - 2y_2$.

Inf-Value Function as the Dual Objective

For any $\mathbf{y} \in Y$, the minimal value function (including unbounded from below or infeasible cases) and the Lagrangian Dual Problem (LDP) are given by:

$$\begin{split} \phi(\mathbf{y}) &:= & \inf_{\mathbf{X}} \quad L(\mathbf{X},\mathbf{y}), \quad \text{s.t.} \quad \mathbf{X} \in R^n. \\ (LDP) \quad \sup_{\mathbf{y}} \quad \phi(\mathbf{y}), \quad \text{s.t.} \quad \mathbf{y} \in Y. \end{split}$$

Theorem 9 The Lagrangian dual objective $\phi(\mathbf{y})$ is a concave function.

Proof: For any given two multiply vectors $\mathbf{y}^1 \in Y$ and $\mathbf{y}^2 \in Y$,

$$\begin{split} \phi(\alpha \mathbf{y}^1 + (1 - \alpha) \mathbf{y}^2) &= \inf_{\mathbf{x}} L(\mathbf{x}, \alpha \mathbf{y}^1 + (1 - \alpha) \mathbf{y}^2) \\ &= \inf_{\mathbf{x}} [f(\mathbf{x}) - (\alpha \mathbf{y}^1 + (1 - \alpha) \mathbf{y}^2)^T \mathbf{c}(\mathbf{x})] \\ &= \inf_{\mathbf{x}} [\alpha f(\mathbf{x}) + (1 - \alpha) f(\mathbf{x}) - \alpha (\mathbf{y}^1)^T \mathbf{c}(\mathbf{x}) - (1 - \alpha) (\mathbf{y}^2)^T \mathbf{c}(\mathbf{x})] \\ &= \inf_{\mathbf{x}} [\alpha L(\mathbf{x}, \mathbf{y}^1) + (1 - \alpha) L(\mathbf{x}, \mathbf{y}^2)] \\ &\geq \alpha [\inf_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}^1)] + (1 - \alpha) [\inf_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}^2)] \\ &= \alpha \phi(\mathbf{y}^1) + (1 - \alpha) \phi(\mathbf{y}^2), \end{split}$$

Dual Objective Establishes a Lower Bound

Theorem 10 (Weak duality theorem) For every $\mathbf{y} \in Y$, the Lagrangian dual function $\phi(\mathbf{y})$ is less or equal to the infimum value of the original GCO problem.

Proof:

$$\begin{split} \phi(\mathbf{y}) &= \inf_{\mathbf{X}} \left\{ f(\mathbf{X}) - \mathbf{y}^T \mathbf{c}(\mathbf{X}) \right\} \\ &\leq \inf_{\mathbf{X}} \left\{ f(\mathbf{X}) - \mathbf{y}^T \mathbf{c}(\mathbf{X}) \text{ s.t. } \mathbf{c}(\mathbf{X}) (\leq, =, \geq) \mathbf{0} \right\} \\ &\leq \inf_{\mathbf{X}} \left\{ f(\mathbf{X}) : \text{ s.t. } \mathbf{c}(\mathbf{X}) (\leq, =, \geq) \mathbf{0} \right\}. \end{split}$$

The first inequality is from the fact that the unconstrained inf-value is no greater than the constrained one.

The second inequality is from $\mathbf{c}(\mathbf{x})(\leq,=,\geq)\mathbf{0}$ and $\mathbf{y}(\leq,'$ free', $\geq)\mathbf{0}$ imply $-\mathbf{y}^T\mathbf{c}(\mathbf{x})\leq 0$.

Lagrangian Strong Duality Theorem

Theorem 11 Let (GCO) be a convex minimization problem and the infimum f^* of (GCO) be finite, and the supremum of (LDP) be ϕ^* . In addition, let (GCO) have an interior-point feasible solution with respect to inequality constraints, that is, there is $\hat{\mathbf{x}}$ such that all inequality constraints are strictly held. Then, $f^* = \phi^*$, and (LDP) admits a maximizer \mathbf{y}^* such that

 $\phi(\mathbf{y}^*) = f^*.$

Furthermore, if (GCO) admits a minimizer \mathbf{x}^* , then

$$y_i^* c_i(\mathbf{x}^*) = 0, \ \forall i = 1, ..., m.$$

The assumption of "interior-point feasible solution" is called Constraint Qualification condition, which was also needed as a condition to prove the strong duality theorem for general Conic Linear Optimization.

