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Abstract We view regularized learning of a function in a Banach space from its finite
samples as an optimization problem. Within the framework of reproducing kernel Banach
spaces, we prove the representer theorem for the minimizer of regularized learning schemes
with a general loss function and a nondecreasing regularizer. When the loss function and
the regularizer are differentiable, a characterization equation for the minimizer is also estab-
lished.

Keywords Reproducing kernel Banach spaces · Semi-inner products · Representer
theorems · Regularization networks · Support vector machine classification

1 Introduction

Many scientific questions boil down to the learning of an input-output mapping when only
finite samples are known [10,13,27,29,30,33]. Tikhonov regularization [31] is an important
methodology for solving such ill-posed inverse problems. The term regularization refers to
imposing additional constraints on the function space from where the target function is to be
chosen.

Assume that the target function is from domain X to range Y ⊆ C. We call X the input
space and thus, Y the output space. Suppose that a finite set z := {(x j , y j ) : j ∈ Nn} ⊆ X ×Y
of samples of the target function is available. Here, for the simplicity of enumerating with
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finite sets, we set Nn := {1, 2, . . . , n} for n ∈ N. We shall also use the notations x := (x j : j ∈
Nn) ∈ Xn, y := (y j : j ∈ Nn) ∈ Y n , and R+ := [0,+∞) throughout the paper. Following
the framework of Tikhonov regularization in machine learning [5,10,13,29,30,33,35–37],
we let HK be a reproducing kernel Hilbert space (RKHS) on X with the reproducing kernel
K . In other words, point evaluations are continuous linear functionals on HK and K is a
complex-valued function on X × X satisfying K (x, ·) ∈ HK for all x ∈ X and

f (x) = ( f, K (x, ·))HK , x ∈ X, f ∈ HK ,

where (·, ·)HK is the inner product on HK , [2,22,25,26]. We also let Ly : C
n → R+ be a

loss function [29] that measures how well a candidate function in HK fits the sample data
z, φ : R+ → R+ a regularizer that controls the set of functions in HK from which we may
select the candidate functions, and λ a positive regularization parameter. With these notations,
an approximation of the target function is taken as a minimizer of the optimization problem:

inf{Ly( f (x))+ λφ(‖ f ‖HK ) : f ∈ HK }, (1)

where f (x) := ( f (x j ) : j ∈ Nn) and ‖ · ‖HK denotes the norm on HK . Various choices of
the loss function Ly, the regularizer φ, the output space Y , and the corresponding learning
schemes can be found in [13,29,30,33]. We present three popular ones below:

– regularization networks

Y = R, Ly( f (x)) =
∑

j∈Nn

| f (x j )− y j |2, φ(t) = t2, t ∈ R+, (2)

– support vector machine regression

Y = R, Ly( f (x)) =
∑

j∈Nn

| f (x j )− y j |ε, φ(t) = t2, t ∈ R+,

where ε is a positive constant and |t |ε := max(|t | − ε, 0), t ∈ R, is called Vapnik’s
epsilon-insensitive norm.

– support vector machine classification

Y = {−1, 1}, Ly( f (x)) =
∑

j∈Nn

max(1 − y j f (x j ), 0), φ(t) = t2, t ∈ R+. (3)

Conditions such as that Ly and φ are continuous, φ is nondecreasing, and φ(t) tends to
infinity as t does ensure that (1) has a minimizer. If, in addition, Ly and φ are convex and φ
is strictly increasing then the minimizer is unique. In regularization networks (2), the unique
minimizer f0 of (1) has the form

f0 =
∑

j∈Nn

c j K (x j , ·) (4)

for some complex constants c j ∈ C, j ∈ Nn . This remarkable result, due to Kimeldorf and
Wahba [19], is known as the representer theorem. Two reasons account for its fundamental
importance in machine learning. First of all, a function K : X × X → C is a reproducing
kernel if and only if there is a mapping � from X to a Hilbert space W such that

K (x, y) = (�(x),�(y))W , x, y ∈ X. (5)

123



J Glob Optim (2012) 54:235–250 237

By the above equation, for all x, y ∈ X, K (x, y) is the inner product of vectors�(x) and
�(y) in the Hilbert space W . Therefore, K (x, y) is a measurement of similarity between
elements x, y in the input space. From this point of view, the predicted value f0(x) of each
input x ∈ X given by the minimizer (4) can be interpreted as a weighted sum of similarities
K (x, x j ) between x and the input sample points x j , with the weights being c j . Using input
similarities to generate a desired output justifies the regularized learning schemes. Secondly,
although the RKHS HK in the minimization problem (1) tends to be infinite dimensional,
the representer theorem enables us to consider the learning in the linear subspace spanned
by {K (x j , ·) : j ∈ Nn}, which is of finite dimension.

