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Abstract We model the vague-to-crisp dynamics of

forming percepts in the brain by combining two method-

ologies: dynamic logic (DL) and operant learning process.

Forming percepts upon the presentation of visual inputs is

likened to model selection based on sampled evidence. Our

framework utilizes the DL in selecting the correct ‘‘per-

cept’’ among competing ones, but uses an intrinsic reward

mechanism to allow stochastic online update in lieu of

performing the optimization step of the DL framework. We

discuss the connection of our framework with cognitive

processing and the intentional neurodynamic cycle.

Keywords Operant conditioning � Operant learning �
Dynamic logic � Mixture models � Model selection �
Intrinsic reward

Introduction

Dynamic logic learning (DL) is a computational theory of

cognitive processes (Perlovsky 2001), which emphasizes the

‘‘vague-to-crisp’’ aspect of perceptual and cognitive pro-

cessing. DL postulates that the internal concepts (models),

which correspond to various perceptual categories, are

learned by way of gradual transition from fuzzy and uncer-

tain (‘‘vague’’) initial models to sharp and definite (‘‘crisp’’)

models. Such vague-to-crisp transition mechanism presum-

ably provides computational efficiency by avoiding the

computational complexity involved in associating percep-

tual inputs to internal models. The DL mechanism is postu-

lated to exist due to the need of an organism to satisfy the

‘‘knowledge instinct’’ (KI), which is an intrinsic motivation

of the organism and is satisfied when similarity between the

models and the perceptions is maximized. DL is mathe-

matically formulated in a Bayesian learning framework and

is related to statistical parameter estimation in mixture

models—under certain conditions it can be considered as a

maximum likelihood joint parameter estimation and model

selection. DL has resulted in improvements in signal pro-

cessing (Perlovsky 2010).

Operant learning (OL) is a theoretical framework for

adaptive learning by an intelligent agent as it interacts with

its environment. It is characterized by selecting the next

action based on current action probabilities with sub-

sequent adjustment of the probabilities based on a rein-

forcement signal. The probability of the currently selected

action changes based on the strength of the reinforcement.

At the same time, the probabilities of the alternative actions

change only due to normalization to assure that the sum of

action probabilities equals to one. The OL algorithm is

different from the Bayesian learning where all action

probabilities are adjusted by computing the posterior
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probability based on current input. However, previous

work (Zhang 2009a, b) showed that these two styles of

learning are closely related at the level of ensembles of

learning agents.

In this work, extending our preliminary results (Ilin et al.

2011), we show that DL and OL dynamics can be merged

into a unified computational framework, Accordingly, the

original DL batch learning algorithm will be modified (1)

to achieve online processing, and (2) to use OL style

updates. The association weights between inputs and

models are adjusted using the OL procedure, where the

reinforcement signal corresponds to the similarity between

the selected model and the current input, while the model

parameters adjusted using an OL style procedure. We

demonstrate the operation of the new algorithm using

numeric examples. This combined algorithm provides an

alternative formulation of the vague-to-crisp DL process,

with the added advantage of reducing computational

complexity and realizing online processing.

Methodology

Dynamic logic framework

As mentioned in the introduction, DL is a computational

theory of perceptual and cognitive processing in the brain.

It is built on the idea of internal models that correspond to

both tangible and abstract concepts in the environment.

The internal models form a hetero-hierarchy modeling the

relationships existing between the concepts. In the absence

of sensory input, the models exist is a ‘‘vague’’ form. They

are actualized in a ‘‘crisp’’ form by coming into contact

with the sensor data. The actualization of the models

causes them to adjust to sensory input and form the best

possible match. The DL theory postulates that the brain is

found in constant need to increase the match between its

internal models and the environment. Such need is called

the knowledge instinct (Perlovsky 2001). Driven by the

knowledge instinct, the brain is in the perpetual process of

learning and improving its internal models.