Note that the problem would be a convex minimization problem if all equality constraints are hyperplane or affine functions $c_i(\mathbf{x}) = \mathbf{a}_i \mathbf{x} - b_i$, all other level sets are convex.

The Lagrangian Dual with Primal Constraints

Consider the constrained problem with convex set constraints

$$\begin{array}{ll} (GCO) & \mbox{inf} & f(\mathbf{X}) \\ & \mbox{s.t.} & \mathbf{C}_i(\mathbf{X}) \; (\leq,=,\geq) \; 0, \; i=1,...,m, \\ & \mbox{} \mathbf{X} \in \Omega \subset R^n. \end{array}$$

Typically, Ω has a simple form such as the cone

$$\Omega = R_+^n = \{ \mathbf{x} : \ \mathbf{x} \ge \mathbf{0} \}.$$

Using the (partial) Lagrangian Function:

$$L(\mathbf{x},\mathbf{y})=f(\mathbf{x})-\mathbf{y}^T\mathbf{c}(\mathbf{x}),\ \mathbf{y}\in Y;$$

we can define the dual objective function of y be

$$\phi(\mathbf{y}) := \inf_{\mathbf{x}} L(\mathbf{x}, \mathbf{y})$$

s.t. $\mathbf{x} \in \Omega$.

The similar weak and strong duality theorem also holds.

Rules to Construct the Explicit Lagrangian Dual

- All multipliers are dual variables.
- Derive the LDC

 $\nabla f(\mathbf{x}) = \mathbf{y}^T \nabla \mathbf{c}(\mathbf{x})$

If no **x** appeared in an equation, set it as an equality constraint for the dual; otherwise, express **x** in terms of **y** and replace **x** in the Lagrange function, which becomes the Dual objective. (This may be very difficult ...)

• Add the MSC as dual constraints.

The Lagrangian Dual of LP with the Log-Barrier I

For a fixed $\mu > 0$, consider the problem

$$\begin{array}{ll} \min \quad \mathbf{c}^T \mathbf{x} - \mu \sum_{j=1}^n \log(x_j) \\ \text{s.t.} \qquad & A \mathbf{x} = \mathbf{b}, \\ & \mathbf{x} \geq \mathbf{0} \end{array}$$

Again, the non-negativity constraints can be "ignored" if the feasible region has an "interior", that is, any minimizer must have $\mathbf{x}(\mu) > \mathbf{0}$. Thus, the Lagrangian function would be simply given by

$$L(\mathbf{x},\mathbf{y}) = \mathbf{c}^T \mathbf{x} - \mu \sum_{j=1}^n \log(x_j) - \mathbf{y}^T (A\mathbf{x} - \mathbf{b}) = (\mathbf{c} - A^T \mathbf{y})^T \mathbf{x} - \mu \sum_{j=1}^n \log(x_j) + \mathbf{b}^T \mathbf{y}.$$

Then, the Lagrangian dual objective (we implicitly need x > 0 for the function to be defined)

$$\phi(\mathbf{y}) := \inf_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}) = \inf_{\mathbf{x}} \left[(\mathbf{c} - A^T \mathbf{y})^T \mathbf{x} - \mu \sum_{j=1}^n \log(x_j) + \mathbf{b}^T \mathbf{y} \right]$$

The Lagrangian Dual of LP with the Log-Barrier II

First, from the view point of the dual, the dual needs to choose **y** such that $\mathbf{c} - A^T \mathbf{y} > \mathbf{0}$, since otherwise the primal can choose $\mathbf{x} > \mathbf{0}$ to make $\phi(\mathbf{y})$ go to $-\infty$.

Now for any given y such that $\mathbf{c} - A^T \mathbf{y} > \mathbf{0}$, the inf problem has a unique finite close-form minimizer **x**

$$x_j = \frac{\mu}{(\mathbf{c} - A^T \mathbf{y})_j}, \ \forall j = 1, \dots, n.$$

Thus,

$$\phi(\mathbf{y}) = \mathbf{b}^T \mathbf{y} + \mu \sum_{j=1}^n \log(\mathbf{c} - A^T \mathbf{y})_j + n \mu (1 - \log(\mu)).$$

Therefore, the dual problem, for any fixed μ , can be written as

$$\max_{\mathbf{y}} \ \phi(\mathbf{y}) = n \mu (1 - \log(\mu)) + \max_{\mathbf{y}} \left[\mathbf{b}^T \mathbf{y} + \mu \sum_{j=1}^n \log(\mathbf{c} - A^T \mathbf{y})_j \right].$$

This is actually the LP dual with the Log-Barrier on dual inequality constraints $\mathbf{c} - A^T \mathbf{y} \geq \mathbf{0}$.