The representer theorem for (1) was generalized in [9] to the case where the loss function is
non-quadratic, and in [28] for a general nondecreasing regularizer φ. Relationships between
(1) and the problem of minimal norm interpolation in RKHS were investigated in [1]. As a
result, it was proved there that there exists a representer theorem for (1) if and only if the
regularizer φ is nondecreasing.

The primary purpose of this note is to establish appropriate representer theorems for the
following regularized learning scheme in a Banach space B of functions on X :

inf{Ly( f (x))+ λφ(‖ f ‖B) : f ∈ B}. (6)

There are some needs that motivate the study of learning in Banach spaces. Firstly, it is
well-known that any two Hilbert spaces over C of the same dimension are isometrically iso-
morphic, namely, there exists a bijective linear norm-preserving mapping between them. By
contrast, when p �= q ∈ [1,+∞], we can not find a bijective bounded linear mapping from
L p[0, 1] to Lq [0, 1] (see [14], page 180). Thus compared to Hilbert spaces, Banach spaces
possess richer geometric structures, which might be useful in the development of learning
algorithms. Secondly, a norm from a Banach space is more desirable than one induced from an
inner product in some applications. For instance, it is known that regularizing a minimization
problem by the �1 norm leads to sparsity of the minimizer (see, for example, [32]). Thirdly,
training data in practice might come with intrinsic structures that make them impossible to
be embedded into a Hilbert space.

Learning in Banach spaces has received considerable attention in the literature, [4,7,
12,15,17,18,23,24,34,41,42]. Especially, regularized learning schemes were considered in
[4,23,24,41]. However, no representer theorems existed due to the lack in Banach spaces
of an inner product. In a recent work [39], we established the notion of reproducing kernel
Banach spaces (RKBS) and studied in the framework of RKBS standard learning schemes
including minimal norm interpolation, regularization networks, support vector machines, and
kernel principal component analysis. In particular, we considered minimization problems of
the form (6) with B being an RKBS. We proved a representer theorem for regularization net-
works, that is, the loss function and regularizer are given in (2). A characterization equation
for the minimizer was also established. Moreover, we obtained a representer theorem for the
support vector machine classification (3).

The main purpose of this note is to establish a representer theorem and a characterization
equation for the minimizer of (6) under the setting that Ly and φ are respectively a general
loss function and nondecreasing regularizer. Our study accommodates a large class of loss
functions and regularizers, and provides a unified treatment of them. We shall introduce in
Sect. 2 the main elements of RKBS. The existence, uniqueness and representer theorem for
the minimizer of (6) will be proved in Sect. 3. We shall establish in Sect. 4 a characterization
equation for the case when Ly and φ are both differentiable. Finally, we conclude the paper
with a discussion of future directions.
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2 Reproducing kernel Banach spaces

Let X be a prescribed input space where samples are generated. We call B a Banach space
of functions on X if it is a Banach space consisting of functions defined on X and a function
f ∈ B satisfies ‖ f ‖B = 0 if and only if it vanishes everywhere on X . Note that the space
L p[0, 1] is not a Banach space of functions.

A close examination of the establishment of the representer theorems for RKHS (see, for
example, [28]) indicates the vital role of the existence of orthogonal projections. Orthogonal
projections are a unique characteristic of an inner product. To have a substitute for inner
products in the Banach space setting, we shall focus on Banach spaces of functions that
are uniformly Fréchet differentiable and uniformly convex. A Banach space B is said to be
uniformly Fréchet differentiable if for all f, g ∈ B

lim
t∈R, t→0

‖ f + tg‖B − ‖ f ‖B
t

exists and the limit is approached uniformly for f, g in the unit sphere of B. Uniform convexity
of B requires that for all ε > 0 there exists a δ > 0 such that

‖ f + g‖B ≤ 2 − δ for all f, g ∈ B with ‖ f ‖B = ‖g‖B = 1 and ‖ f − g‖B ≥ ε.

For more information about these two useful properties of Banach spaces, see [11,21].
For the sake of simplicity, we shall call a Banach space B uniform if it is both uniformly
Fréchet differentiable and uniformly convex.

For a uniform Banach space B, there exists a unique function [·, ·]B : B × B → C such
that for all f, g, h ∈ B and α ∈ C

1. [ f + g, h]B = [ f, h]B + [g, h]B, [α f, g]B = α[ f, g]B,
2. [ f, f ]B = ‖ f ‖2

B,
3. (Cauchy-Schwartz) |[ f, g]B|2 ≤ [ f, f ]B[g, g]B.