Mathematically, the internal world of an agent is

described as a set of parametric statistical models. Consider

a finite set of possible concepts, of size H. Denote the

internal model corresponding to a concept h = 1…H, by

Mh. The match (called ‘‘similarity’’ below) between a

model Mh and an individual sensory input xn is given by the

joint probability density function g (xn, Mh). Each model

depends on a set of parameters Sh, called ‘‘association

weights’’. Denote the set of all sensor inputs by X = {xn,

n = 1…N}. The total similarity between all models and all

inputs is given by the data likelihood

L X;MðSÞð Þ ¼
YN

n¼1

XH

h¼1

g ðxn;MhÞ: ð1Þ

Here, N and H are the total number of inputs and

models, respectively. Using Bayes theorem, the

similarity can be expressed through the a priori

probability ph of model Mh and the conditional

density of the data given the model:

g ðxn;MhÞ ¼ phg ðxnjMhÞ ð2Þ

Note that here ‘‘a priori probability’’ ph is used with respect

to the gathering of sensory input xn at a particular

moment—it is the probability that model Mh is true (but

with yet-to-be-specified parameters Sh) prior to receiving xn

among a stream of sensory inputs. Equation (1) is

maximized by iteratively computing the following

quantities (Perlovsky 2001):

f I
hn ¼ g ðxn;MhÞ

,
XH

h0¼1

g ðxn;Mh0 Þ; 8n; h ð3Þ

pIþ1
h ¼ pI

h þ er

XN

n¼1

f I
hn

o log g ðxn;MhÞ
pI

h

; 8h ð4Þ

SIþ1
h ¼ SI

h þ e
XN

n¼1

f I
hn

o log g ðxn;MhÞ
oSI

h

; 8h ð5Þ

In Eqs. (3–5), I is the iteration number, and e is the

learning rate. The association weight f between the model

Mh and current input xn is computed in Eq. (3) based on the

parameter estimates of the current model. Equation (4)

adjusts the a priori probabilities. Equation (5) adjusts the

parameter estimates Sh by weighted gradient ascent using

the current association weights. The vague-to-crisp process

is achieved by proper initialization of the models and

optionally introducing additional parameters controlling

the fuzziness of the models. Note that the association

weights are the posterior probabilities of models Mh given

input xn.

The models are initialized to have comparable simi-

larity to the incoming input, and therefore, initially the

input is associated with more than one model. After the

models are properly learned, the new input is correctly

associated with the model that results in the maximum

similarity or, equivalently, having the association weight

close to 1. In (3–5), DL is described as a batch algorithm.

This formulation has been used successfully in many

applications, including the detection and tracking of

targets (Deming 1998; Deming et al. 2007a, b; Perlovsky

and Deming 2007; Ilin and Deming 2010). Appendix 1

provides more information on how the iterative proce-

dure is derived.
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Operant learning framework

Operant learning (OL) or operant conditioning is based on

the process by which an animal modifies its behavior as a

result of experiencing the consequences of its past behav-

ior. OL uses the assumption that, in a given context the

action is selected by the animal solely based on the action

probabilities learned from past experience. Mathemati-

cally, given a repertoire of H actions with corresponding

action probabilities ph, the probabilities of selected action h

are adjusted as follows

pnþ1
h ¼ pn

h þ e hh ð1� pn
hÞ; ð6Þ

while the probabilities of the other actions h0 = h are

given by

pnþ1
h0 ¼ pn

h0 � e hhpn
h: ð7Þ

Here e is the learning rate and hh is the reinforcement

signal after action h is selected. The index n refers to the

time step of the algorithm execution. These formulas

express the idea that the probability of the currently

selected action increases proportionally to the reward

received after the action is selected. The probabilities of all

other actions decrease in order to keep their sum equal one

(normalization effect). The reward signal hh has to have

upper bound in order to maintain the values of all

probabilities between zero and one. Usually, the learning

rate e is chosen to avoid this problem. Even if occasionally

wrong actions are selected and possibly rewarded, the right

action choice will be learned after many trials given that

the learning rate is sufficiently small (Zhang 2009a).

