Decomposing Stimulus and Response Components
in ERP Recordings

Jun Zhang"“*, Gang Yin’

(1 Department of Psychology, The University of Michigan)

(2 Sichuan Cancer Hospital, Radiotherapy Center, Chengdu, China)

Abstract; Event-related potentials (ERPs) reflect the brain activities related to
specific behavioral events, and are obtained by averaging across many trial repetitions
to improve signal-to-noise ratio. Individual trials are aligned either to the occurrence
of a specific event, such as the onset of stimulus (s-aligned), or to the onset of the
behavioral response ( r-aligned). However, the s-aligned and r-aligned ERP wave-
forms do not purely reflect, respectively, underlying stimulus ( S-) or response (R-)
component waveforms, since they cross-contaminate each other in the s-aligned or r-
aligned ERP waveforms due to variability in reaction times ( measured as the time
lapse between the stimulus onset and response onset) across these trials. Here, we
provide a method for decomposing of ERP according to two markers ( stimulus and
the behavioral response). The method was first developed in Zhang (1998) with full
mathematical formulation. In Yin et al. (2009 ), this method was extended to deal
with three or more markers in a single trial, with recovered individual ERP compo-
nents time-locked to those markers. In Yin and Zhang (in press), noise reduction
techniques were applied so that the method can robustly recover component wave-
forms despite variances in the sampling of reaction-time distributions. This Chapter
provides a tutorial to this method, with demonstrations using both simulated and real
data from two experiments—a Go/NoGo experiment about image classification and

recognition and an attention pre-cuing experiment involving three behavioral markers.
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1 Introduction

ERP are evoked activities of the brain that are averaged over many trials to re-
move trial-by-trial noise and to improve signal-to-noise ratio. When the individual tri-
als are aligned with respect to the stimulus onset, the ensemble average is called
stimulus-aligned ERP, with waveforms demonstrating such components like P300
(e.g., Squires et al. , 1975) and N400 ( Kutas and Hillyard, 1980). When the en-
semble averaging is performed by aligning individual trials to behavioral response on-
set, we call it response-aligned ERP, with waveforms demonstrating such components
like error-related negativity ( ERN) ( Gehring et al. , 1993; Falkenstein et al.
1995) and lateralized readiness potential (LRP) after inter-hemispheric subtraction.
In experimental paradigms where a behavioral response is required in response to the
stimulus presentation, stimulus-aligned ERP average and response-aligned ERP aver-
age may yield different waveforms, since the subject does not respond with uniform
reaction time across the ensemble of trials. This creates a non-trivial problem of inter-
preting these ensemble averages, since either stimulus-aligned or response-aligned
ERP average may contain both components related to the encoding and analysis of
stimulus (and hence better time-locked to the stimulus onset event) and components
related to the preparation and execution of response (and hence more tightly coupled
with the moment of behavioral response onset). The overlapping event-related compo-
nents in the ERP average waveforms can cause difficulty and confusions in the inter-
pretation of underlying neural mechanisms for ERP. For example, in the study of re-
sponse inhibition by Go/Nogo paradigm, a question arises whether the N2/P3 differ-
ences between Go and Nogo trials in the overall ERP mainly comes from the accompa-
nying motor response in the Go trials versus the inhibitory processes associated with
the Nogo trials.

Traditional methods for decomposing multiple components in ERP/EEG and fM-
RI dataset, such as Independent Component Analysis (ICA) and Principal Compo-
nent Analysis (PCA) , have strong constraints in their application. For example, ICA
assumes the sources to be statistically independent, while PCA is built upon the
premise that various sub-components of a waveform are orthogonal to one another. In-
dependence and orthogonality are very strong mathematical assumptions—there is no

reason to expect that neurally distinct modes in the data should be orthogonal to or in-
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dependent of one another (Mitra et al. , 1999). To complicate the matter, the non-
uniformness of response/reaction time (RT) , defined as the time elapse between the
stimulus onset and the behavioral response onset for each trial, implies a kind of non-
stationarity across the ensemble of trials in an ERP experiment. It is all too common
to calculate ERP averages with trials aligned with respect to the onset of stimulus ( re-
sponse) and to conclude that the resulting ERP waveforms reflect stimulus ( respec-
tively, response) process, as if non-stationarity can be “averaged” out. To repeat,
one cannot conclude that the stimulus-aligned ( or response-aligned) ERP average
contains purely those elements that are time-locked to stimulus (response, respective-
ly) onset, since both these component waveforms contribute towards the ERP average
waveforms, and are hence cross-contaminated therein.

Furthermore , quite a number of psychological experiments involve more than two
behavioral events in a single trial. For example, in the study of visual spatial atten-
tion where a peripheral or central cue is utilized, a single trial will involve three
event-related components related to cue presentation, stimulus presentation and be-
havioral response, respectively. A similar situation occurs in the study of ERN when
EMG measurement is applied ( Gehring & Fencsik, 1999 ) —in that case, the onset
of EMG, along with the stimulus onset and response onset, constitute three independ-
ent behavioral events with variable lapses between their onset times. This provides an
opportunity to understand underlying mechanisms of ERN, but also presents a chal-
lenge to unconfounding the ERP component waveforms individually time-locked to
those events. We need a general methodology to decompose ERP components given
those various behavioral events.

This Chapter reviews a methodology and algorithm to recover the stimulus-and
response-locked waveforms first advanced in Zhang (1998 ). There, given stimulus-
aligned and response-aligned ERP averages, as well as the empirically obtained reac-
tion time distribution, a unique recovery into stimulus-locked and response-locked
component waveforms is provided. The algorithm can be implemented through either
the Fourier transform method or an iterative procedure that is guaranteed to converge.
Following the same logic, the method of Zhang (1998) has now been extended in
Yin et al. (2009) to separate N components ( N event related waveforms) in ERP re-
cordings given N behavioral markers with associated event time distributions ( espe-
cially, the N =3 case useful for many paradigms). One of the key challenges in ap-

plying these methods to real ERP data sets is the issue of input noise, especially when
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the amount of trials in an experiment is limited. Recently, we investigated this issue
thoroughly, and advanced Wiener deconvolution approach for noise control ( Yin &
Zhang, 2011). In this Chapter, we will demonstrate our decomposition method and

denoising techniques using both simulated and real ERP data.

