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Abstract

It is well-known that topological spaces can be axiomatically defined by the topological closure operator,
i.e., Kuratowski Closure Axioms. Equivalently, they can be axiomatized by other set operators reflecting
prlmltlve notions of topology, such as interior operator, derived set operator (or dually, exterior operators,
co-derived set operators), or boundary operator. It is also known that topological closure operators (and
dually, topological interior operators) can be weakened as in generalized closure (interior) systems. What
about boundary operator, exterior operator, and derived set (and co-derived set) operator in the weakened
systems? Our paper completely answers this question by showing that these six operators can all be
weakened in an appropriate way such that their relationships remain essentially the same as in topological
spaces. Our results indicate that topological semantics can be fully relaxed to the weakened systems.
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1 Introduction

Let us recall the notion of a topological space [5]. A topology on a set X is a
collection 7~ of subsets of X including () and X which is closed under arbitrary union
and finite intersection, and (X, 7)) is called a topological space. Those subsets of
X, which are members of 7T, are called open (sub)set in the space X. A subset
F C X is called closed in (X, T) if its complement X \ F' is an open set. From De
Morgan’s Law, we infer that the collection of closed sets includes () and X, and that
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it is closed under finite union and arbitrary intersection. So specifying a collection
of open sets amounts to specifying the collection of closed sets.

Associated with any topology T is the topological closure operator, denoted CIl,
which gives, for any subset A C X, the smallest closed set containing A. Obviously,
a set A is closed if and only if C1(A4) = A.

Denote P(X) as the powerset of X. Then Cl as defined above can be viewed as
an operator Cl : P(X) — P(X) that satisfies the following properties (for arbitrary
A,BCX):

(CO1) CL(D) = 0;

(CO2) A C Cl(4);

(CO3) CI(Cl(A)) = C1(A4);

(CO4) C1(AU B) = CI(A) UCI(B).

Indeed, any operator Cl on P(X) that satisfies the above four axioms (called
Kuratowski Closure Axioms) defines a topological closure operator. Its fixed points
{A: Cl(A) = A} form a set system that can be properly identified as a system
of closed sets; taking complement of each of these closed sets gives rise to a set
system that will properly be a topology. In this sense, we can say that an operator
satisfying the Kuratowski Closure Axioms (CO1)-(CO4) defines a topological space
(X, 7).

Dual to the topological closure operator is the topological interior operator Int,
which satisfies the following four axioms (for any set A,B C X):

(I01) Int(X) = X;

(I02) Int(A) C A;

(I03) Int(Int(A)) = Int(A);

(I04) Int(AN B) =Int(A) NInt(B).

The fixed points of Int, {A :Int(A) = A} form a set system that can be properly
identified as open sets, hence defining the topological space (X, T).

The equivalence of the above two axiomatically defined operators on P(X) in
specifying any topology 7 is well-known. Furthermore, topological semantics of
Cl(A) and Int(A) as they operate on an arbitrary subset A C X are compatible
with the corresponding set of axioms defining each operator.

In addition to the closure or interior operators defining a topological space,
there are other four set operators widely used as primitive notions in topology.
They are the exterior operator, the boundary operator, the derived set operator, and
the dually-defined co-derived set operator. All these operators have been shown to
be able to specify an identical topology 7 — they are equivalent to one another,
as with Cl and Int operators. Therefore, all siz operators P(X) — P(X) provide
equivalent characterizations of a topological space (X,7). Taken together, they
provide comprehensive topological semantics to ground first-order modal logic.

In parallel with these various axiomatizations of what can be called Topological
System, it is also widely established that the topological closure operator can be re-
laxed to the more general setting of a Closure System in which the closure operator
satisfies, instead of (CO1)-(CO4), three similar axioms (see below), without enforc-
ing axiom (CO4). The fixed points associated to this generalized closure operator
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are called (generalized) closed sets. Viewed in this way, the closed-set system of a
Topological System is just a special case of this generalized Closure System. Other
applications of the Closure System include Formal Concept Analysis [8], Matroid
and Anti-Matroid/Learning Space [4,6], in which the generalized closure operator
is enhanced with an additional exchange axiom (for matroid) or anti-exchange (for
anti-matroid) axiom. Closure Systems also play an important role in Category
Theory [1,2,14] and also in Domain Theory, e.g. [9].