The gradient and Hessian of the Dual Objective ϕ

Let $\mathbf{x}(\mathbf{y})$ be a minimizer. Then

$$\phi(\mathbf{y}) = f(\mathbf{x}(\mathbf{y})) - \mathbf{y}^T \mathbf{h}(\mathbf{x}(\mathbf{y}))$$

Thus,

$$\begin{aligned} \nabla \phi(\mathbf{y}) &= \nabla f(\mathbf{x}(\mathbf{y}))^T \nabla \mathbf{x}(\mathbf{y}) - \mathbf{y}^T \nabla \mathbf{h}(\mathbf{x}(\mathbf{y})) \nabla \mathbf{x}(\mathbf{y}) - \mathbf{h}(\mathbf{x}(\mathbf{y})) \\ &= (\nabla f(\mathbf{x}(\mathbf{y}))^T - \mathbf{y}^T \nabla \mathbf{h}(\mathbf{x}(\mathbf{y}))) \nabla \mathbf{x}(\mathbf{y}) - \mathbf{h}(\mathbf{x}(\mathbf{y})) \\ &= -\mathbf{h}(\mathbf{x}(\mathbf{y})). \end{aligned}$$

Similarly, we can derive

$$abla^2 \phi(\mathbf{y}) = -
abla \mathbf{h}(\mathbf{x}(\mathbf{y})) \left(
abla_{\mathbf{x}}^2 L(\mathbf{x}(\mathbf{y}), \mathbf{y})
ight)^{-1}
abla \mathbf{h}(\mathbf{x}(\mathbf{y}))^T,$$

where $\nabla_{\mathbf{x}}^2 L(\mathbf{x}(\mathbf{y}), \mathbf{y})$ is the Hessian of the Lagrangian function that is assumed to be positive definite at any (local) minimizer.

The Toy Example

$$\begin{array}{ll} \mbox{minimize} & (x_1 - 1)^2 + (x_2 - 1)^2 \\ \mbox{subject to} & x_1 + 2x_2 - 1 = 0, \quad 2x_1 + x_2 - 1 = 0. \\ \\ L(\mathbf{x}, \mathbf{y}) = (x_1 - 1)^2 + (x_2 - 1)^2 - y_1(x_1 + 2x_2 - 1) - y_2(2x_1 + x_2 - 1). \\ & x_1 = 0.5y_1 + y_2 + 1, \quad x_2 = y_1 + 0.5y_2 + 1. \\ \phi(\mathbf{y}) = -1.25y_1^2 - 1.25y_2^2 - 2y_1y_2 - 2y_1 - 2y_2. \\ & \nabla \phi(\mathbf{y}) = \left(\begin{array}{c} 2.5y_1 + 2y_2 + 2 \\ 2y_1 + 2.5y_2 1 + 2 \end{array} \right), \\ \\ \nabla^2 \phi(\mathbf{y}) = - \left(\begin{array}{c} 1 & 2 \\ 2 & 1 \end{array} \right) \left(\begin{array}{c} 2 & 0 \\ 0 & 2 \end{array} \right)^{-1} \left(\begin{array}{c} 1 & 2 \\ 2 & 1 \end{array} \right)^T = - \left(\begin{array}{c} 2.5 & 2 \\ 2 & 2.5 \end{array} \right) \\ \end{array}$$

The Fisher Example again

minimize
$$-5\log(2x_1+x_2)-8\log(3x_3+x_4)$$

subject to
$$x_1 + x_3 = 1$$
, $x_2 + x_4 = 1$, $x \ge 0$.