The above function [·, ·]B is called a semi-inner product on B. It is unique by the fact [16]
that

lim
t∈R, t→0

‖ f + tg‖B − ‖ f ‖B
t

= Re ([g, f ]B)
‖ f ‖B

, f, g ∈ B, f �= 0, (7)

where Re (α) denotes the real part of a complex number α. Semi-inner products were intro-
duced by Lumer [20] for the purpose of extending Hilbert space type arguments to Banach
spaces. Fundamental properties of semi-inner products were explored by Giles [16]. Recently,
a generalized semi-inner product was introduced [40] that was shown to reflect the generalized
duality mapping. Semi-inner products were first applied to machine learning by Der and Lee
[12] to develop hard margin hyperplane classification in Banach spaces. The use of semi-inner
products for reproducing kernels in Banach spaces was developed by Zhang et al [39].

Let B be a uniform Banach space with the semi-inner product [·, ·]B. Then by the
Cauchy-Schwartz inequality, for each f ∈ B the function sending g ∈ B to [g, f ]B is a
bounded linear functional on B, which will be denoted by f ∗ and called the dual element of
f . By definition, we have

f ∗(g) = [g, f ]B, f, g ∈ B. (8)

The mapping f → f ∗ is said to be the duality mapping from B to its dual space B∗. The
importance of semi-inner products in our paper lies in the following fact established in [16].
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Lemma 1 Let B be a uniform Banach space. Then the duality mapping is bijective from B
to B∗. Moreover,

[ f ∗, g∗]B∗ := [g, f ]B, f, g ∈ B (9)

defines a semi-inner product on B∗.

The theory of RKBS has been established in [39]. In this paper we shall adopt a simplified
definition by calling B a reproducing kernel Banach space (RKBS) on X if it is a uniform
Banach space of functions on X such that the point evaluations are continuous linear func-
tionals on B. We prove below that there does exist a reproducing kernel for Banach spaces
satisfying this definition.

Theorem 1 Suppose that B is an RKBS on the input space X. Then there exists a unique
function G : X × X → C such that G(x, ·) ∈ B for all x ∈ X and

f (x) = [ f,G(x, ·)]B for all x ∈ X, f ∈ B. (10)

Proof Since the point evaluations are continuous linear functionals on B, by Lemma 1, for
each x ∈ X there exists a unique function gx ∈ B such that

f (x) = [ f, gx ]B, f ∈ B.
Introduce a bivariate function G on X × X by setting

G(x, y) := gx (y), x, y ∈ X.

By the above two equations, for each x ∈ X,G(x, ·) = gx ∈ B and (10) holds true.
Assume that there is another function G̃ : X × X → C satisfying the two properties as G
does. Then by (8) we have for each x ∈ X that

(G(x, ·)∗)( f ) = [ f,G(x, )̇]B = f (x) = [ f, G̃(x, ·)]B = (G̃(x, ·)∗)( f ) for all f ∈ B.
It implies that G(x, ·)∗ = G̃(x, ·)∗ for all x ∈ X . By Lemma 1, the duality mapping from

B to B∗ is injective. Thus, G(x, ·) and G̃(x, ·) as vectors in the Banach space B are identical.
Since B is a Banach space of functions, we have the equality as functions on X :

G(x, y) = G̃(x, y) for all x, y ∈ X,

which completes the proof. ��
Let B be an RKBS on X . We call the function G in the above theorem the s.i.p. reproducing

kernel of B. When B is an RKHS, the semi-inner product on it becomes an inner product and
G is the reproducing kernel of B in the usual sense. The function G has the property that

G(x, y) = [G(x, ·),G(y, ·)]B, x, y ∈ X.

Furthermore, we have by (9) and (10) that

f (x) = [G(x, ·)∗, f ∗]B∗ , x ∈ X, f ∈ B. (11)

We close this preparation section with two concrete examples of RKBS. Let X := R
d , μ a

finite positive Borel measure on R
d , and L p

μ(R
d), 1 < p < +∞, the Banach space of Borel

measurable functions u on R
d such that the norm

‖u‖L p
μ(R

d ) :=
⎛

⎜⎝
∫

Rd

|u(t)|pdμ(t)

⎞

⎟⎠

1/p

123



240 J Glob Optim (2012) 54:235–250

is finite. It is uniformly Fréchet differentiable and uniformly convex with the dual space
Lq
μ(R

d), where q is the conjugate number of p satisfying that 1/p + 1/q = 1. With (·, ·)
being the standard inner product on R

d , we set B the Banach space of functions of the form

fu(x) := 1

μ(Rd)
p−2

p

∫

Rd

u(t)ei(x,t)dμ(t), x ∈ R
d , u ∈ L p

μ(R
d)

equipped with the norm

‖ fu‖B := ‖u‖L p
μ(Rd).