Sequential dynamic logic algorithm

One of the disadvantages of DL algorithm is the require-

ment to process all available data in a batch mode. It turns

out that the algorithm can be modified for online data

processing.

The algorithm given by (3–5) is modified for processing

one input at a time. This turns the algorithm into stochastic

gradient ascent. Such algorithm can be made more efficient

by introducing the momentum term (Haykin 1999), which

helps ‘‘remember’’ the derivatives obtained from process-

ing previous inputs and make the gradient ascent trajectory

smoother. Thus, the sequential DL algorithm is given as

follows.

fhn ¼ phg ðxnjMhÞ
,
XH

h0¼1

phg ðxnjMh0 Þ; 8h ð8Þ

Drh ¼ fhn þ brDrh; 8h ð9Þ

ph ¼ ph þ er � Drh; 8h ð10Þ

Dh ¼ fhn

o log gðxn;MhÞ
oSh

þ bDh; 8h ð11Þ

Sh ¼ Sh þ e � D; 8h ð12Þ

Equations (8–12) are applied to each input. Note that (8)

is the same as (3) combined with (2). The gradients are

computed based on a single input and the discounted values

of the previous iteration gradients. New parameters b and

br are introduced for the momentum terms.

Operant learning–dynamic logic (OL–DL) algorithm

Conceptually, the sequential DL procedure described in the

previous section processes each input in two steps:

• Step 1: Equations (8–10): The input is compared with

all models using Bayes theorem and the association

weights between the input and the models are adjusted.

These weights are used to adjust the model probabilities

ph.

• Step 2: Equations (11–12): the parameters of the

models Sh are adjusted using gradient ascent, weighted

by the association weights. The choice of new param-

eters is guided by the relative similarity between the

input and the models.

In previous studies, (Deming 1998; Deming et al. 2007a,

b; Perlovsky and Deming 2007; Ilin and Deming 2010) DL

has been applied to scenarios with data inputs coming from

multiple sources, such as target and clutter, and the task

was to simultaneously estimate the parameters of all of the

models. Probabilities ph converge to the relative propor-

tions of the data from different sources. Consider a scenario

where all the data come from a single source. The algo-

rithm will eventually identify the model best corresponding

to that single source by adjusting its a priori probability to

1, while the a priori probabilities of all other models will

become 0. This is equivalent to solving a model selection

problem. In terms of operant conditioning, this is equiva-

lent to learning the appropriate behavior through experi-

ence by adjusting internal parameters.

Dynamic Logic (DL) is formulated as a Bayesian model

selection framework. Based on the above conceptual

description, we can transform DL into a two stage OL

framework, such as described in (Zhang 2009b). The first

stage consists of the selection of the model, and the second

stage consists of the selection of the model parameters. The

repertoire of actions in the first stage consists of selecting

one of H models, with model probabilities given by ph. The

repertoire of actions in the second stage consists of all

possible parameter selection. In order to overcome the

difficulty of considering an infinite number of possible

actions, we assume that the parameters of each model can
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take values from a reasonably large but finite domain.

Suppose that there are Nhs possible choices of parameters

of model h. The action probabilities for mode h are given

by ps|h, s = 1…Nhs.

Suppose that model h and model parameters s have been

selected at a given step. The change of action probabilities

is given by the following expressions, similar to (6a)–(6b)

in (Zhang 2009b):

pnþ1
h ¼ pn

h þ e hn ð1� pn
hÞ ð13Þ

pnþ1
h0 ¼ pn

h2
� e hnpn

h0 ; h0 6¼ h ð14Þ

pnþ1
sjh ¼ pn

sjh þ
e hn ð1� pn

sjhÞ
pnþ1

h

ð15Þ

pnþ1
s0jh ¼ pn

s0 jh �
e hnpn

s0 jh

pnþ1
h

; s0 6¼ s ð16Þ

Unlike in the common operant conditioning scenario,

the reinforcement signal now does not originate from the

environment. Rather it is computed according to the DL

principles, based on how similar the selected model with

selected parameters is to the observed input. It is therefore

a function of g (xn, Mh). The exact functional form can be

specified in many different ways; in this work we define the

reinforcement as follows:

hn ¼ ðAþmax ð�A; log g ðxnjMhÞÞÞ3 ð17Þ

In Eq. (17), constant A is the cutoff value for the logarithm

of the likelihood function that is selected empirically. The

transformation in (17) ensures that the reward is greater than

zero, which is necessary for applying operant reinforcement

learning. The power function is applied to increase the

efficiency of the algorithm by making the difference between

high and low likelihood inputs larger. The reward structure

suggested here has a simpler functional form comparing to

our previous publication (Ilin et al. 2011).

Equations (13–17) define the OL version of the DL

framework (OL–DL), which is a two-stage process. The

first stage results in the adjustment of the a priori proba-

bilities of the models. The second stage adjusts parameter

probabilities of the selected model. The reward is intrinsic

and is a function of the similarity between the model and

the input, in accordance with the knowledge instinct prin-

ciple (Perlovsky 2001). The repeated application of the

algorithm leads to learning the correct model and its

parameters resulting in increased average reward, again in

accordance with the DL principles. The new formulation is

simpler and computationally more efficient than the

sequential algorithm in (8–12). Note that during each input

presentation only one similarity function is computed for

the selected model, as opposed to the need to compute all

similarities in (8).

Computational efficiency

Unlike the sequential version of the DL algorithm, the OL-

DL algorithm does not involve the derivatives of the

models. Therefore, it is arguably more biologically plau-

sible. It can also be extended to more than two hierarchical

levels in order to handle more complex models. These are

the main motivations behind deriving the algorithm. In

terms of computational efficiency, the number of opera-

tions in the DL algorithm is O (ENM), where N is the size

of the data, E is the number of training epoch, which is the

number of times each data point is presented to the algo-

rithm, and M is the number of models. In the case of OL–

DL, the number of operations is O (EN). The constant

hidden inside the big-O notation may be larger for OL–DL

as the speed of learning depends on the learning constant e
and consequently OL–DL may require more epochs to

converge. The results obtained for a simple problem given

in the next section show that the difference in the number

of epochs is not significant.

Demonstration of results with the OL–DL algorithm

Description of the data set and applied models

Let us consider the following example to illustrate the

operation of the algorithms. The data consist of N = 800

two-dimensional points originated from a stochastic

source with unknown probability distribution. We

experiment with three kinds of distributions: (a) uniform,

(b) Gaussian with full covariance matrix, and (c) Gauss-

ian with diagonal covariance matrix. Examples of the

three kinds of data sets are shown in Fig. 1. We assumed

that the mean value of all three data sources is 0 and is

known to the algorithms.

The data points (‘‘sensory inputs’’) are presented one

by one, and the task is to learn the most appropriate

model for these data. Since we are dealing with synthetic

data, the repertoire of possible models includes: (1) uni-

form probability density, (2) Gaussian probability density

with full covariance matrix, and (3) Gaussian probability

density with diagonal covariance matrix. The uniform

probability density is the same for all data points and

equals the inverse of the area covered by the data. The

area is updated as new data points are received by com-

puting the minimum and the maximum coordinate in each

dimension. Data are presented to the algorithm in random

order that changes after each cycle (epoch) through all

N points. In the case of sequential DL algorithm, the

learning rates were set to the following values: e = 0.001,

er = 0.01, b = 0.9, br = 0.5.
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Results

The sequential DL and the OL–DL algorithms described

above have been implemented in Matlab with the three

models. The execution of both algorithms can be illustrated by

considering the evolution of the a priori model probabilities

ph. Since there are three possible models, we use the proba-

bility simplex, which is a triangle corresponding to the set of

non-negative points adding to one. The computation starts

with a point close to the center of the triangle. In the process of

applying either algorithm, the probability of the model that

corresponds to the data source increases to the value close to 1,

while the probabilities of the other two models decrease to

values close to 0. Figure 2 illustrates the performance of OL–

DL algorithm with all three types of data source. We ran 50

experiments for each of the cases and as the figure shows the

correct models are selected in each case. Similar results were

produced for the sequential DL algorithm.