 $L(\mathbf{x}(\geq \mathbf{0}), \mathbf{y}) = -5\log(2x_1 + x_2) - 8\log(3x_3 + x_4) - y_1(x_1 + x_3 - 1) - y_2(x_2 + x_4 - 1).$

Start from $\mathbf{y}^0 > \mathbf{0}$, at the kth step, compute \mathbf{x}^{k+1} from

$$\mathbf{x}^{k+1} = \arg\min_{\mathbf{x} \geq \mathbf{0}} \ L(\mathbf{x}(\geq \mathbf{0}), \mathbf{y}^k),$$

then let

$$\mathbf{y}^{k+1} = \mathbf{y}^k - \frac{1}{\beta} (A\mathbf{x}^{k+1} - \mathbf{b}).$$

Note that **x** in each iteration has a close-form solution! (FisherexampleLMM.m of Chapter 14)

Infeasibility Certificate (Farkas Lemma) for Nonlinear Constraints I

Consider the convex constrained system:

where $c_i(.)$ are concave functions and the Lagrangian Function is given by

$$L(\mathbf{x},\mathbf{y}) = -\mathbf{y}^T \mathbf{c}(\mathbf{x}) = -\sum_{i=1}^m y_i c_i(\mathbf{x}), \ \mathbf{y} \ge \mathbf{0}.$$

Again, let

 $\phi(\mathbf{y}) := \inf_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}).$

Theorem 12 If there exists $y \ge 0$ such that $\phi(y) > 0$, then (CSS) is infeasible.

The proof is directly from the dual objective function $\phi(\mathbf{y})$ is a homogeneous function and the dual has its objective value unbounded from above.

Infeasibility Certificate (Farkas Lemma) for Nonlinear Constraints II

Consider the system, for a parameter $b \ge 0$,

$$-x_1^2 - (x_2 - 1)^2 + b \ge 0, \quad (y_1 \ge 0)$$
$$-x_1^2 - (x_2 + 1)^2 + b \ge 0, \quad (y_2 \ge 0)$$

$$L(\mathbf{x}, \mathbf{y}) = y_1(x_1^2 + (x_2 - 1)^2 - b) + y_2(x_1^2 + (x_2 + 1)^2 - b).$$

Then, if $y_1 + y_2 \neq 0$,

$$\phi(\mathbf{y}) = \frac{4y_1y_2 - b(y_1 + y_2)^2}{y_1 + y_2}, \quad (y_1, y_2) \ge 0$$

When $b \ge 1$, $\phi(\mathbf{y}) \le 0$; and, otherwise, one can choose $y_1 = y_2 = y > 0$ such that

$$\phi(\mathbf{y}) = 2(1-b)y > 0$$

which implies that the original constrained system is infeasible.

The Augmented Lagrangian Function

For equality constraints $\{x : h(x) = 0\}$, in both theory and practice, we can consider an augmented Lagrangian function (ALF)

$$L_a(\mathbf{x}, \mathbf{y}, \mathbf{s}) = f(\mathbf{x}) - \mathbf{y}^T \mathbf{h}(\mathbf{x}) - \mathbf{s}^T \mathbf{c}(\mathbf{x}) + \frac{\rho}{2} \|\mathbf{h}(\mathbf{x})\|^2$$

for some positive parameter ρ , which corresponds to an equivalent problem of (??):

$$f^* := \min \quad f(\mathbf{x}) + \frac{\beta}{2} \|\mathbf{h}(\mathbf{x})\|^2 \quad \text{ s.t. } \mathbf{h}(\mathbf{x}) = \mathbf{0}.$$

Note that, although at feasibility the additional square term in objective is redundant, it helps to improve strict convexity of the Lagrangian function.

For the Fisher example:

$$\begin{split} &L_a(\mathbf{x}(\geq \mathbf{0}), \mathbf{y}) \\ = & -5\log(2x_1 + x_2) - 8\log(3x_3 + x_4) - y_1(x_1 + x_3 - 1) - y_2(x_2 + x_4 - 1) \\ & + \frac{\beta}{2}((x_1 + x_3 - 1)^2 + (x_2 + x_4 - 1)^2). \end{split}$$

Fisherexample using ALMM? Not close-form solution anymore - more on this issue latter.

The Augmented Lagrangian Dual

Now the dual function:

$$\phi_a(\mathbf{y}) = \min_{\mathbf{x} \in X} L_a(\mathbf{x}, \mathbf{y}); \tag{4}$$

and the dual problem

$$(f^* \ge)\phi_a^* := \max \quad \phi_a(\mathbf{y}).$$
 (5)

Note that the dual function approximately satisfies $\frac{1}{\beta}$ -Lipschitz condition (see Chapter 14 of L&Y). For the convex optimization case, say $\mathbf{h}(\mathbf{x}) = A\mathbf{x} - \mathbf{b}$, we have

 $\nabla^2 L_a(\mathbf{x}, \mathbf{y}) = \nabla^2 f(\mathbf{x}) + \beta (A^T A).$