Then B is an RKBS with the semi-inner product

[ fu, fv]B =
∫

Rd u(t)v(t)|v(t)|p−2dμ(t)

‖v‖p−2
L p
μ(Rd)

, u, v ∈ L p
μ(R

d)

and the s.i.p. reproducing kernel

G(x, y) = 1

μ(Rd)
p−2

p

∫

Rd

ei(y−x,t)dμ(t), x, y ∈ R
d .

In the special case that d = 1 and μ is the Lebesgue measure supported on [−π, π], we
get that

G(x, y) = 1

(2π)
p−2

p

2 sin π(x − y)

x − y
, x, y ∈ R.

Our second example is the space E
p
τ , p ∈ (1,+∞), τ > 0 consisting of all entire functions

f on C of exponential type at most τ for which

‖ f ‖
E

p
τ

:=
⎛

⎝
∫

R

| f (t)|pdt

⎞

⎠
1/p

< +∞.

Point evaluations are continuous on E
p
τ as there is a constant C depending on p and τ

only such that (see, [38], page 99)

| f (x + iy)| ≤ Ceτ |y|‖ f ‖
E

p
τ

for all x, y ∈ R, f ∈ E
p
τ .

By the above two equations, E
p
τ is a Banach space isometrically isomorphic to a closed

subspace of L p(R). Consequently, E
p
τ is uniform, and is thus an RKBS on C.

3 Representer theorems

Let B be an RKBS on X with the s.i.p. reproducing kernel G. We consider the minimization
problem (6), where Ly : C

n → R+ is a loss function, φ : R+ → R+ is nondecreasing, and
λ is a positive regularization parameter. Introduce Ez : B → R+ by setting

Ez( f ) := Ly( f (x))+ λφ(‖ f ‖B), f ∈ B.
We start with presenting the following representer theorem provided the existence of a

minimizer of (6).
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Theorem 2 (Representer theorem, φ strictly increasing) If φ is strictly increasing then every
minimizer f0 of (6), provided that it exists, must have the form

f ∗
0 =

∑

j∈Nn

c j G(x j , ·)∗, (12)

where c j , j ∈ Nn are complex constants.

Proof Assume there exists a minimizer f0 of (6) for which (12) is not true for any choice of
constants c j ∈ C, j ∈ Nn , that is,

f ∗
0 /∈ span {G(x j , ·)∗ : j ∈ Nn}.

Note that as a finite dimensional subspace of B∗, span {G(x j , ·)∗ : j ∈ Nn} is closed
and convex. Thus, by a geometric consequence of the Hahn-Banach theorem in functional
analysis (see, for example, [8], page 111), there exists a continuous linear functional T on
B∗ and real number α such that

Re (T ( f ∗
0 )) < α ≤ Re (T (u)), for all u ∈ span {G(x j , ·)∗ : j ∈ Nn}.

Firstly, since for all β ∈ C and u ∈ span {G(x j , ·)∗ : j ∈ Nn}
α ≤ Re (T (βu)) = Re (βT (u)),

we must have T (u) = 0 for all u ∈ span {G(x j , ·)∗ : j ∈ Nn}. Consequently, α ≤ 0.
Secondly, since B is reflexive there exists a g ∈ B such that

T (v) = v(g), v ∈ B∗.

By (8) and (10), we get that

0 = T (G(x j , ·)∗) = (G(x j , ·)∗)(g) = [g,G(x j , ·)]B = g(x j ), j ∈ Nn (13)

and

Re ([g, f0]B) = Re ( f ∗
0 (g)) = Re (T ( f ∗

0 )) < 0. (14)

Consider the function f0 + tg where t ∈ R+ is to be specified. By (13),

Ly(( f0 + tg)(x)) = Ly( f0(x)). (15)

Equation (14) implies that f0 �= 0. An application of equations (7) and (14) yields that

lim
t→0+

‖ f0 + tg‖B − ‖ f0‖B
t

= Re ([g, f0]B)
‖ f0‖B

< 0.

Therefore, by choosing t ∈ R+ close enough to 0, we obtain that ‖ f0 + tg‖B < ‖ f0‖B,
which together with the assumption that φ is strictly increasing implies immediately that

φ(‖ f0 + tg‖B) < φ(‖ f0‖B). (16)

Combining equations (15) and (16), we obtain another candidate function f0 + tg such
that

Ez( f0 + tg) < Ez( f0),

contradicting that f0 is a minimizer of (6). The contradiction proves the result. ��
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To deal with the case where φ is only known to be nondecreasing, we shall need the tool
of minimal norm interpolation in RKBS. Set

Iy := { f ∈ B : f (x j ) = y j , j ∈ Nn}.
The following result was proved in [39] for RKBS defined therein. It is easy to verify that

the proof still applies to the definition used in this paper.

Lemma 2 If Iy is nonempty then the following minimal norm interpolation

inf{‖ f ‖B : f ∈ Iy}
has a unique minimizer f0. Furthermore, f0 has the form (12) for some c j ∈ C, j ∈ Nn.