2 Method

We present here a method to decompose ERP component waveforms that takes,
as input, ERP ensemble averages that are aligned to behavioral event points ( the
most common ones are stimulus onset and response onset). We will illustrate this
method with N =2 event points ( behavioral markers) first, then proceed to N =3
event points, and finally to a general N. We then describe a method of noise control
that will make our method robust against both noise in ERP recordings and insufficient

sampling (1. e. , total trial number) of reaction-time distribution.

2.1 Decomposition for Stimulus and Response Components with N =

2 markers

Let us assume that the ERP waveform on an individual trial consists of an under-
lying stimulus-locked component waveform, denoted by f, (1), with t =0 referring to
stimulus onset, and an underlying response-locked component waveform, denoted by
f.(t), with £ =0 referring to response onset, respectively, plus some noise waveform
£, that varies across different trials labeled by i. Denote the reaction time (RT) on
trial 7 as t,. Then the stimulus-aligned ERP average waveform, denoted by F (1),

and the response-aligned waveform, denoted by F (), are constructed, respectively

) =S () £0=1) +£(0) = f.(0) + -5 f(1=1) (D)

FA0) =S (A1) + £ +m(0) = [0 + =S [t +1) (2)

Here, in the stimulus-locked calculation, where time zero is taken to be the
stimulus onset, the response component is offset by an amount equal to ¢, ( the reac-
tion time, which is the amount of time elapse since the onset of the stimulus) ; in the
response-locked calculation, where time zero is taken to be the response onset, the
stimulus component is offset by an amount — ¢, ( which is when the stimulus onset was,

from the response reference-zero perspective). The variables &, and n, represent white
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noise, measured with respect to stimulus onset and response onset, on trial i (total
trial number is n), with &(¢) =7,(t - ¢,) <&, (t +1,) =7n,(1) ; they are averaged
“out” during ensemble averaging assuming that the noise is “white”. But the sum-
mation terms in the expression of F (t) and F (t) do not vanish in general; they re-
present residual contaminations: F (1) #f.(¢) ,F (t) #f.(1).

From Equations (1) and (2), and casting them in the limiting case of continu-

ous time with infinite trials (n goes to infinity), we can derive the following two

mathematical equations

FAD = [0 + =S (0 %601 =1) =f() +f () se(t)  (3)

F. (1) = f(1) +1;Zf;(t) #8(t+1,) =f(0) +f(1) xg(-1)  (4)

n

where we defined g(t) = LZ 8(t - t,), the reaction-time distribution. Its
n “

i=1
Fourier transform is ( we use the tilde sign ~ to denote the frequency domain repre-

sentation )

z(w) = fgu)e*‘““"dt.

Applying Fourier transform to the above two equations, we get
Fo(w) = f () + f,(w)g(w)
Fo(w) = [ (w) + [ (w)g(~w)

Solving for the frequency components ]*:A_ (w) ,}‘: ,(w) and then applying inverse-

Fourier transform, Zhang (1998) obtained a closed-form solution :

I;X(w) - I;,(w)g(w)em

1
t) = — dw 5
=5 1 <1z(w)l® <)
F —F (w)g(-w) |
IR LACIET AU CIOI "
27 1 -lg(w)l
where ~ represents the Fourier frequency spectrum. The solution can also be

obtained by iterative methods (Zhang, 1998).
To summarize, assume we are given the following experimental data: (a) the
stimulus-aligned ERP average waveform denoted F (), (b) the response-aligned

ERP average waveform F_ (¢), and (c) the distribution of reaction times g(z). We
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can recover the stimulus component waveform time-locked to stimulus onset ( “S-com-
ponent” ) f.(t) and the response component waveform time-locked to response onset

(“R-component”) f ().
2.2 Decomposition of ERP Components with NV =3 markers

We now consider the three-component case (N =3). Imagine an experimental
paradigm where subjects perform a stimulus-response association task with stimulus
pre-cuing. That is, some time after the start of a trial, a cue appears after which the
stimulus appears under a variable delay, and finally the subject responds. The event
sequence is: Cue-Stimulus-Response, and the onset times of each form the three be-
havioral markers. Suppose the evoked waveform of each trial involves three different
components f,(t), f.(t) and f,(t), each of which is time-locked to the three differ-
ent events, namely cue, stimulus and response respectively. Denote the onset time

t,and ¢,, with ¢, <t  <t,. Note that fixing any one of the t’s, the others are

c?"s

as, ¢
“random” variables in the sense that they vary across the trials (they may be under
experimenter control). Typically, one chooses ¢, as the reference zero—in this case
the probability distribution of ¢, — ¢, and that of ¢, — ¢, , which are treated as random
variables, is denoted g, (#) and g, (%), respectively. When choosing ¢, as the refer-
ence zero, the distribution of and ¢, — ¢, can be written as g, ( —=¢) and g, (t), re-
spectively. When choosing ¢, as the reference zero, the distribution of ¢, and ¢, ( rela-
tive to ¢,) is g,( —¢) and g,( —t), respectively. It is important to note that only two
of the three distributions, g, (), g,(t), g,(¢) are independent, and the other can
be derived knowing the two distributions. For instance, g, (t) =g, (¢) * g, (t),
where * denotes convolution ( note that this relates to, but is different from the
three-marker case one of which is a presumptive decision-related marker, as dis-
cussed in Zhang (1998) ). Denote F (1) ,F (t) and F,(t) as the ensemble avera-
ges of ERP aligned to ¢ ,¢, and t,, respectively. Then the relationship between the
pure event-related components f.(z),f.(t), f.(t) and the ensemble average signals
F.(t),F (t), F.(t) are

F.(1) = (1) +£(0) % g, (1) +£.(1) % & (1) (7)

Fo(t) = f(1) +f(1) #g, (=) +f(1) *g5(1) (8)

F () = () + () s gy~ 1) +£(1) % g (= 1) (9)

These equations are derived using the same logic as for the two-component case
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(with stimulus and response markers only). Equations (7)—(9) can be written in

matrix notation:

F, I A B/
F l=|A" 1 cC|/. (10)
F. B' ¢ 1y
where
g (1) g(@2) = g(n) g (1) g(@2) = g(n)
A = gl(.n) gl(.l) gl(n._1> . B = g2(.n) gz(‘l) gQ(n‘_l) ’
gl(z) g1(3) gl(l) g2(2) g2(3) gz(l)