In order to apply the OL version of the DL algorithm,

we made the model parameters discrete, as follows. The

covariance matrix has three independent parameters. Each

parameter is quantized over a certain range and a covari-

ance matrix for each parameter combination is generated

and stored in the computer memory. We experimented with

different sets of possible covariance matrices. The results

reported here employ a set of 36 matrices. Some of the

possible choices for the covariance matrix are shown in

Fig. 3, for both diagonal and full covariance matrix. The

diagonal covariance model has also been made discrete

with 28 possible choices. We also experimented with larger

number of choices, up to 300, producing similar results.

Although the number of possible action choices may be an

important parameter, its influence will be studied in the

future work. If the number of choices should become too

large, the hierarchical schemes for model design will be

implemented.

The parameters of the OL algorithm are set as follows:

e = 0.00001, A = 10. The initial action probabilities are

assumed to be equal, and are set to: ph
0 = 1/3, ps|h

0 = 1/Nhs.

Simulation showed that the probability of correct model

increases to 1 and the probabilities of the other two models

decrease to 0. Similarly, the probability of the correct

model parameters increases to 1. This process, along with

the reward as a function of iteration is shown in Fig. 4. The

reinforcement signal jumps up and down as the function of

the selected models and depending on the model parame-

ters selected in each iteration. In order to see the trend we

smoothed the time series hn with moving average filter. The

reward increases steadily over the execution of the

algorithm.

We measured the number of epochs necessary for the

algorithms to converge. The convergence criterion was met

when one of the model probabilities ph exceeded 0.99. The

results for sequential DL and OL–DL are shown in the

table below.

Table 1 shows that the number of times the full data set

had to be presented to the algorithm was not significantly

different for both algorithms. However, the OL–DL algo-

rithm performs fewer computations because it only updates

one of the models in each iteration.

Conclusions and discussion

This contribution explored connection between two com-

putation frameworks for model selection: DL and operant

conditioning. When applied to a problem involving

simultaneous model selection and parameter estimation,

the DL framework is conceptually similar to a two-stage

OL sequence with intrinsically generated reinforcement

signal. In its existing formulation, DL is a Bayesian

learning framework. In this work we reformulated dynamic

Fig. 1 Data samples from the three cases of two-dimensional probability density functions considered in this paper
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Fig. 2 Evolution of a priori probabilities ph in case of sequential DL

algorithm. Model 1—Corresponds to the uniform, Model 2—Gauss-

ian with full covariance, Model 3—Gaussian with diagonal

covariance. The triangle represents the probability simplex, where

all points satisfy the relation p1 ? p2 ? p3 = 1

Fig. 3 Illustration of several possible choices for the covariance matrix for the full and diagonal covariance model. Sample data are displayed in

the background. The ellipses correspond to the 2-standard deviation ellipses of the respective two-dimensional Gaussian distributions
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logic in terms of OL, at the same time preserving its main

principles.

The principles investigated include (1) intrinsic reward,

stemming from the postulated existence of the knowledge

instinct, and (2) vague-to-crisp learning process for concept

formation. The intrinsic reward increases with increased

similarity between the input data and the selected model.

The initial model selection and parameter selection prob-

abilities are set to be equal, making all model choices

equally possible. They are ‘‘vague concepts’’ in DL terms.

The final result is the single model and single parameter

value selected with probability one, corresponding to crisp

concepts. We illustrated the operation of the new OL–DL

algorithm through an example of model selection and

parameter optimization. We demonstrate that the

introduced combined algorithm provides an alternative

formulation of the vague-to-crisp DL learning process,

with the added advantage of reducing computational

complexity and realizing online processing.

Neural mechanisms of DL and corresponding operant

conditioning behaviour are of significant interest to

researchers in the neuroscience of decision making. Bio-

logical mechanisms of learning, including OL, have been

studied in the context of perceptual processing, see, e.g.