With these theoretical backdrop, one immediate question is whether there exist
meaningful generalizations of the other five operators in a Topological System to
a corresponding Closure System. Implied in this “meaningfulness” is the require-
ment that the behavior of these generalized operators would mirror their roles of
their topological counterparts, such that the relations interlocking one operator to
another are preserved. If a meaningful generalization can be achieved, then we can
claim that the Closure System is a strict weakening of the Topological System while
the semantics of the operations are preserved.

In the present work, we provide a complete answer to the above question. We
provide an axiomatic system for the suite of generalized operators. Some of the
generalizations are straightforward, for instance, the generalized interior and gen-
eralized exterior operators can be linked to the generalized closure operator in a
direct, immediate fashion (which involves only set complement). Others are more
involved. After carefully analyzing the axiomatization schemes for the topological
boundary operator and for the topological derived set operator [7,10,12,13|, we ob-
tain a generalization of boundary, derived set, co-derived set operators from the
setting of Topological System to that of Closure System, such that the relationships
between themselves and the closure/interior /exterior operators mimic those in the
topological context. In doing so, we obtained a full axiomatic characterization of
relevant operators in a Closure System.

The remaining part of the paper is organized as follows. In Section 2, we review
the various axiomatization of topological set operators, while at the same time
highlighting some important properties of the boundary operator and derived set
operator. In Section 3, starting from the generalized closure operator, generalized
interior operator, and generalized exterior operator, we provide a generalization of
the boundary operator (Section 3.2), and a generalization of derived set operators
(Section 3.3) and co-derived set operators (Section 3.4). We close our paper with a
short summary and discussion (Section 4).

2 Equivalent Characterizations of a Topological System

Topological Systems are specified by the collection of open sets, or equivalently,
the collection of closed sets as set systems. In addition to the topological closure
and topological interior operators to characterize a topology, there are four other
operators commonly used in topology, namely, exterior operator, boundary oper-
ator, derived set operator, and co-derived set operator. They can also be used to
completely characterize a Topological System, as shown by [7,10,12,13]. We review
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below.

2.1 Eazterior and Boundary Operator

Let us first discuss the exterior and the boundary operator in a topological space.
7] provided axiomatizations for both.

In addition to axiomatically defining Cl and Int operators, one can make use of
the so-called topological exterior operator Ext related to Int by Ext(A) = Int(A4’) =
Int(X \ A), where ’ denotes set-wise complement. Just as the set Int(A) gives the
interior of A, the set Ext(A) gives the exterior of A in the space (X, 7).

Definition 2.1 (Topological Exterior Operator).

A mapping Ext: P(X) — P(X) is called an exterior operator if for any A,B C X,
Ext satisfies the following four axioms:

(EO1) Ext(0) = X;

(EO2) ANExt(A) =0

(EO3) Ext(X \ Ext(A)) = Ext(A);

(EO4) Ext(AU B) = Ext(A) N Ext(B).

Given an operator Ext satisfying the above four axioms, then we can obtain
T ={U € P(X) | Ext(X \ U) = U}, which is a topology. Moreover, 7 is the only
topology that is compatible with this “exterior” meaning for this operator, i.e., dual
to the interior operator whose fixed points forms the system of open sets of 7.

Definition 2.2 (Topological Boundary Operator).

A mapping Fr: P(X) — P(X) is called a boundary operator (sometimes also called
frontier) if for any set A, B C X, Fr satisfies the following five axioms:

(FO1) Fr(0) = 0;

(FO2) Fr(4) = Fr(X \ A);

(FO3) A C B = Fr(A) C BUFr(B);

(FO4) Fr(Fr(A)) C Fr(A);

(FO5) Fr(AU B) C Fr(A) UFr(B).

For a boundary operator Fr, we can define 7 = {U € P(X) | Fr(X\U) C X\U}.
T is a topology. For A C X, Fr(A) is the boundary of A in the space (X,T).
Moreover, 7 is the only topology satisfying this condition.