B AT R ACO A TS
g:(2) g(3) - g(1)

Here, I denotes the identity matrix ( with 1’s in diagonal entries and 0’s else-
where) , and superscript T denotes matrix transpose. Note in the above matrix-form
equations in the time domain, we have imposed the periodic condition in constructing
the ERP averages. As a result, g,(¢), g,(¢) and g,(¢) are all periodic when ¢t >n
or t <0, so only the values of g,(1), -+ g,(n), 1=1,2,3 are involved in the com-

putation. In frequency domain, the equations are

F(w) I ) g [0
]':‘(w) =& (-w) I g;(w) fﬁ(w) (11)

gz(““’) g3(_w) I

F(w) I (w)

2.3 Decomposition of ERP Components with N Event Points with N >3

This formulation for the three-component case can be easily extended to N >3
situations. A single trial ERP waveform is the superposition of N component wave-
forms that are time-locked to N corresponding behavioral events, with occurrence of
these events marked by N variables ¢, ,-+-,t,,(#, <-+ <t,), among which N -1 are
random variables (in the sense discussed earlier). Let f;(¢) (i=1:--N) denote each

of the N component waveforms, and F,(¢) (i=1--N) denote each of the N ensem-
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ble averages of ERP aligned with respect to those behavioral events. Denote g, (1)
(¢=1---N, j=1---N, i#j) as onset time distribution of event j aligned to a fixed
event ;. They are not all independent—only N —1 of them are. We can calculate the
time distribution of an arbitrary event onset time point relative to the other event onset
time points. An analogous equation can be obtained
F, I G, - G A
F, G, I - G|l 5 (12)

Fy G‘\",l G;\f,z I Sy

where
gi,j(l) gi,j(z) gi,j(n)
G = gi,/‘(n) gi,](]) gz_j(n_])
L) . . . .
gi,j(z) glpj(?’) gi,j(l)
and G, ; = G . In frequency domain, the matrix-form equation is
. Ji
Fy(w) I Go(w) o Gy (w)q| S (w)
FN'Z(w) _ a;l(‘“’) I Cz,w(“’) J;z(w) (13)

Cl,s\"(_w) Cz,w(_w)

Fo(w) fa(w)

2.4 Methodological Limitation

While the above methods are rigorous and exact, it relies on a stationary reaction
time distribution (or distributions, for N >2 cases) , which is an empirically observed
quantity during the experiments. Let us focus on the N =2 case for ease of illustra-
tion. RT distribution g(¢) is estimated using the empirical distribution ( frequency
count of proportion of trials associated with a particular RT value ¢ as measured from a
fixed stimulus onset moment, denoted as ¢t =0, to the moment of behavioral response
on individual trials). It is convenient to work in the frequency (as opposed to time)
domain. Define the matrix H(w) as

H(w) = | ! g(”’)] (14)
g(-w) 1
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Equations (3) and (4) can now be written in matrix form
Fo(w) f(w)

y =Hx; y=| , X = /- (15)
F o (w) S (w)

Note that the complex conjugate (denoted by®) of g(w) is

g(w) = [g(ye™de = [g(1)e™ A = g(- )

This means lg(w) | =1g( —w) |, which implies that the H matrix in (15) is
Hermitian, meaning that its conjugated transpose ( denoted by #) equals itself
H*(w) =H(w). From well-known facts in matrix analysis, the H matrix has real ei-
genvalues, with associated eigenvectors orthogonal to each other. To see that, we ex-
amine the eigen-equation, Ht = At. The eigenvalues can be solved from:

Det | H-=M1=(1-2)" =l g(w) 1> =0
The solutions (eigenvalues of H) are
Ay =1+l g(w)l, A, =1-1 g(w) |
Substituting into the eigen-equation yields the corresponding orthonormal eigen-

vectors
1 1
t :jZ[ i4>] t, :«/lz[_eid)] (16)

Denote the condition number of H as the ratio of its two eigenvalues A, ,A,

e

A Ll g(w)
CondCH) = 3 = 1T () |

The condition number will determine how input ( at the corresponding frequency
component) will be amplified—the larger the value of Cond ( H), the greater the
amplification of small fluctuating noise. Since 0<lg(w) | <1, Cond(H) is mono-
tonically related to | g(w) | and bounded below by 1 and unbounded from above.
Figure 1 shows the relationship between Ig(w) | and Cond( H) ,it can be seen that
as frequency goes to zero, |g(w) | approaches 1, resulting in the explosion of the
condition number of H, and hence disproportionate amplification of input noise ( Fig-

ure 1).
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Figure 1 The relationship between Ig(w) | and Cond (H)

The explosion of condition number at low frequencies turns out to be quite detri-
mental (if not fatal) in recovering component waveforms time-locked to stimulus and
to response, because even small noise (at low frequency end) can be amplified, re-
sulting in change of overall shape of the ERP waveform. Figure 2 demonstrates how
artifacts may be introduced, using the vanilla formulae from Zhang (1998) when dif-
ferent amounts of noise are injected. We first create the ground-truth waveforms
f.(t), f.(t) with a known RT distribution. Then we generate an ensemble of trials,
and from which, the s-aligned and r-aligned ERP average waveforms. Plugging these
s-and r-aligned waveforms as well as the RT distribution as input to Equations 5 and 6
allows us to calculate f,(¢) ,f,(t). With different low frequency noise added (SNR =
20dB, 30dB, 40dB), Equations (5) and (6) gives different outputs of f, (),
[, (t); the recovered waveforms have more distortions with more low-frequency noise
introduced. We see that the recovered S-waveform and R-waveform appear to contain