Theorem 3 (Representer theorem, φ nondecreasing) If φ is nondecreasing and the minimi-
zation problem (6) has at least one minimizer then there exists a minimizer f0 of (6) that has
the form (12).

Proof Let f ∈ B be a minimizer of (6). Then I f (x) is nonempty as f ∈ I f (x). We set

f0 := arg min{‖g‖B : g ∈ I f (x)}.
Then f0(x) = f (x). Thus,

Ly( f0(x)) = Ly( f (x)).

Clearly, ‖ f0‖B ≤ ‖ f ‖B. Since φ is nondecreasing, it follows that

φ(‖ f0‖B) ≤ φ(‖ f ‖B).

We get from the above two equations that

Ez( f0) ≤ Ez( f ).

Therefore, f0 is a minimizer of (6). By Lemma 2, it satisfies (12) for some c j ∈ C,

j ∈ Nn . ��
We remark by Theorems 2 and 3 that the essence of a representer theorem is representing

the dual element of the minimizer as a linear combination of the point evaluation functionals
at x j , j ∈ Nn . Note that in the case when B is an RKHS, the dual function of f ∈ B is itself.
This is why the representer theorem for RKHS has the form (4).

By examining the proofs of Theorems 2 and 3, one obtains generalized representer theo-
rems for regularized learning of a function g ∈ B from its generalized sample data

(ν j (g) : j ∈ Nn) for some ν j ∈ B∗, j ∈ Nn .

Specifically, one may consider the following optimization problem:

inf{Ly((ν j ( f ) : j ∈ Nn))+ λφ(‖ f ‖B) : f ∈ B}. (17)

Theorem 4 (Representer theorem, generalized sample data) Suppose that (17) has at least
one minimizer. If φ is strictly increasing then every minimizer f0 of (17) must satisfy for some
complex constants c j , j ∈ Nn that

f ∗
0 =

∑

j∈Nn

c jν j .

If φ is nondecreasing then there exists a minimizer f0 of (17) that has the above form.
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We next consider sufficient conditions for the existence and uniqueness of the minimizer.
Special cases of the following result have appeared in the literature [23,39].

Proposition 5 (Sufficient conditions for the existence of the minimizer) If Ly and φ are
continuous, and φ is nondecreasing with

lim
t→∞φ(t) = +∞ (18)

then there exists a minimizer for (6).

Proof Set

e := inf{Ez( f ) : f ∈ B}.
Clearly, e ≤ Ez(0). By the assumptions that φ is nondecreasing with (18), there exists a

positive number t0 such that for all f ∈ B with ‖ f ‖B > t0

Ez( f ) ≥ λφ(‖ f ‖B) ≥ λφ(t0) > e.

Thus, with S := { f ∈ B : ‖ f ‖B ≤ t0},
e = inf{Ez( f ) : f ∈ S}.

By the above equality, there exists a sequence fm ∈ S such that

e ≤ Ez( fm) ≤ e + 1

m
, m ∈ N. (19)

Since B is uniformly convex, it is reflexive. As a consequence, S is weakly compact, that
is, there exists a function f0 ∈ S such that

lim
m→∞[ fm, g]B = [ f0, g]B, for all g ∈ B. (20)

Choosing g = G(x j , ·), j ∈ Nn in the above equation and invoking (10) yields that

lim
m→∞ fm(x j ) = lim

m→∞[ fm,G(x j , ·)]B = [ f0,G(x j , ·)]B = f0(x j ), j ∈ Nn .

By the continuity of Ly,

lim
m→∞ Ly( fm) = Ly( f0). (21)

If f0 = 0 then it is obvious that

‖ f0‖B ≤ ‖ fm‖B, m ∈ N.

If f0 �= 0 then we substitute g = f0 in (20) to get for each δ > 0 some m0 ∈ N such that
for m > m0

[ f0, f0]B ≤ |[ fm, f0]B| + δ‖ f0‖B,

which implies by the Cauchy-Schwartz inequality of semi-inner products that

‖ f0‖2
B ≤ ‖ fm‖B‖ f0‖B + δ‖ f0‖B.

Thus, we have in both cases that for sufficiently large m

‖ f0‖B ≤ ‖ fm‖B + δ.
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Since φ is continuous, it is uniformly continuous on [0, t0]. Consequently, for every ε > 0,
we may choose δ small enough so that for sufficiently large m

λφ(‖ f0‖B) ≤ λφ(‖ fm‖B)+ ε (22)

Combining (19), (21), and (22) proves that

Ez( f0) = e,

which shows that f0 is a minimizer for (6) and completes the proof. ��
As a corollary of Proposition 5, we address the issue of uniqueness of the minimizer.