We now investigate the role of (FO5), which is to be removed when relaxing to
generalized Closure System.

Proposition 2.3

(FO4) and (FO5) imply

(FO4)* Fr(AUFr(A)) C Fr(A) ,

which then implies Fr(AUFr(A)) C AUFr(A).

Proof. By (FO5), Fr(A U Fr(A)) C Fr(A) U Fr(Fr(A)). Because of (FO4),
Fr(A) U Fr(Fr(A)) = Fr(A). Then Fr(A U Fr(A4)) C Fr(A) holds. Obviously,
Fr(AUFr(A)) C AUFr(A) also holds. O
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If we drop axiom (FO5) in the definition of Fr, we do not have (FO4)". On the
other hand, we have the following result.

Proposition 2.4
(FO2), (FO3) and (FO4)* implies (FO4).

Proof. Suppose that set operator Fr only satisfies (FO2) and (FO3) in Definition
2.2. Forany A C X, Fr(A) C AUFr(A). An application of (FO3) gives Fr(Fr(A)) C
AUFr(A)UFr(AUFr(A)) = AUFr(A), where the last step invokes (FO4)*. Then
Fr(Fr(A)) C AUFr(A) holds. Likewise, for the complement X\ A4, Fr(Fr(X\A4)) C
(X \ A) UFr(X \ A) holds. By (FO2), we have Fr(Fr(4)) C A U Fr(A) and
Fr(Fr(A)) C (X \ A) UFr(A). Therefore, Fr(Fr(A)) C (AUFr(4)Nn((X\A)U
Fr(A)) = (AN(X\A))UFr(A)) = 0UFr(A)) = Fr(A), ie., Fr(Fr(A4)) C Fr(A).O

From the above two Propositions, it follows that (FO4) in the axiomatical defi-
nition of boundary operator can be equivalently replaced by (FO4)*. Then we have
another axiomatization of topological boundary operator Fr.

Definition 2.5 (Topological Boundary Operator, Alternative Definition).

A mapping Fr: P(X) — P(X) is called a boundary operator if for any set A, B C X,
Fr satisfies the following five axioms:

(FO1) Fr(0) = 0;

(FO2) Fr(4) = Fr(X \ A);

(FO3) AC B= Fr(A) C BUFr(B);

(FO4)* Fr(AUFr(A)) C Fr(A);

(FO5) Fr(AU B) C Fr(A) UFr(B).

2.2 Derived Set and Co-Derived Set Operator

We will turn to the derived set operator and the co-derived set operator. For axioms
of derived set operator in topological spaces, two versions were suggested by Harvey
[10] and Spira [12] , respectively. We first consider the scheme by Harvey.

Definition 2.6 (Topological Derived Set Operator).

A mapping Der: P(X) — P(X) is called a derived set operator if for any set
A, B C X, Der satisfies the following four axioms:

(DO1) Der(0) = 0;

(DO2) z € Der(A) & z € Der(A\ {z});

(DO3) Der(AUDer(A)) C AUDer(A);

(DO4) Der(AU B) = Der(A) UDer(B).

Proposition 2.7

A derived set operator Der has the following property:
(DO3)* Der(Der(A)) C AUDer(A) for any A C X.
Moreover, (DO3)* is equivalent to (DO3) under (DO4).

Proof. First, we show that the derived set operator Der is monotone: for any
A,B C X, A C Bimplies Der(A) C Der(B). By (DO4) and A C B, Der(AUB) =
Der(B) = Der(A) U Der(B), which implies Der(A) C Der(B).
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For any A C X, Der(A) C AUDer(A) holds. By the monotone property of
Der and (DO3), we have Der(Der(A)) C Der(AUDer(A)) C AUDer(A). Then
Der(Der(A)) C AUDer(A), so (DO3)* holds.

On the other hand, suppose that Der only has the property (DO4): Der(A U
B) = Der(A) UDer(B). Then Der(A U Der(A)) = Der(A) U Der(Der(A)). By
(DO3)*, Der(AU Der(A)) C AUDer(A), i.e., (DO3) holds. Therefore, (DO3)* is
equivalent to (DO3) under (DO4). O

From the above proposition, it follows that we can equivalently substitute
(DO3)* for (DO3) in the definition of axiomatical derived set operator. Denote
(DO2)*: z ¢ Der({z}) for any z € X.