(Stemme et al. 2011; Neiman and Loewenstein 2013). The

idea of vague-to-crisp transitions found support in previous

neuroimaging studies in the field of visual processing (Bar

et al. 2006). In addition to early visual cortex, these authors

identified involvement of fusiform gyrus and the prefrontal

cortex (PFC) in operation of this mechanism. They have

hypothesized that vague representations propagate fast via

the magnocellular dorsal pathway (bottom-up signal) from

early visual cortex to the PFC, in addition to more sys-

tematic and slower propagation along the ventral visual

pathway. Bottom-up and top-down signals are integrated in

object-processing regions of the occipital-temporal cortex

(fusiform gyrus). Kveragra et al. (2011) in their study of

processing of contextual information also identified vague-

to-crisp mechanisms, involving the parahippocampal, ret-

rosplenial, and medial prefrontal cortices.

Fig. 4 Illustration of the OL dynamic logic algorithm (OL–DL). Top model probabilities ph. Middle Gaussian model parameter probabilities ps|h

for h corresponding to the true model. Bottom Moving average of the reward signal. The average value has been determined over 50 iterations

Table 1 Convergence of the algorithms

Algorithm Number of epochs

to convergence

(mean ± standard

deviation)

Sequential DL 9.55 ± 2. 15

OL–DL 9.15 ± 3.75
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A variety of representations for internal models have

been considered (Rao et al. 2002), including inverse

dynamics and forward models. OL–DL mechanisms con-

sidered in this paper support these types of models,

including parametric, analytic, and probabilistic. OL–DL

models mechanisms of bottom-up and top-down signal

interaction; in the top-down stream representations serve as

forward models, in the bottom-up stream representations

serve as inverse models. A salient innovative property of

OL–DL is that it supports contemporaneous learning of

multiple models and assignment/association of data with

models while avoiding combinatorial complexity that used

to be a typical difficulty of these type learning problems

(Perlovsky et al. 2011).

Levine and Perlovsky (2008) discussed functions of the

orbitofrontal cortex (OFC), anterior cingulate cortex

(ACC), and the dorsolateral prefrontal cortex (DLPFC) in

terms of the postulated ‘‘knowledge instinct’’. The argu-

ments there appear to have drawn supported from recent

results on involvement of dopamine and opioid neurons

(Litman 2005; Fiorillo 2011). At least two separate

motivational systems are involved: ‘‘wanting’’ associated

with mesolimbic dopamine activation and ‘‘liking’’ asso-

ciated with nucleus accumbens opioid activation (Berridge

and Robinson 1998, 2003; Berridge 2004; Tindell et al.

2005; Zhang et al. 2009). It is likely that OL–DL as well

as mechanisms of the knowledge instinct involve both

cognitive and motivational neural substrates. The above

discussion is only a step toward understanding these

mechanisms, and opens up a wide area for future research.

Models based on attractor dynamics have been used

successfully for describing cognitive processing (Kay

et al. 1995; Satel et al. 2009; Li and Nara 2008). It is

anticipated that our proposed DL approach is of relevance

to neurodynamics in a broader context, exemplified by the

pioneering experimental and theoretical brain research by

Freeman (1999). According to Freeman’s dynamical sys-

tem models of neural dynamics, cognition is described

through a trajectory moving across a convoluted attractor

landscape with valleys corresponding to memory patterns

(Freeman 1975; Skarda and Freeman 1987; Kozma et al.

2003). In the basal mode of the intentional neurodynamic

process, the brain is in a high-dimensional dynamic state,

and the trajectory of the system explores the dynamic

attractor landscape. This can be described as a gaseous

chaotic state (Kozma et al. 2012), which may be inter-

preted as a vague perceptual state according to DL. When

an input pattern is presented to the system, the oscillations

undergo a phase transition and the trajectory is switched

to a localized memory wing, which is described as con-

densation to a liquid-like cognitive state. This phase

transition corresponds to the act of identification and

decision making, and can be associated with the formation

of a crisp state in terms of DL. The new state is main-

tained for some time, until conditions for a new quick

switch are ready, when the whole cognitive cycle starts

again. In this context, the vague-to-crisp transition can be

viewed as a manifestation of the perceptual transition

when the input data are perceived and identified in brains.