¢

corruptions that are nevertheless themselves “correlated” | These distortions, when
treated as fictitious S-component and R-component waveforms, will cancel themselves
in the stimulus-aligned and response-aligned ensemble averages—that is, they result
in zero amplitude (or noise). These fictitious components live in the “null space” of
the H operator (which is determined by the RT distribution. In short, naive applica-
tion of the S-R decomposition algorithm of Zhang (1998) suffers from disproportion-

ate noise amplification at low frequency—Ilow-frequency distortions in the recovered

waveforms may occur if noise is not handled properly.
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Figure 2 Illustration of how artifacts in stimulus-response decomposition may arise. A:
Simulated S-and R-component waveforms created, along with an RT distribution and re-
sulting stimulus-and response-aligned waveforms. B: Samples of low frequency noise
waveform at different SNR level (SNR =20dB, 30dB, 40dB). Note the difference in ordi-
nate scales. C: With different amount of low frequency noise added into the ensemble of
trials, resulting stimulus-and response-aligned waveforms change only slightly. D: Recov-
ered S-and R-component waveforms ( dotted line) from Equations. 5 and 6 under differ-
ent SNR condition compared with original S-and R-component waveforms ( thick lines).
Clearly, Equations. (5) and (6) lead to faithful recovery only when there is no noise
added, which made them impractical in dealing with real data.
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2.5 Wiener Deconvolution for Noise Control

Wiener deconvolution refers to the application of Wiener filter to deal with noise
inherent in a linear input-output system. The rationale is as follows. Given a linear
input-output system

y(t) = h(t) *x(t) +n(t)

where x () is an unknown input signal, A(¢) is the known response, n(t) is an
unknown additive noise independent of x (¢), and y(¢) is an observed signal, we
want to find some d(t) so that x(¢) can be estimated as:

(1) = d(1) = y(1) (17)

Here £(t) (with a hat) denotes the estimate of x(t), in the sense that it mini-
mizes the mean square error ( MSE)

MSE = EL || £(¢) - «(t) | *] (18)

The solution for d(t) is provided by the so-called Wiener deconvolution filter
which, in frequency domain, has the form:

R (w)

7 2 n(w)
I h(w) | +7s(w)

Here s(w), n(w) are, respectively, the mean power spectrum of the signal

d(w) =

(19)

x(t) and of the noise n(¢), and h°(w) is the complex conjugate of the Fourier spec-
trum A (w) of the transfer function h(¢). In real life applications, one can i) find
an initial estimate of signal x'”’ (#) (by assuming zero noise and recovering from
Equations (5) and (6), for instance) and calculate its signal power spectrum
s (w) ; ii) subtract the signal x'” (1) from trial-by-trial data to obtain an estimate
of noise power spectrum n'”’ (w) ; iii) substitute the signal and noise power spectra
into the Wiener filter Equation (19) to obtain an estimate of the new signal x'" (1) ;
iv) repeat steps i) to iii) until convergence. The final solution x(¢) has the property
that E[ || n(w) || *] is minimized.

There is a slight complication in applying Wiener filters to our problem, because
our “input signal” consists of both a stimulus-aligned waveform and a response-a-
ligned waveform—they are not totally independent, due to given RT distribution. So
we need to adapt the spirit of Wiener deconvolution filter to the current setting. Note
that our signal model assumes that for every single trial, noise is independent of sig-

nal. With noise considered, Equations (3) and (4) become, in matrix form;
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F (w) 1 z(w)| f.(w) +[§$(w>} (20

Food 8w UL m o] LE ()

where € (w) and &,(w) are the Fourier transforms of noise waveforms time-
locked to stimulus onset and to response onset, respectively. In vector notation, it is
y = Hx + £ (21)

Note that the orthonormal eigenvectors of H satisfy
# # # #

bt =, =1, 4, =

In the above notations, the signal model Eqn (21) breaks into two equations
Hx, + ¢, (LT.y)tl = Ayx +(tT'§>L|

or ) . (22)
Hx, +§, (t, ~ )ty = A,y + (1, - )y

Y1

Y2

The left-hand sides are what we can calculate from the data, and x, and x, are
unknown two-dimensional vectors. Now, we can apply the Wiener deconvolution
method to each of its component separately to obtain

A #
" (shR)
where SNR, = E[ || «, || ]/E[ | & || °], estimated separately for i = 1,2 com-

ponents. This is what we call Wiener deconvolution with “uncoupled filters” , be-

X

i

cy) =12 (23)

cause we treat the projections of the noise onto ¢, and ¢, directions distinctly and apply
Wiener filters separately, based on the noise decomposition given by Equation (14).
Note that since A, is always greater than or equal to 1, the denominator (SNR,) ™'
can (in most cases of noise range) be dropped in the estimate of x,. The more cruci-
al application of Wiener filter is to obtain the x, component robustly against input
noise (see Yin & Zhang, 2011). Figure 3 is the detail flow chart of the algorithm.
Wiener deconvolution, though a popular method for noise control in solving the
inverse problem for linear input-output systems, is one of the several tools one can
use for noise control. Alternative methods include error regularization (see Yin &
Zhang, 2011, for details). The main advantage is that there is no need to estimate
the regularization parameter; instead, one only needs to estimate power spectra for
both signal and noise. In the above paper, we have compared various approaches to
noise control, and come down with the Wiener deconvolution method as the most ro-

bust and objective method to use for decomposing ERP waveforms. The implementa-
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Single trial data Reaction times
v
Calculate stimulus-/response-aligned | Calculate RT distribution g (¢)
average waveform £ (¢), F, (1) and hence H matrix
Estimate signal and 4, A t, A Estimate signal and
noise power spectra noise power spectra

S, and NV, S, and N,

Calculate x, Calculated x,

Converge?

Output x, + x,

Figure 3 Flow diagram of S-R waveform decomposition with noise control. During the

first pass, x,, x, is calculated without estimating signal and noise spectra. During the
second and subsequent passes, Wiener deconvolution filter is used for calculating x,, x,

(as indicated by the open arrow, distinct from all other arrows).

tion steps outlined above have overcome two main challenges of i) adapting the Wie-
ner filter to only the low-frequency components; 2) estimating signal and noise power
spectra in two-dimensional correlated signals ( stimulus-aligned and response-aligned

waveforms ) .