Spira [12] showed that axiom (DO2) is equivalent to (DO2)* under axioms (DO1)
and (DO4). Therefore, we have an alternative, simpler version of axiomatical de-
rived set operator.

Definition 2.8 (Topological Derived Set Operator, Alternative Definition).

A mapping Der: P(X) — P(X) is called a derived set operator if for any set
A, B C X, Der satisfies the following four axioms:

(DO1) Der(0) = 0;

(DO2)* For any z € X, z ¢ Der({z});

(DO3)* Der(Der(A)) C AUDer(A);

(DO4) Der(AU B) = Der(A) U Der(B).

From a derived set operator Der, we can dually define an operator through
complementation, Cod: for any A C X, Cod(A) = (Der(A’))’ (by the definition,
Der(A) = (Cod(A’))"). Steinsvold [13] used the co-derived set operator as the
semantics for belief in his PhD thesis.

Definition 2.9 (Topological Co-Derived Set Operator).

A mapping Cod: P(X) — P(X) is called a co-derived set operator if for any set
A, B C X, Cod satisfies the following four axioms:

(i) Cod (X) = X

(ii) z € Cod(A4) & z € Cod(A U {z});

(iii) Cod(ANCod(A)) 2 AN Cod(A);

(iv) Cod(AN B) = Cod(A) N Cod(B).

Both derived set and co-derived set can be used to define a topology. Any
subset A C X is called closed when Der(A) C A. Then T ={U € P(X) | X \U is
closed} = {U € P(X) | Der(X \U) C X \ U} is a topology on X and the derived
set operator induced by 7 is just Der. Moreover, 7 is the only topology satisfying
this condition. Dually, 77 = {U € P(X) | U C Cod(U)} is also a topology on
X. A derived set operator and its dual co-derived set operator generate the same
topology. That is, the above two topologies are the same, i.e., T = T".
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3 Equivalent Characterizations of a Closure System

In this Section, we first review the relaxation from topological closure to a gener-
alized closure operator, also denoted Cl here. The three axioms for Cl can turn
equivalently to axiom system for generalized interior operator Int and generalized
exterior operator Ext. Note that all operators treated in this Section refers to the
“generalized” version, despite of using the same bold-face symbols.

3.1 Generalized Closure, Interior, and Exterior Operators
We first recall the generalization of closure operator.

Definition 3.1 (Closure Operator).

A mapping Cl: P(X) — P(X) is called a generalized closure operator (or simply,
closure operator) if for any A, B C X, Cl satisfies the following three axioms:

(C1) A CCIl(A);

(C2) AC B= Cl(4) C CI(B);

(C3) CI(C1(A)) = CI(A).

Dually, we can define a generalized interior operator.

Definition 3.2 (Interior Operator).

A mapping Int: P(X) — P(X) is called the generalized interior operator (or simply,
interior operator) if for any set A, B C X, Int satisfies the following three axioms:
(I1) Int(A) C A;

(I2) AC B = Int(A) C Int(B);

(I3) Int(Int(A)) = Int(A).

The interior operator Int is dual to the closure operator Cl, in the sense that
for any A C X, Int(A) = (C1(4))" and C1(A) = (Int(4"))".

In light of the relation between exterior operators and interior operators:
Int(A) =: Ext(A’) for any subset A of X, we immediately obtain a generaliza-
tion of topological exterior operator as follows.

Definition 3.3 (Exterior Operator).

A mapping Ext: P(X) — P(X) is called a generalized exterior operator (or simply,
exterior operator) if for any set A, B C X, Ext satisfies the following three axioms:
(E1) ANnExt(A) =0;

(E2) A C B = Ext(A) D Ext(B);

(E3) Ext(X \ Ext(A)) = Ext(A).

3.2 Generalized Boundary Operator

Compared with how topological closure operator becomes the generalized closure
operator, (FO1) and (FO5) in the definition of topological boundary operator can
be dropped to obtain a generalized boundary operator. (FO2) shows the essence
of boundary of a set. (FO3) shows Fr is “monotone” in some sense. (FO4)* corre-
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sponds to “idempotency” of the closure operator. Therefore, we only keep (FO2),
(FO3) and (FO4)" to obtain the definition of generalized derived set operator.