Freeman’s attractor dynamics approach suggests a con-

sistent framework for perceptual learning process, but

does not specify the model selection details. In the present

work, the operant conditioning process suggests a method

for implementation of above perceptual mechanism.

Future work aims at comprehensive evaluation of the

advantages of OL–DL algorithm with respect to alterna-

tive learning approaches. Our results advanced the OL and

DL framework concerning both the computational effi-

ciency and the biological plausibility, especially in the

framework of the intentional neurodynamic and cognitive

computing paradigms.
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Appendix 1: Dynamic logic iteration

Let us consider the logarithm of the total similarity (1)

log L ðx;M ðSÞÞ ¼
XN

n¼1

log
XH

h¼1

g ðxn;MhÞ ð18Þ

The derivative of (18) with respect to the parameter Sh

of model Mh can be written as follows.

o log L

oSh

¼
XN

n¼1

o

oSh

log
XH

h¼1

g ðxn;MhÞ
 !

¼
XN

n¼1

g ðxn;MhÞPH
h0¼1 g ðxn;Mh0 Þ

o log g ðxn;MhÞ
oSh

ð19Þ

Introduce the following quantity

fhn �
g ðxn;MhÞPH

h0¼1 g ðxn;Mh0 Þ
ð20Þ

The gradient is now expressed as follows

o log L

oSh

¼
XN

n¼1

fhn

o log g ðxn;MhÞ
oSh

ð21Þ

Instead of performing gradient ascent using (21) we can

iteratively compute the quantities in (20) with fixed values of

model parameters, and then perform a gradient ascent step

with fixed values of the quantities fhn. These quantities are

referred to as ‘‘association weights’’ in the main text. The
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resulting procedure is what is given by (3–5). The proof of

convergence of this procedure is given in (Perlovsky 2001),

and is not repeated here due to space constraints. Note that fhn

is the posterior probability of the model h given the observed

value xn. The algorithm can be alternatively derived using the

principal of expectation maximization, although this is not

how it was originally derived.

Appendix 2: Sketch of proof of OL–DL convergence

The algorithm given by (13–16) consists of a two-step

action selection, illustrated below.

After the model and the parameters are selected, the

reward value hn is computed. We can show executing the

algorithm (13–16) results in increase of the expected

reward. Indeed, consider the following quantity

E½Dhn� ¼ E hn � hn�1½ �: ð22Þ

This is the expected value of the difference between

reward received in the current and in the previous iteration.

The reward is a function of the selected model and model

parameters hn ¼ hhs
n ðxnÞ. The expectation can be written by

summing and integrating over the probability distributions

associated with all the random quantities: the input data

and the selected model and its parameters:

E hnþ1 � hn½ �

¼
Z

8xn

XH

h¼1

XM

s¼1

pnþ1
h pnþ1

sjh hhs
nþ1 ðxnþ1Þ � pn

hpn
sjhh

hs
n ðxnÞ

n o
p ðxnÞ dxn:

ð23Þ

This expression can be rewritten by (1) bringing the

integral inside the summations since it is only the reward

that depends on the input, and (2) substituting the

expressions (14–16) for the next action probabilities. We

also need to separate the terms that correspond to the

selected model and model parameters, with indices h and s,

and the terms for the rest of the action and parameter

selections, with indices h0 and s0. We will omit writing the

explicit dependency of the reward on input to make the

expressions more clear.