3 Validation and Application

In this section, we provide some examples both to validate our decomposition al-
gorithm and to illustrate its utility in addressing empirical questions raised by ERP da-
ta. We will use both simulation ERP data with known ground-truth (with N =2 and
N =3 markers) and real ERP recordings from two experiments: a Go/Nogo experi-
ment (N =2 markers) and an attentional precuing experiment ( N =3 markers). For

more details, see Yin et al. (2009) and Yin and Zhang (2011).
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3.1 Simulated ERP Waveforms

In our simulation, we model ERP waveforms on each trial as consisting of two
(B=s,r) or three (8= ¢,s,r) distinct component waveforms, one time-locked to
the cue onset (in the case of N =3), one time-locked to the stimulus onset, and one
time-locked to the response onset. The exact shapes of these component waveforms
are according to the following equations
t, —

Ve
i=1,-,n; (B =s,rorB =c,s,r) (24)

Here, A, is the amplitude of the stimulus-, response-, and the cue-locked ( for

700 = Agesp( = (2, ) Jeos g (1 - 7))

N =3 only) component waveform and 7, is the random variable representing trial-by-
trial onset time point for stimulus event or response event. The value of a, is fixed,
and A, and 7y, are constants that are related to the shape of the component waveforms.
ERP waveform on any individual trial is taken to be the sum of the above two (or
three) components, plus background noise, which were simulated by two autoregres-
sive (AR) processes with white noise injected into each trial. See Krieger et al.
(1995).

3.1.1 Simulation Result for N =2 Time Markers

Figure 4 shows an example of decomposition S-and R-components (N =2) using
the Wiener deconvolution method, under the following simulation parameters; y, =
1.2 andy,=0.8, A, =5.9 and A, =4.7, o ,=0.36 and o, = - 0.42, SNR =
—10dB, and the standard deviation of the RT distribution is 20 ms, and the number

s

of trials 100. With stimulus time point chosen as the reference zero, the response
time (7,) relative to the stimulus time (7,) is taken from a Gamma distribution with
a mean of 300 ms and four different values of standard deviations. Four different SNR
values were used (see below). For each condition of RT distribution and SNR value,
the simulation is repeated 50 times to yield statistical averages. In every repeat, ay is
randomly selected within 0—2 m, A, is also a random value between 1.0—2.0, A,
and A, are random values between 5.0—7.0 and 4. 0—6. 0 respectively. ERP wave-
form on any individual trial is taken to be the sum of the stimulus and the response

component waveform plus an AR process-like background noise.
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Figure 4 An illustration of the ERP decomposition algorithm with or without noise control
by the method of Wiener deconvolution, for the N =2 case. A: S-and R-component wave-
forms and noise waveforms ( a-activity, non-stationary background-EEG, and white noise)
used for simulation. B: Simulated single trial waveforms created through summing together
S-and R-component waveforms, according to different RT, plus noise. C: Comparison of o-
riginal S-and R-component waveforms, s-and r-aligned ensemble average waveforms, and
recovered S-and R-components either without noise control ( calculated by Equation 5 and 6)
or Wiener deconvolution method. D: RT distribution. E: ERP-image of the ensemble of tri-
als for original stimulus-aligned data (top) and for either S-component (lower left) or R-
component (lower right) after trials sorted according to RT, with no noise injected. F:
ERP-image of the ensemble of trials with noise added. This is the input to the S-R decompo-
sition algorithm. G: ERP-image of “stimulus” part and “response” part, in which on each
single trial, recovered R-component waveform (or S-component waveform) is subtracted,
respectively. Here different colors in an ERP image encode different amplitude values. The

black line in “response” part is RT curve.
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3.1.2 Simulation Result for N =3 Time Markers
Figure 5 shows the simulation results for the N =3 markers situation, as in the

attentional precuing paradigm, where the three time markers are the onset times of

| Cue I Stimulus : Response
0.8
g 06 g 03 g 05
£ 04 =] 2
g 02 :E% 0 :E% 0
< 0 -0.5 -0.5
-0.2
0.4 -1
0 500 1000 1500 0 500 1000 1500 -500 0 5001000 1500
time (ms) time (ms) time (ms)
single trial cue stimulus response
2 1 1 1
0 OW/\- 0 \/.\‘v—-'»* 0—‘—'-‘\4/\\/\“%
-2 -1 -1
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2 1 1 1
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-2 -1 -1 -1
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
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2 1 1 1
0 OMW 0{7/3\—-\/’\’.,’-—@' OM\/‘M
-2 -1 -1 -1
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
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time (ms)

Figure 5 Illustration using simulated waveforms, for the NV =3 marker situation. ERP is
assumed to consist of three component waveforms, time-locked to the onset of cue, stim-
ulus, and response, respectively. A: Recovered cue/stimulus/response-locked component
waveform ( red curve), original cue/stimulus/response-aligned average ERPs ( blue
curve) , and ground-truth cue/stimulus/response component waveform ( black curve),
plotted in the same graph. The reference zero point represents cue onset (left) , stimulus
onset (middle) , and response onset (right), respectively. B: Recovered cue/stimulus/
response component waveform (from Wiener filter) plus single-trial noise ( blue curve) ,
and original ground-truth of cue/stimulus/response-locked component waveform ( red
curve). Different rows correspond to different single trials ( randomly selected a total of
100 trials ), with single-trial signal-plus-noise ERP waveform displayed on the left
(black). In all graphs, 0 represents the time of cue onset, and the onset times of stimu-
lus and of response are of variable delay (that differ across trials).
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cue (c), stimulus (s), and response (r). The parameter values of equation (24)
are y,=3.4, v, =2.9,y,=54and A, =1.5,A,=2.0, A, =2.7. For each trial,
75(B =c,s,r) is the random variable representing onset time point for event 8. With-
out loss of generality, we take 7, to be fixed at 200, and 7, =250 = Rand, 7, =300
+ Rand, where Rand represent a uniformly distributed random number with mean 0
and variance 100. The value of « is taken to be fixed between 0 and 2 7. ERP wave-
form on any individual trial is taken to be the sum of the above three components plus

AR process-like background noise.
3.2 Data From Real Experiments

Here we illustrate the application of our technique to two real experiments, a
Go/NoGo task (N =2 markers) and an attention pre-cuing task (/N =3 markers).

3.2.1 A Go/NoGo Experiment

Our S-R decomposition algorithm has been applied to a Go/NoGo task, with ex-
perimental data obtained from an internet open source (http://www. scen. ucsd. edu
/ ~ arno/fam2data/publicly_available_EEG_data. html) .