Definition 3.4 (Boundary Operator).

A mapping Fr: P(X) — P(X) is called a generalized boundary operator (or simply,
boundary operator) if for any set A, B C X, Br satisfies the following three axioms:
(F1) Fr(A) = Fr(X \ A);

(F2) AC B = Fr(A) C BUFr(B);

(F3) Fr(AUFr(A)) C Fr(A).

Proposition 3.5
The boundary operator Fr has the following property:
(F3)" Fr(Fr(A)) C Fr(A) for any AC X.

Proof. See the proof of Proposition 2.4. m|

As we recall, (F3)" as stated above is axiom (FO4) in the topological boundary
operator. However, (F3)* cannot be an alternative axiom in the definition of gener-
alized boundary operator — in fact, (F3)* is strictly weaker than (F3) under (F1)
and (F2). It can be seen from the following example.

Example Let X = {1,2,3}. Define an operator Fr:

0 A=0or X,
Fr(A) = { {2} A= {1} or {2,3} or {2} or {1, 3},

{3} A= {3} or {1,2}.
Fr satisfies (F1), (F2), and (F3)*. But Fr does not satisfy axiom (F3): for A = {1},
Fr(A) = {2}, Fr(AUFr(A)) = Fr({1,2}) = {3}. Obviously, Fr(AUFr(4)) € Fr(A).

Theorem 3.6 (From Fr to Cl).
Let Fr: P(X) — P(X) be a boundary operator. Define the operator Cl as C1(A) =:
AUFr(A) for any subset A of X. Then Cl is a generalized closure operator.

Proof. For axiom (C1), for any subset A of X, we have A C AU Fr(A4) =CI(A),
where the last step is by the definition of the operator Cl. Therefore, A C C1(A).

For axiom (C2), given A C B C X, axiom (F2) gives Fr(4) C B U Fr(B).
Therefore, we have A U Fr(A) C B U Fr(B). This, by the definition of Cl, is
Cl(A) C CI(B).

For axiom (C3), using the definition of Cl twice, we have CI1(C1(A4))=Cl(4A U
Fr(A))= AUFr(A) UFr(AUFr(A). By axiom (F3), then CI(A U Fr(4)) =
AUFr(A) = Cl(A), that is, C1(C1(A)) = CI(A) holds. O

Theorem 3.7 (From Cl to Fr).
Let Cl: P(X) — P(X) be a closure operator. Define Fr(A) = CI(A) N CL(A) for
any subset A of X. Then Fr is a generalized boundary operator.

Proof. For (F1), from the definition of Fr, Fr(A’) = C1(4’)NCl1((4’)) = CI(4A")n
Cl(A) = Fr(A).
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For (F2), First, by axiom (C1), B C CI(B). Again, by axiom (C1), BUC1(B’) D
BUB' = X, so BUCI(B') = X. Therefore, apply the definition of Fr, BUFr(B) =
BU(CI(B)NCl(B')) = (BUCI(B))N(BUCI(B')) = Cl(B)nX = CI(B). By
axiom (C2), for any subsets A, B C X with A C B, Cl(A) C CI(B), i.e., Fr satisfies
(F2).

For (F3), from the above proof of (F2), it follows that AU Fr(A) = CI(A) for
any A C X. We only need to check Fr(CIl(A)) C Fr(A). Again by the definition of
Fr, Fr(Cl1(A)) = CI(CI(A)) N CI((C1(A))’). The first term on the right-hand side,
by axiom (C3), becomes C1(C1(A)) = C1(A). As for the second term, C1((CI(A))"),
by axioms (C1), (C2), and (C3), we have A C C1(A) which implies (Cl(A)) C A/,
then C1((Cl(A))") C CI(A’). Therefore, Fr(CIl(A)) = CI(C1(A)) N CI((CL(A))") C
C1(4) N C1(4’) = Fr(A). O

In the proof of Theorem 3.6, we do not use (F1) in the definition of generalized
boundary operator. So we can further weaken the notion of generalized boundary
set operator as follows:

Definition 3.8 (Pre-Boundary Operator Pb).

