DIMENSION OF FURSTENBERG MEASURES FOR SL(2, C) PRODUCTS

ABSTRACT. Let $\mathcal{A} = \{A_i\}_{i \in \Lambda}$ be a finite subset of SL(2, \mathbb{C}), and let $p = (p_i)_{i \in \Lambda}$ be a probability vector with positive entries. Set $\theta := \sum_{i \in \Lambda} p_i \delta_{A_i}$, and denote by $\mathbf{S}_{\mathcal{A}}$ the semigroup generated by \mathcal{A} . Suppose that $\mathbf{S}_{\mathcal{A}}$ is strongly irreducible and proximal, and let μ be the Furstenberg measure on \mathbb{CP}^1 associated to θ .

We are working towards establishing the following result: If \mathcal{A} is exponentially separated and no generalized circle $C \subset \mathbb{C}$ is invariant under the action of $\mathbf{S}_{\mathcal{A}}$ via Möbius transformations, then dim $\mu = \min \{2, H(p)/(2\chi(\theta))\}$. Here, H(p) is the entropy of p, and $\chi(\theta)$ is the Lyapunov exponent associated to θ .

Our approach relies on methods from additive combinatorics and involves an analysis of orthogonal projections of μ (viewed as a measure on \mathbb{R}^2). This is joint work with Ariel Rapaport.

Date: November 20, 2024.