Corollary 6 (Sufficient conditions for the uniqueness of the minimizer) If Ly and φ are con-
tinuous and convex, and φ is strictly increasing with (18) then there exists a unique minimizer
for (6).

Proof The existence is justified by the above proposition. Note that since B is uniformly
convex, its norm is strictly convex. In other words, we have for all f �= g ∈ B and t ∈ (0, 1)
that

‖t f + (1 − t)g‖B < t‖ f ‖B + (1 − t)‖g‖B.

As a consequence, φ(‖ · ‖B) is strictly convex on B. We hence obtain the strict convexity
of Ez, which ensures the uniqueness of the minimizer of (6). ��

Suppose that Ly and φ satisfy the conditions in the statement of Corollary 6. Then the
minimizer of the optimization problem (6) can be obtained by solving the coefficient vector
c := (c j : j ∈ Nn) ∈ C

n after substituting the representer theorem (12) into (6). To this end,
we observe from (11) that

f0(x j ) = [G(x j , ·)∗, f ∗
0 ]B∗ , j ∈ Nn,

which together with ‖ f0‖B = ‖ f ∗
0 ‖B∗ implies that the coefficients c j ∈ C, j ∈ Nn in (12)

is the minimizer of

min
(a j : j∈Nn)∈Cn

Ly

⎛

⎝

⎛

⎝[G(x j , ·)∗,
∑

k∈Nn

ak G(xk, ·)∗]B∗ : j ∈ Nn

⎞

⎠

⎞

⎠

+ λφ

⎛

⎝
∥∥∥∥

∑

j∈Nn

a j G(x j , ·)∗
∥∥∥∥B∗

⎞

⎠ . (23)

By Corollary 6, (23) has a unique solution provided that G(x j , ·)∗, j ∈ Nn are linearly
independent in B∗. The second summand of the error functional in (23) is strictly convex
with respect to (a j : j ∈ Nn) ∈ C

n by the assumption that φ is convex and strictly increasing,
and the fact that the norm in B∗ is strictly convex. However, the first summand may not be
convex with respect to (a j : j ∈ Nn) ∈ C

n due to the reason that a semi-inner product is
generally non-additive about its second variable.

As a special case of (6), we consider in the final part of this section the support vector
machine classification where the output space is {−1, 1} and a classifier from X to Y is
desirable. Define the loss function by

Ly(a) =
∑

j∈Nn

max(1 − a j y j , 0), a = (a j : j ∈ Nn) ∈ R
n . (24)
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Clearly, Ly is continuous and convex. If φ is continuous, convex and strictly increasing
with (18) then (6) has a unique minimizer f0, which provides the classifier sgn f0. Simi-
lar arguments as those in the proof of Theorem 2 are able to prove the following special
representer theorem for support vector machine classification.

Proposition 7 (Representer theorem for support vector machine classification) Ifφ is strictly
increasing and the minimization problem (6) has a minimizer f0 then f ∗

0 lies inside the closed
convex cone spanned by {y j G(x j , ·)∗ : j ∈ Nn}, that is, there exist λ j ≥ 0 such that

f ∗
0 =

∑

j∈Nn

λ j y j G(x j , ·)∗. (25)

Similarly, one may substitute (25) and the loss function (24) into (6) to convert it into an
optimization problem about the coefficients λ j , j ∈ Nn .

4 Characterization equations

We seek for a characterization equation for the minimizer of (6) in this section. One such
equation exists for the minimization problem (1) in an RKHS HK when the loss function and
regularizer are given by (2). In fact, it is well-known [10,29] that f0 ∈ HK is the minimizer
for this problem if and only if

λ f0 =
∑

j∈Nn

(y j − f0(x j ))K (x j , ·). (26)

Consequently, when K (x j , ·), j ∈ Nn are linearly independent in HK , the coefficient
vector c = (c j : j ∈ Nn) ∈ C

n in (4) can be solved from the linear system of equations:

c(λIn + K [x]) = y, (27)

where In denotes the n × n identity matrix and K [x] := [K (x j , xk) : j, k ∈ Nn]. This
demonstrates the usefulness of the representer theorem combined with a characterization
equation.

For the purpose of establishing a characterization equation for the minimizer of (6), we
shall only work with real numbers and loss functions of the form

Ly(a) :=
∑

j∈Nn

L j (a j , y j ), a = (a j : j ∈ Nn) ∈ R
n, (28)

where L j : R × R → R+ are prescribed bivariate loss functions. We start with a technical
lemma.