EEG was recorded with a 32-channel system at a sampling rate of 1000 Hz, and
Cz was taken as the reference. Epochs contaminated with excessive eye movements,
blinks, muscle artifact, or amplifier blocking were manually removed by the data pro-
vider, and the ERPs were re-referenced to the grand average during off-line data pro-
cessing. The supplied data-set deal with two cognitive tasks, a recognition task and a
classification task (see the above online link for details).

Data from recognition task. ERP data was taken (from a single subject fsa) at
electrode Pz with a total 248 trials under analysis, and results are shown as Figure 6.
Our Wiener deconvolution algorithm (using uncoupled filters) is seen to offer a visu-
ally remarkable improvement over the direct calculation method since, without noise
control, the latter method disproportionately magnified low frequency noise and intro-
duced significant distortions, causing an artifact even in the baseline regions of the
waveforms. Visualizing the results using the ERP-image method (Jung et al. , 2001)
shows that our algorithm can recover the underlying S-and R-component waveforms

with fidelity.
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Data from classification task. Figure 7 ( A left) depicts the pure S-component
waveform extracted from Go trials, and compares it to stimulus-aligned ERP averages
(across all subjects) on both Go and NoGo trials on typical channels Fz, Pz and Oz.
It can be seen that, for Fz channel, the N2 component is smaller than that in the un-
corrected s-aligned average, while the P3 component in Go trials resembles that in
NoGo trials. Our results thus revealed a significant amount of contamination, by re-
sponse-locked ERP component, in stimulus-aligned ERP average on Go trials.

In order to demonstrate how our decomposition algorithm, when applied to all
electrodes simultaneously, improves the read-out of ERP topography, we choose three
typical ERP time windows (P1 patch, about 100 ms after stimulus onset; P3 patch,
about 350 ms after stimulus onset, response patch, about 25 ms after response onset)
between original averages and recovered signals, and compare the ERP topography
before and after S-R decomposition. Figure 7B shows the results: i) for the P1
patch, original waveforms and the recovered waveforms have very similar spatial dis-
tribution; ii) for the P3 and response patches, significant differences are revealed in
the prefrontal area and posterior parietal areas, with much larger amplitudes, due to
S-R cross-contamination ( statistical test results will be shown in a separate report) .
In Figure 8, we also plot the difference waveforms and ERP typography at N2 and
P3 time points, before and after applying our decomposition algorithm. Note the
conspicuous decrease (‘almost absence) in the P3 peak of the difference waveform
in B (after SR decomposition) compared with that in A ( before SR decomposi-
tion ) .

The importance of our methodology for proper interpretation of experimental data
is readily demonstrated by this example of Go/NoGo task. In Go/NoGo paradigm,
considerable interests have been devoted to a positive wave peaking within a latency
range of 300—500 ms ( P3 component) , which is reported to have larger amplitude
for frontal channels in the NoGo trials than in the Go trials ( Fallgatter & Strik, 1999 ;
Jodo & Kayama, 1999). Our analysis showed that there is a big difference in P3 be-
tween the original stimulus-and response-aligned EEG averages and recovered stimu-
lus-and response-locked component waveforms for channels Fz and Pz—P3 amplitude
in the original stimulus-/response-aligned ERP averages are larger than the true un-
derlying S-component/R-component waveforms. On the other hand, there appears to
be no difference in the P3 time patch between recovered S-component waveform on Go

trials and the stimulus-aligned ERP average on NoGo trials ( Figure 8B). This im-
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Figure 7 Result of S-R decomposition in a Go/NoGo task ( classification subtask). A:
Extracted pure S-and R-component waveforms for Go trials, and the stimulus-aligned
ERP averages for both Go and NoGo trials on channels Fz, Pz and Oz across all sub-
jects. B: Topography of the P1 time patch (100 ms), the P3 time patch (350 ms), and
the response time patch (25 ms) of original ERP average and of recovered waveforms,
respectively, for Go trials.
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Figure 8 The topographic distribution and ERP difference waveform between Go and
NoGo task in N2 and P3 time segment ( for the classification subtask of the Go/NoGo ex-
periment). A: Without applying decomposition algorithm. Topographic distribution and
ERP difference waveforms ( of stimulus-aligned averages between NoGo and Go trials)
for the two time patches: N2 time patch (head on the left and pink-colored stripe below)
and P3 time patch ( head on the right and grey-colored stripe below). B: After applying
decomposition algorithm. Topographic distribution for the N2 patch and ERP difference
waveforms ( between the stimulus-aligned waveform on NoGo trials and the stimulus-
locked component recovered from Go trials). For both A and B, different waveforms
( color-coded) correspond to different recording channels as shown by the head model.
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plies that the difference in P3 between Go and NoGo trials may result from the pres-
ence of a response-locked component in Go trials, rather than any difference in stimu-
lus processing between Go and NoGo trials. That the P3 component ( peaking around
350ms post stimulus onset) and the response component ( peaking around 50 ms post
response onset) suffer from stronger cross-contamination is understandable since the
mean reaction time is only 429 ms. In contrast, the earlier P1 component suffers little
cross-contamination, as evidenced by the close resemblance of the spatial distribu-
tions of the original stimulus-aligned ERP average and the recovered stimulus-locked
waveform ( Figure 7B). A more detailed report, including tests of statistical signifi-
cance for these effects, is forthcoming ( Yin & Zhang, in preparation).

3.2.2 An Attention Pre-Cuing Experiment

We also applied our S-R decomposition algorithm to experiment data on an atten-
tion pre-cuing task ( Yin et al, 2009). The stimuli used for the pre-cuing experiment
is as follows ( Figure 9). Each of the two rectangle-outlined boxes was briefly presen-
ted, and one of them was highlighted (brightened) as “cuing”. After a variable de-
lay of cue onset, the target, either a short vertical line or a long vertical line, was

presented within either of the two boxes with equal probability.

D + D 50 ms

.. 0.1

£ « response
cue D -+ D 120 ms §005 x o

2]

SOA I}O(;)Oms £ Sheis
VU ms -400 =200 0 200 400 600 800 1000 1200
o D + m 200 ms Time (ms)
A B

Figure 9 Experimental paradigm of the attentional pre-cuing task, with N =3 time
markers. A: The cue is the brightening of an unfilled box centered on one of the two pe-
ripheral target locations; the target is the appearance of a short or long vertical line in
one of the boxes. Interval between cue and stimulus (SOA) is a randomly variable be-
tween 100 ms to 300 ms. B: The two event time distributions, one for cue and one for re-
sponse, are given with respect to stimulus onset ( with stimulus onset time at 0 ms).