An operator on P(X) is called a pre-boundary operator, denoted Pb, if Pb satisfies
the following two conditions:

(i). AC B = Pb(A) C BUPD(B);

(ii). Pb(AUPD(A)) C Pb(4) .

Theorem 3.9
Let Pb be a pre-boundary operator.

(i) Define Cl as C1(A) =: AUPD(A) for any subset A of X. Then Cl is a closure
operator.

(i) Define Fr(A) =: CI(A) N CY(A4") as the boundary operator associated to Cl.
Then the following two statements are equivalent:
(i). For any subset A C X, Pb(A) = Pb(A');
(12). For any subset A C X, Pb(A) =Fr(A).

Proof. From (i) to (ii). By the construction of Fr, For any subset A C X, Fr(A) =
Cl(A)NCI(A) = (AUPDb(A)N(A UPDb(A)=(ANA)U(ANPb (A)U(A'N
Pb(A)) U (Pb(A)NPb(4")) = (ANPb (4))U (A NPb(A)) U (Pb(4A) NPb(A4")).
By (i), for any subset A C X, Pb(A) = Pb(4’), then Fr(A) = (ANPb (A))U(A'N
Pb(A)) U(Pb(A)NPb(A)) = (ANPb (A))U(A'NPb(A)) UPb(A) = Pb(A), i.e.,
(i) implies (ii).

From (ii) to (i). This is through the definition of Fr, with axiom (F1) stating
that Fr(A) = Fr(X \ A). m]

From the above theorem, we can see that in the axiomatical definition of a bound-
ary operator, axiom (F1), Fr(A) = Fr(X \ A), is indispensable, which guarantees
the one-to-one correspondence between boundary operators and closure operators.
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3.3 Generalized Derived Set Operator

In this section, we consider the generalization of derived set operator. Compared to
the generalized closure operator, (DO1) should be omitted and (DO5) in the defini-
tion of derived set operator should be weakened to be monotone. From Proposition
2.4 and its proof, (DO3) should be kept. (DO2) shows the essence of the notion
of derived set. Then we have the following definition of generalized derived set
operator.

Definition 3.10 (Derived Set Operator Der).

A mapping Der: P(X) — P(X) is called a generalized derived set operator (or
simply, derived set operator) if for any A, B C X, Der satisfies the following three
axioms:

(D1) z € Der(A) & z € Der(A\ {z});

(D2) AC B = Der(A) C Der(B);

(D3) Der(AUDer(A)) C AUDer(A).

Proposition 3.11
A derived set operator Der satisfies
(D3)* Der(Der(A)) C AUDer(A), for any AC X.

Proof. By the monotonicity of Der. |

In the case of topological derived set operator, property (DO3) and (DO3)*
are substitutable. However, their equivalence does not hold in the situation of a
generalized derived set operator. In fact, (D3)" is strictly weaker than (D3) in the
case of generalized derived set operator. The following example can show this result.
Example. Let X = {1,2,3}. Define an operator Der:

0 A=0or {2} or {3} or {2,3},
Der(A) =< {2} A={1}or {1,3},

{2,3} A={1,2} or X.
Der satisfies (D1), (D2), and (D3)*. But Der does not satisfy axiom (D3): for
A ={1}, AUDer(A) = {1,2} Der(AU Der(A)) = Der({1,2}) = {2,3}. We can
see that Der(A U Der(A)) € AU Der(A).
In topology, derived set operators and closure operators have a one-to-one cor-
respondence. Such correspondence still holds in their respective generalizations.

Theorem 3.12 (From Der to Cl).
Let Der: P(X) — P(X) be a derived set operator. Define Cl as Cl(A) =: AU
Der(A) for any subset A of X. Then Cl is a closure operator.

Proof. For axiom (C1), since A C A U Der(A) for any subset A of X, use the
definition of the operator Cl, C1(A) = AUDer(A) , we obtain A C CI(A).

For axiom (C2), suppose A C B C X. By (D2), Der(A) C Der(B). Therefore
AUDer(A) C BUDer(B), namely, CI(A) C CI(B).