Lemma 3 If φ is nondecreasing, differentiable, and convex on R+ then for all f, g ∈ B

‖ f ‖B(φ(‖ f + g‖B)− φ(‖ f ‖B))− φ′(‖ f ‖B)Re ([g, f ]B) ≥ 0. (29)

Proof Inequality (29) clearly holds true if f = 0. Let f, g ∈ B with f �= 0. Introduce the
function ψ on R+ by setting

ψ(t) := φ(‖ f + tg‖B).
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We shall show that ψ is convex. To this end, we verify for all s, t ∈ R+ and α ∈ [0, 1]
that

‖ f + αtg + (1 − α)sg‖B = ‖α( f + tg)+ (1 − α)( f + sg)‖B
≤ α‖ f + tg‖B + (1 − α)‖ f + sg‖B.

Thus, ϕ(t) := ‖ f + tg‖B is convex on R+. Since φ is nondecreasing and convex, ψ =
φ(ϕ) is convex. Therefore,

ψ ′(0) ≤ ψ(1)− ψ(0).

By (7),

ψ ′(0) = φ′(‖ f ‖B)
‖ f ‖B

Re ([g, f ]B).

Note also that

ψ(1)− ψ(0) = φ(‖ f + g‖B)− φ(‖ f ‖B).

Combining the above three equations proves (29). ��

Theorem 8 (Characterization equations) Let L j be differentiable and convex with respect to
its first variable for all j ∈ Nn, the loss function Ly given by (28), and φ a strictly increasing,
differentiable and convex function on R+ satisfying (18). Then f0 �= 0 is the minimizer of
(6) if and only if

∑

j∈Nn

∂L j

∂a
( f0(x j ), y j )G(x j , ·)∗ + λ

φ′(‖ f0‖B)
‖ f0‖B

f ∗
0 = 0, (30)

where
∂L j
∂a denotes the first partial derivative of L j with respect to its first variable, j ∈ Nn.

The zero function f0 = 0 is the minimizer of (6) if and only if

‖T ‖B∗ ≤ λφ′(0), (31)

where T is a continuous linear functional on B defined by

T ( f ) :=
∑

j∈Nn

∂L j

∂a
(0, y j ) f (x j ), f ∈ B.

Proof By Corollary 6, (6) has a unique minimizer under the hypotheses. Assume that f0 �= 0
is the minimizer. Then for each g ∈ B the function

ϕ(t) := Ez( f0 + tg), t ∈ R

achieves its minimum at t = 0. Thus, ϕ′(0) = 0. We compute by (7) that

ϕ′(0) =
∑

j∈Nn

∂L j

∂a
( f0(x j ), y j )g(x j )+ λ

φ′(‖ f0‖B)
‖ f0‖B

[g, f0]B. (32)

By (11), we get that

g(x j ) = [G(x j , ·)∗, g∗]B∗ , j ∈ Nn .
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Similarly, [g, f0]B = [ f ∗
0 , g∗]B∗ . Therefore, it follows from (32) that

∑

j∈Nn

∂L j

∂a
( f0(x j ), y j )[G(x j , ·)∗, g∗]B∗ + λ

φ′(‖ f0‖B)
‖ f0‖B

[ f ∗
0 , g∗]B∗ = 0. (33)

Since the above equation must hold true for all g ∈ B, we obtain (30).
Conversely, assume that f0 �= 0 satisfies (30). Then (33) holds for all g ∈ B. As a result,

we have for all g ∈ B that

∑

j∈Nn

∂L j

∂a
( f0(x j ), y j )g(x j )+ λ

φ′(‖ f0‖B)
‖ f0‖B

[g, f0]B = 0. (34)

We shall prove that f0 indeed is the minimizer by showing that Ez( f0 + g) ≥ Ez( f0). We
simplify by (34) that

Ez( f0 + g)− Ez( f0)

=
∑

j∈Nn

(L j ( f0(x j )+ g(x j ), y j )− L j ( f0(x j ), y j ))+ λφ(‖ f0 + g‖B)− λφ(‖ f0‖B)

=
∑

j∈Nn

(
L j ( f0(x j )+ g(x j ), y j )− L j ( f0(x j ), y j )− ∂L j

∂a
( f0(x j ), y j )g(x j )

)

+ λ

(
φ(‖ f0 + g‖B)− φ(‖ f0‖B)− φ′(‖ f0‖B)

‖ f0‖B
[g, f0]B

)
.

By Lemma 3,

φ(‖ f0 + g‖B)− φ(‖ f0‖B)− φ′(‖ f0‖B)
‖ f0‖B

[g, f0]B ≥ 0.

It remains to show that for each j ∈ Nn

L j ( f0(x j )+ g(x j ), y j )− L j ( f0(x j ), y j )− ∂L j

∂a
( f0(x j ), y j )g(x j ) ≥ 0. (35)

To this end, we obtain by the mean value theorem that there exists some t ∈ [0, 1] such
that the left hand side above equals

(
∂L j

∂a
( f0(x j )+ tg(x j ), y j )− ∂L j

∂a
( f0(x j ), y j )

)
g(x j ). (36)

Since L j is convex with respect to the first variable,
∂L j
∂a (·, y j ) is nondecreasing. If g(x j ) ≥

0 then f0(x j )+ tg(x j ) ≥ f0(x j ), implying that

∂L j

∂a
( f0(x j )+ tg(x j ), y j )− ∂L j

∂a
( f0(x j ), y j ) ≥ 0.