Our method is applied to decompose the cue-, stimulus-, and response-locked
component waveforms in the ensemble averaged ERP (averaged across all seven sub-

jects) as well as to the ERP averages of individual subjects. The data of all the cor-
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rect trials from one subject—the cue is located in the left, the stimulus is a short ver-
tical line ( “target” ) located in left, and the subject responded correctly by a left-
hand key-press. ERP data was taken at electrode Pz with a total of 127 trials under a-
nalysis. The cue-aligned, stimulus-aligned and response-aligned ERP averages ( de-
noted F,,F and F,) were constructed by aligning the waveforms on individual trials
with respect to cue-, stimulus-and response-onset respectively and summing over
those waveforms bin-by-bin (each bin is 1 ms). The event time (cue, stimulus, re-
sponse ) distributions were simply constructed from these 127 trials whose durations
are available around cue-onset, stimulus-onset and response-onset respectively. The
evoked component waveform related to (i. e., time-locked) to cue, stimulus, and
response, respectively, are denoted f,, f, and f,. They are recovered by our decompo-
sition algorithm along with Wiener decovolution noise control.

Figure 10 show the results of decomposition of the cue-, stimulus-, and re-
sponse-locked component waveforms from an analysis of ERP ensemble ( grand) av-
erages across seven subjects, under different alignment of individual trials for, re-
spectively, the cue-valid (A) and cue-invalid conditions (B). The top panels re-
veal that the reconstructed cue-locked component waveform f, is consistent with the
cue-aligned ERP average F_ during the first 300 ms after cue onset, but tends to
flatten out 500—1100 ms after cue-onset, in contrast to the amplitude of the F,
which remains large during this late period ( this latter activity reflects a cross-con-
tamination from the stimulus-related and response-related neural processes that have
not been “averaged out” in cue-aligned averaging). The middle panels reflects a
difference between stimulus-aligned ERP average F_ and the recovered stimulus-
locked component waveform f, during 300 ~ 800 ms after stimulus onset, due to pos-
sible cross-contamination from cue-locked and response-locked components. The
bottom panels reveal larger amplitude for the response-aligned ERP average F, com-
pared with the response-locked component f, in the period of 0—200 ms after behav-
ioral response onset, again presumably due to cross-contamination of stimulus-
locked component. The above observations are true for both cue-valid and cue-inva-

lid experimental conditions.
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In Figure 11, corresponding waveforms of the cue-valid and the cue-invalid con-
ditions are plotted directly on top of each other. Visual inspection shows that the cue-
locked waveforms, as well as the response-locked waveforms, are virtually identical
for the two cue-conditions (valid versus invalid). The only stage that a valid cue and
an invalid cue differ is with respect to the processing of the stimulus, where the two
waveforms differ significantly ( middle panel) , since the validity of a cue on a trial
(i.e., priming effect) is operationally only meaningful with respect to the stimulus

on that trial.
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Figure 11 Comparison the recovered cue-locked, stimulus-locked, and response-locked

component waveforms across the cue-valid and cue-invalid conditions (c. f. Figure 10).

To demonstrate sensitivity of our decomposition algorithm, we show the results
for all seven individual subjects ( Figure 12). The three columns represent, respec-
tively, cue/stimulus/ response-aligned ERP averages ( thin lines) and recovered
cue/stimulus/response-locked component waveforms ( thick lines) , for “cue-valid”

¢

experimental condition (A) and for “cue-invalid” experimental condition (B). The
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difference between cue-aligned waveform and cue-locked component is quite pro-

nounced across all subjects.
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Figure 12 Decomposition results for each individual subject at electrode Pz. Thin curves

are cue/stimulus/response-aligned ERP averages, and thick curves are recovered cue/

stimulus/response-locked component waveforms. A: Experimental condition when the

cue is valid—cue is located in the left, stimulus is short-line ( target) located in left, and

response is left key-press. B: Experimental condition when cue is invalid—cue is located

on the right, stimulus is a short line ( “target” ) located in the left, and response is left

key-press.
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Figure 12 ( continue)

To test the stability of our decomposition algorithm, we split all trials into two
piles, one pile with relatively longer reaction-times and another with relatively shorter
reactions times, and then perform decomposition separately. Results are shown in
Figure 13, for cue/stimulus/response-aligned ERP averages and recovered cue/stim-
ulus/response-locked component waveforms, when all trials are lumped together (A)
or separated according to reaction times (B). Despite of obvious difference in ERP
averages for short-and long-RT trials ( green versus black lines in B), recovered
waveforms (blue and red lines in B) are remarkably similar, demonstrating the ro-

bustness of our method.
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Figure 13 Comparison of original cue/stimulus/response-aligned average waveform and
recovered cue/stimulus/response component waveform, on Oz channel for the cue-valid
condition. Left: All trials are used. Right: Trials are divided into two halves, those with
below-median reaction times ( “short RT” trials) and those with above-median reactions
times ( “long RT” trials). A and Al: Cue-related waveforms; B and B1; Stimulus-relat-
ed waveforms; C and C1: Response-related waveforms.
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Finally, the effectiveness of our decomposition method can be appreciated when
we perform decomposition across all channels and then construct topographic distribu-
tion. Figure 14 compares the topographic distribution of the original cue-aligned ERP
average with that of the recovered cue-locked waveform, at the time point of 250ms,
700ms after cue onset. It can be readily concluded that posterior activities at 700ms
after cue onset, as seen in the cue-aligned ERP typography, is an artifact ( due to

possibly contamination from stimulus-locked processing) .

after Cue onset 250 ms after Cue onset 700 ms

Wiener deconvolution

Cue aligned average

Figure 14 Comparison of topographic distribution between recovered cue-locked compo-
nent (top) and original cue-aligned average ( bottom), at the time point of 250 ms and
700 ms after cue onset.