For axiom (C3), using the definition of Cl twice, we have CI1(Cl(A))=Cl1(A U
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Der(A))= AU Der(A) UDer(A UDer(A)). By (D3), then Cl(AU Der(4)) =
AUDer(A) = Cl(A), that is, the idempotent law C1(Cl(A)) = CI1(A) holds. O

Conversely, we also can get a derived set operator from a closure operator.

Theorem 3.13 (From Cl to Der).
Let Cl: P(X) — P(X) be a closure operator. Define Der(A) = {x € X |z €
ClL(A\ {z})} for any subset A of X. Then Der is a derived set operator.

Proof. For (D1), assume that « € Der(A), by the definition of Der here, z €
Cl(A\ {z}). Since A\ {z} = (A\ {z}) \ {z}, we have z € C1(A\ {z}) = CL((A\
{z}) \ {z}). Again, by the definition of Der, z € Der(A \ {z}) holds. Every step
above can be reversed. Therefore, z € Der(A) < z € Der(A \ {z}) holds.

For (D2), given that any subsets, A,B C X, AC B,so A\ {z} C B\ {z}. For
any z € Der(A), by the definition of Der, we have z € C1(A4 \ {z}). By (C2), we
have z € C1(A\ {z}) C CI(B\ {z}). Again by the definition of Der, z € Der(B).
Therefore, Der(A) C Der(B) holds.

For (D3), let us first show A U Der(A) = CI(A) for any A C X. For any
xz € Der(A), we have x € CI(A \ {z}) by the definition of Der. Since CI(A \
{z}) C C1(A) by (C2), then z € CI(A). So Der(A) C CI(A). Together with (C1),
AUDer(A) C CI(A) holds. On the other hand, for every z € CI(A), assume that
z ¢ A, then A = A\ {z}. Soz € CI(A) = CI(A4\ {z}), namely, again by the
definition of Der, z € Der(A), so C1(4A) C AUDer(A). Therefore, AUDer(A) =
Cl1(A). Because of this Der(A) C Cl(A). So Der(A U Der(A)) =Der(CI1(A4)) C
C1(C1(A4)) = CI(A), by (C3). Therefore, Der(A U Der(A)) C= Cl(A) = AU
Der(A), which is (D3), namely, Der(A U Der(A)) C AU Der(A4). O

As with Theorem 3.12, we do not use (D1) in the definition of generalized derived
set operator Der. A further weakening of generalized derived set operator can be
obtained:

Definition 3.14 (Pre-Derived Set Operator Pd).

A mapping on P(X) is called a pre-derived set operator, denoted Pd, if Pd satisfies
the following conditions:

(7). AC B=Pd(A) C Pd(B);

(44). Pd(AUPd(A)) C AUPd(A).

So the other version of Theorem 3.12 can be given.

Theorem 3.15
Let Pd be a pre-derived set operator.

(i) Define the operator Cl by Cl(A) =: AUPA(A) for any subset A of X. Then
Cl is a closure operator.

(ii) Define the operator Der by Der(A) = {x € X | z € C1(A\ {z})}. Then the
following two statements are equivalent:
(¢). For any subset AC X, z € Pd(A) & z € Pd(A\ {z});
(i3). For any subset A C X, Pd(A) =Der(A).
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Proof. From (i) to (ii). Assume that (i) holds, namely, for any subset £ C X, z €
Pd(E) & z € Pd(E\ {z}), By the definitions of Cl and Der, for any =z € Der(E),
then z € CI(E\ {z}) = (E\{z})UPd(E\ {z}), which implies z € Pd(E\{z}). By
the given condition (i), we have z € Pd(E), then Der(E) C Pd(E). Similarly, for
the other direction, for any x € Pd(E), by the given condition (i), z € Pd(E\ {z}),
so z € CI(E \ {z}) by the definition of Cl. Again by the definition of Der, z €
Der(E). Therefore, Pd(E) C Der(E). That is to say, (ii) holds.

From (ii) to (i). If (ii) holds, Pd is a generalized derived set operator. Then Pd
satisfies (i). So the proof is completed. a

3.4 Generalized Co-Derived Set Operator

Dual to a generalized derived set operator, we can define a generalized co-derived
set operator.