Thus, (36) is nonnegative. If g(x j ) < 0 then f0(x j )+ tg(x j ) ≤ f0(x j ) implies that

∂L j

∂a
( f0(x j )+ tg(x j ), y j )− ∂L j

∂a
( f0(x j ), y j ) ≤ 0.

In this case, (36) is also nonnegative. We hence obtain (35). Thus, f0 is the minimizer
of (6).
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We now turn to the case that f0 = 0. Suppose that f0 = 0 is the minimizer of (6). Then
for each f ∈ B and t ∈ R, we have

Ez(t f ) ≥ Ez(0).

As a result, there holds

lim
t→0+

Ez(t f )− Ez(0)

t
≥ 0,

which by direct computations has the following equivalent form

T ( f )+ λφ′(0)‖ f ‖B ≥ 0.

Since the above equation holds true for all f ∈ B, we obtain (31).
On the other hand, assume that (31) holds true. Let f ∈ B. Clearly,

Ez( f )− Ez(0) =
∑

j∈Nn

(L j ( f (x j ), y j )− L j (0, y j ))+ λ(φ(‖ f ‖B)− φ(0)). (37)

Similar techniques as those used in proving the nonnegativity of (36) lead to that

∑

j∈Nn

(L j ( f (x j ), y j )− L j (0, y j )) ≥
∑

j∈Nn

∂L j

∂a
(0, y j ) f (x j ) = T ( f ).

Combining the above equation and (37) yields that

Ez( f )− Ez(0) ≥ λ(φ(‖ f ‖B)− φ(0))+ T ( f ) ≥ λφ′(0)‖ f ‖B − ‖T ‖B∗‖ f ‖B,

which together with the assumption (31) proves that Ez( f ) ≥ Ez(0). Since this is true for an
arbitrary f ∈ B, f0 = 0 is the minimizer of (6). The proof is complete. ��

Clearly, when B is an RKHS and the loss function and regularizer are specified by (2),
the characterization equation (30) or (31) reduces to the classical one (26). Suppose that
G(x j , ·)∗, j ∈ Nn , are linearly independent in B∗ then we substitute the representer theorem
(2) into (30) to get that the coefficients c j , j ∈ Nn satisfy the system of equations:

∂L j

∂a

⎛

⎝[
G(x j , ·)∗,

∑

k∈Nn

ck G(xk, ·)∗
]
B∗ , y j

⎞

⎠

+ λ
φ′(‖ ∑

k∈Nn
ck G(xk, ·)∗‖B∗)

‖ ∑
k∈Nn

ck G(xk, ·)∗‖B∗
c j = 0, j ∈ Nn . (38)

The above system has a unique solution (c j : j ∈ Nn) ∈ C
n by Corollary 6 and the

assumption that G(x j , ·)∗, j ∈ Nn are linearly independent in B∗. When B is a real RKHS,
L j (t, s) = (t − s)2 for each j ∈ Nn , and φ(t) = t2, the system (38) of equations has the
form (27).

5 Conclusion

By making use of semi-inner products, we have proved the representer theorem for the regu-
larized learning in RKBS with a general loss function Ly and a nondecreasing regularizer φ.
A characterization equation for the case when φ is differentiable and Ly is a sum of differen-
tiable bivariate loss functions is also obtained. The established results have a similar form as
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those for RKHS. The striking difference is that the resulting optimization problem or charac-
terization equation about the coefficients in the representer theorem (2) is usually non-convex
or nonlinear. This is due to the fact that a semi-inner product is in general non-additive with
respect to its second variable. We shall leave the design of practical algorithms for (23) and
(38) for future study. Here we briefly mention some possible approaches. The two problems
have equivalent formulations in the feature space of the s.i.p. reproducing kernel. Conditions
ensuring the convexity of resulting formulation of the minimization problem (23) should be
investigated, as one can then try to apply the theory of nonlinear convex optimization. As far
as (38) is concerned, one might first consider the case when the feature space is L p or �p

with p being an even integer. In this situation, (38) becomes a system of polynomial equa-
tions in the feature space and our goal is to find the common zero of these polynomials. The
Gröbner basis theory in computational commutative algebra might then be engaged (see, for
example, [3,6]). Finally, we remark that generalizations of the results in Sects. 3 and 4 can
be obtained by relaxing the conditions on the Banach space B of functions and by making
use of generalized semi-inner products developed in [40].
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