4 Discussion

Common methods for decomposition of multiple components in ERP/EEG and
fMRI data include Independent Component Analysis ICA ( Amari, Cichocki & Yang,
1996 ; Bell & Sejnowski, 1995; Comon, 1994 ; Jutten & Herault, 1991; Makeig et
al. , 1996) and Principal Component Analysis PCA ( Pearson, 1901 ; also known as
Karhunen-Loeve transform) , among others. PCA is a classical technique in statistical
data analysis, feature extraction and data reduction, aiming at decomposing observed
signals into a linear combination of orthogonal components based on the variance-co-
variance matrix, whereas ICA is a technique of array processing and data analysis,
alming at recovering underlying “sources” from their observed mixtures based on an
assumption of mutual independence between the subcomponents. The exact number of
recovered components is often determined in an ad hoc fashion—in PCA | it is deter-

mined by comparing the amount of variance captured versus the residual variance,
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whereas in ICA, the maximal number of recovered components is further constrained
by the total number of observed channels. Although ICA/PCA have been widely ap-
plied in ERP/EEG and fMRI dataset analysis for artifact remove, these two methods
made strong assumptions which often may constrain their applications. For example,
ICA assumes that the underlying sources are statistically independent, whereas for
PCA, the underlying components are assumed to be orthogonal to one another. Inde-
pendence and orthogonality may be too strong assumptions to be neurobiologically re-
alistic. From a methodological point of view, a more serious problem is that both
methods assume each trial to be a stationary point process despite of change in key
behavioral events, such as reaction time. The trial-by-trial variation of behavioral
markers even causes problem to properly align EEG/fMRI recordings across trials,
which is a precursor for ICA/PCA type analysis.

Working under this last constraint is crucial for successful decomposing EEG/
fMRI components in many psychological experiments which, typically, involve two or
more behavioral events in a single trial. This problem is now completed solved
(Zhang, 1998, for the N =2 case and Yin et al, 2009, for arbitrary N). There,
ERP averages aligned to behavioral events are being used, along with the inter-event
time distributions, to uniquely recover event-locked component waveforms. This
method, as summarized in the present Chapter, can be used to supplement the more
commonly used multi-component decomposition method, such as PCA/ICA, by over-
coming the hurdle of non-stationality of time series (i. e., ERP/fMRI recordings
across trials) whose trial-by-trial variation is of behavioral significance.

Our simulation results demonstrate that the decomposition method we advanced is
effective and practicable in disentangling the contributions of different components.
However, we also note that the effectiveness of the method relies heavily on the
“proper shape” of event time distribution across the ensemble of trials. Here “proper
shape” means that the RT distribution ( event time distribution in general) is unimod-
al with variance significantly different from zero. Actually, the less variance the RT
(event-time) distribution is, the less effective our method becomes. Mathematically,
when the RT variance is small (e.g., all trials have nearly uniform reaction time) ,
its Fourier transform approaches unity and the recovery error generated by applying
Equation (5) or (6) becomes large. At the other extreme, when the RT distribution
has too large a variance that exceeds the average reaction time, event-aligned ERP

waveforms will have included late or early contributions outside the region of interest.
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Technically, to get the event-aligned ERPs across individual trials, we need segment
the raw EEG recording into single trials all with same length and then impose periodic
condition in order to perform Fourier transform—the variance of event distribution
need to be small enough so that the segmented single trial recording still contains the
region of interest.

Notwithstanding such technical constraints, our method actually addresses and
solves a problem that was not addressed by conventional methods, and is thus a com-
pletely complementary technique in ERP multi-component analysis. Though our simu-
lations are based on ERP context, the basic mathematical technique behind our meth-
od can also easily be adapted to deal with event-related signals in other neuron-ima-
ging techniques, especially fMRI.

There are certain limitations of our method. One of those is that our mathemati-
cal model makes the fundamental assumption that the true, underlying S-and R-com-
ponents (or other components, in N >2 case) are the same in each and every single
trial, in terms of timing and overall amplitude of the waveform. The latency variation
of an event-locked ERP component across single trials can be easily addressed; in
this case, the recovered waveforms are simply the jittered version of the underlying S-
and R-component waveforms. Future research will address the more serious constraint
imposed by the assumption of equal amplitude of the underlying waveform across indi-
vidual trials (which amounts to a multiplication of the RT distribution by the RT-de-
pendent amplitude modulation function and hence will change the RT distribution).
A possible approach is to combine the template matching technique (Truccolo et al. ,
2003) with our S-R decomposition technique to develop an adaptive technique to ex-
tract underlying waveforms that give rise to trial-by-trial evoked potential.

The other limitation of our method is that it assumed all event-time distributions
are known. For instance, our signal model (Eqn 21) assumed that single-trial wave-
forms result entirely from a stimulus-locked component waveform and a response-
locked component waveform, plus noise. Based on this assumption, unique recovery
of these component waveforms is mathematically guaranteed. However, by scrutiniz-
ing the results ( ERP images in Figure.7) , one finds that the recovered S-component
waveform and R-component waveform share considerable common activities (on a
window from about 400 ms after stimulus onset). Such common activity seems to re-
flect a component waveform that may neither be time-locked to stimulus nor to re-

sponse ( perhaps to some stimulus-response “decision” , with an unknown transition
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time distribution) ; yet this component has heen, unwarrantedly, decomposed into the
S-and R-component waveforms. In Zhang (1998) , the possibility of a “decision-re-
lated” component, which is time-locked to the putative transition of a stimulus pro-
cessing and a response processing stage, has been investigated, whereby the unknown
event time distribution (in this case, the time marker related to “decision” ) is esti-
mated from data. Future research will implement the solution strategy and develop

noise control techniques tailored to such estimation.

5 Conclusion

In this Chapter, we provided a robust method for decomposition of a stimulus-
locked and a response-locked component ( N =2 markers), or multiple components
time-locked to various behavioral events (N >2 markers) , in ERP recordings. With
our technique, trial-by-trial variation in behavioral reaction time is no longer an ob-
stacle but rather an advantage for isolating the underlying neurocognitive processes
mediating a task. The method is robust because we applied denoising techniques
based on Wiener deconvolution. When applied to those (low) frequency components
that fall under the null space of an operator ( controlled by the reaction time distribu-
tion ) , this noise control technique gives robust results of recovery, despite of consid-
erable variation in trial-by-trial reaction times and the limited total number of trial.
Our algorithm,, when combined with other traditional methods of source separation and
localization, will provide reliable tools for pinning down the underlying neural sub-

strate for cognitive processes interrogated by neuroimaging methodology.
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