Definition 3.16 (Co-Derived Set Operator Cod).

A generalized co-derived set operator (or simply, co-derived set operator), denoted
Cod, is defined as a mapping on P(X) which satisfies:

(i). z € Cod(A) & z € Cod(A U {z});

(i5). A C B = Cod(A) C Cod(B);

(131). Cod(ANCod(A)) 2 AN Cod(A).

That the derived set operator Der is dual to the coderived set operator Cod is
reflected in Cod(A) = (Der(A’))’ and Der(A) = (Cod(4"))'.

Combining the duality between the derived set operator and the co-derived set
operator and the duality between the closure operator and the interior operator, we
have the following results dual to previous theorems for derived set operators.

Theorem 3.17 (From Cod to Int).
Let Cod: P(X) — P(X) be a co-derived set operator. Define Int(A) =: ANCod(A)
for any subset A of X. Then Int is an interior operator.

Theorem 3.18 (From Int to Cod).
Let Int: P(X) — P(X) be an interior operator. Define Cod(A) :={z e X |z €
Int(AU {z})} for any subset A of X. Then Cod is a co-derived set operator.

Definition 3.19 (Pre-Co-Derived Set Operator Pcd.)

An operator on P(X) is called a pre-co-derived set operator, denoted Pcd, if it
satisfies the following conditions:

(1). AC B= Pcd(A) C Pcd(B);

(17). Ped(AUPcd(A)) D AUPcd(A).

Theorem 3.20

Let Pcd be a pre-co-derived set operator. Denote Int as the interior operator gen-
erated by Pcd: Int(A) =: ANPcd(A), and Cod as the resulting co-derived set
operator: Cod(A) = {z € X | z € Int(AU {z})}, for any subset A C X. Then the
following two statements are equivalent:
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(i) For any subset E C X, z € Ped(E) &,z € Ped(E U {z});
(i4) For any subset E C X, Ped(FE) =Cod(E).

4 Summary and Discussions

In the paper, we consider set operators in Closure System as extension of those in
Topological System. Four generalized axiomatical set operators are obtained: gen-
eralized boundary operator, generalized exterior operator, generalized derived set
operator, and generalized co-derived set operator. Those, in addition to the general-
ized interior and generalized closure operator, provide a complete generalization of
the set of six axiomatic operators encountered in topology. Both generalized derived
set operator and generalized boundary operator are in one-to-one correspondence
with the generalized closure operator. Likewise, there is a one-to-one correspon-
dence between generalized co-derived set operator, generalized exterior operator,
and generalized interior operator, respectively. The results are summarized in the
following figure:

Fl' \/ .
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In the figure, a solid arrow means one set operator induces the other one and a
dashed arrow means the operator together with an additional condition (F1 in
Definition 3.4 or D1 in Definition 3.10) becomes the directed one. The numbers
index the corresponding transforming formulas:

1. Int(A) = Ext(A’), 1*. Ext(A) = Int(A4’)
2. Cod(A) ={z e X |z €Int(AU{z})}, 2*. Int(A) = AN Cod(A)
3. CI(A) = (Ext(A))" 3*. Ext(A) = (Cl(A))

‘J
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4. CI(A) = (Int(A")), 4*. Int(A) = (C1(4"))
5. Der(A) = (Cod(4’))’, 5*. Cod(A) = (Der(A"))
6. C1(A) = AUFr(A), 6*. Fr(A) = Cl(A) N Cl(4A)
7. Der(A):={z € X |z € Cl1(A\ {z})}, 7. Cl(A) = AU Der(A).
8. C1(A) = AUPDb(A)
9. CI(A) = AuPd(4)

Having the generalization of the complete suite of topological operators allows
us to extend the topological semantics to those in Closure Systems in general. This
could be useful because there are other non-topological closure systems, such as
matroid/independent system and anti-matroid/accessible system. Our results are
also significant for axiomatic operators on lattice (posets which are closed with
respect to meet and join operations), because closure system correspond to complete
lattices. Our axiomatization of set operators will shed new lights to the interplay
of topology, lattice, and logic [2,3].
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