The first term in (24) corresponds to the selected model

and parameter actions. The second term corresponds to the

selected model and its parameter actions that were not

selected. The third term corresponds to the models that

were not selected, and the fourth term is the expected

E hnþ1 � hn½ � ¼
R

8xn

pn
h þ e hhs

n ð1� pn
hÞ

� �
pn

sjh þ e
pn

h

hhs
n 1� pn

sjh

� �� �
hhs

nþ1p ðxnÞ dxn

þ
PM

s0¼1
s0 6¼s

R

8xn

pn
h þ e hhs

n ð1� pn
hÞ

� �
pn

s0 jh � e
pn

h

hhs
n pn

s0jh

� �
hhs

nþ1p ðxnÞ dxn

þ
PH

h0¼1
h0 6¼h

PM

s0¼1
s0 6¼s

R

8xn

pn
h0 � e hhs

n pn
h0

� �
pn

s0jh0h
hs
nþ1p ðxnÞ dxn�

PH

h0¼1

PM

s0¼1

R

8xn

pn
h0p

n
s0 jh0h

hs
n p ðxnÞ dxn

ð24Þ
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reward from the previous time step. Note that the expected

value of the reward does not depend on the time step:
Z

8xn

hhs
n p ðxnÞ dxn ¼

Z

8xnþ1

hhs
nþ1p ðxnþ1Þ dxnþ1 ¼ E ½h�: ð25Þ

Taking (25) into consideration, opening the parenthesis,

and disregarding the terms with e2, we can show that the

following expression holds:

E ½Dhn� � 0: ð26Þ

This means that the algorithms (13–16) results in the

increase of the expected reward and therefore to the

selection of the best possible action sequence.

References

Bar M, Kassam K, Ghuman S, Boshyan AS, Schmid J, Dale AM et al.

(2006) Top-down facilitation of visual recognition. In: Proceed-

ings of the national academy of sciences, vol. 103, pp 449–454

Berridge KC (2004) Motivation concepts in behavioral neuroscience.

Physiol Behav 81:179–209

Berridge KC, Robinson TE (1998) What is the role of dopamine in

reward: hedonic impact, reward learning, or incentive salience?

Brain Res Rev 28:309–369

Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci

26:507–513

Deming R (1998) Automatic buried mine detection using the

maximum likelihood adaptive neural system (MLANS). In:

Proceedings of the 1998 IEEE ISIC/CIRA/ISAS joint confer-

ence, Gaithersburg, MD, 14–17 Sept 1998

Deming R, Schindler J, Perlovsky L (2007) Concurrent tracking and

detection of slowly moving targets using dynamic logic. In: 2007

IEEE international conference on integration of knowledge

intensive multi-agent systems: modeling, evolution, and engi-

neering (KIMAS 2007), Waltham, MA, April 30–May 3

Deming R, Schindler J, Perlovsky L (2007) Track-before-detect of

multiple slowly moving targets. In: IEEE radar conference 2007,

Waltham, MA, 17–20 April

Fiorillo CD (2011) Transient activation of midbrain dopamine

neurons by reward risk. Neuroscience 197:162–171

Freeman WJ (1975) Mass action in the nervous system: examination

of the neurophysiological basis of adaptive behavior through the

EEG. Academic Press, New York

Freeman WJ (1999) How brains make up their minds. Weidenfeld and

Nicolson, London

Haykin S (1999) Neural networks: a comprehensive foundation.

Prentice Hall, Prentice

Ilin R, Deming R (2010) Simultaneous detection and tracking of

multiple objects in noisy and cluttered environment using

maximum likelihood estimation framework. In: IEEE interna-

tional conference, OCEANS’10. Sydney, Australia

Ilin R, Zhang J, Perlovsky L, Kozma R (2011) Dynamic logic for

‘‘Vague-to-Crisp’’ perception and dynamics of operant (selec-

tionist) learning. In: 3rd international conference on cognitive

neurodynamics (ICCN 2011), Niseki, Hokkaido, Japan, June

2011

Kay L, Shimoide K, Freeman WJ (1995) Comparison of EEG time

series from rat olfactory system with model composed of

nonlinear coupled oscillators. Int J Bifurcation Chaos

5(03):849–858
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