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Abstract— Neurons as Time Encoding Machines (TEMs)
have been proposed to capture the information present in
sensory stimuli and to encode it into spike trains [1], [2], [3].
These neurons, however, produce spikes at firing rates above
Nyquist, which is usually much higher than the amount of
information actually present in stimuli. We propose a low-rate
spiking neuron which exploits the sparsity or compressibility
present in natural signals to produce spikes at a firing rate
proportional to the amount of information present in the signal
rather than its duration. We consider the IAF (Integrate-
and-Fire) neuron model, provide appropriate modifications to
convert it into a low-rate encoder and develop an algorithm for
reconstructing the input stimulus from the low-rate spike trains.
Our simulations with frequency-sparse signals demonstrate the
superior performance of the Low-Rate IAF neuron operating at
a sub-Nyquist rate, when compared with IAF neurons proposed
earlier, which operate at and above Nyquist rates.

I. INTRODUCTION

T is a common belief that neurons encode sensory infor-

mation in the form of a sequence of action potentials
(nerve impulses or “spike trains”). The fundamental unit
of a “message” conveyed by a neuron is a single nerve
impulse, propagating at high speed down its axon through
well-understood electro-chemical processes [4]. These “spike
trains” are interpreted by other neurons, leading to sensation
and action. Fig. 1 illustrates a spike train produced by an
auditory nerve cell. When we hear something, our brain
is not actually interpreting the modulations in the acoustic
waveform, but rather the spike trains generated, in response
to the stimulus, by thousands of auditory nerves. In other
words, spike trains form the language that the brain uses to
communicate between neurons. Hence, understanding how a
neuron encodes the stimulus or input signal into spike trains
is of great interest.

Neurons generate spikes at relatively low rates, presum-
ably due to a metabolic reason [5]. Metabolically efficient
coding [6] is indicative of sparse encoding. Further, it has
been observed that the process of spike encoding exhibits
variability or randomness in response to identical inputs
[7]. That is, for the same input stimulus, the neuron may
produce different spike trains (as shown in Fig. 1). We are
interested in developing a sparse encoding model of neuron
that explains these observed features of spike trains.
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Integrate-and-fire (or IAF, in short) models for neurons as
generating time-stamp codes have been studied in [1] and [3].
Lazar et al. proved that a band-limited signal encoded by the
precise spike timing of an IAF neuron can be reconstructed
with reasonable accuracy from the spike train, when the
average firing rate is above Nyquist rate [1]. When no other
information is available about the input signal except its
bandwidth, the signal has to be encoded at above Nyquist rate
for successful recovery. However, most natural signals are
often sparse or compressible in some orthonormal basis and
hence the actual information present in the signal is usually
much lower than the Nyquist rate.

From an information theoretic point of view, a sparse
encoding neuron should be able to encode such signals using
spike trains that have a rate proportional to the amount of
information actually present in the signals. In other words,
most natural signals live in a low dimensional space and
an efficient encoder should be able to capture the low
dimensional information from the high dimensional signal.
In this paper, we develop an efficient model of a sparse
encoding neuron, which we call the Low-Rate IAF neuron,
by performing appropriate modifications to a conventional
integrate-and-fire model. The Low-Rate IAF neuron exploits
the sparsity or compressibility of input signals to encode
them into spike trains with rates well below the Nyquist
rate. We show that the low-rate spike trains contain enough
information about the input stimulus to allow its recovery and
develop a neural decoding algorithm based on spike times.

The remainder of the paper is organized as follows. The
input signal model is described in Section II. A relevant
background on time encoding through integrate-and-fire neu-
rons, including the model proposed by Lazar in [3], is
briefly presented in Section III. The proposed Low-Rate IAF
neuron is presented in Section IV and is followed by a
description of the reconstruction algorithm in Section V. A
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set of numerical experiments compare the performance of
Lazar’s IAF neuron (from [3]) with the proposed Low-Rate
IAF neuron in Section VI. We conclude with a discussion
on future work in Section VIIL.

II. INPUT STIMULUS MODEL

The class of input signals is assumed to be band-limited
with cutoff frequency W (in Hz) and periodic within a time
period D. The Nyquist rate of the input signal space is thus
Fn =2W. W and D are related by

N

W= -——
2D

where N is a positive integer that denotes the dimension
of input space. If an input signal/stimulus z(t) is sampled
at Nyquist rate for a time duration of D, then the number
of samples obtained is N = FyD. Thus the signal z(t),
observed for a time duration D, can be represented as a
vector x of length N in discrete domain, where

x[i] = z(i/Fn)

for i = 1,..,N. The signal x(¢) is further assumed to be
S-sparse or compressible in frequency domain. A signal is
called S-sparse in the frequency domain, if the DFT (discrete
Fourier transform) of the signal samples at Nyquist rate has
only S non-zero terms. That is, if X represents the DFT of
vector x, then X has at most S non-zero elements. A signal
is called S-compressible! in frequency domain, if the sorted
list of its DFT coefficients has only .S significant or dominant
terms, compared to which the other terms are negligible.
Thus, a compressible signal is one that is reasonably well
approximated as a sparse signal.

The input signal can be expressed as a linear combination
of complex exponentials as follows:

s
x(t) = Z Cm €xp(J2m ft)
m=1
where f,,, m = 1,..,.5 are the S dominant frequencies which
lie in the interval [-W, W] and ¢,, are the corresponding
coefficients. We further assume that the input signal is real-
valued, hence S is even and one set of frequencies are
the negative of the other set. Thus, the input stimulus is a
mixture of periodic waveforms, which is consistent with the
brain mechanism of generating and entraining oscillations at
multiple frequencies simultaneously.

III. TIME ENCODING WITH INTEGRATE-AND-FIRE
NEURONS

In this section we review the time encoding machine
(TEM) consisting of an integrate-and-fire (IAF) neuron [1],
[2], [3]. Neurons encode continuous time sensory stimuli
into discrete time events, i.e. the firing of action potentials
at variable time points. Time encoding is an answer to

IWe call X, S-compressible, if it is well approximated as a S-sparse
signal, || X — X (gy[|2 < C'- ST for some constants C' and o > 0, where
X(s) is the S-sparse signal that best approximates X.

one of the key questions arising in information processing,
which is, how to represent a continuous signal as a discrete
sequence. In conventional sampling, a band-limited signal is
represented by set of amplitude samples spaced uniformly.
If the uniform spacing is chosen to satisfy the Nyquist rate
condition, the signal can be recovered perfectly, under no
noise, through sinc interpolation. This is the well-known
Shannon sampling theorem. In contrast, time-encoding of a
real-valued band-limited signal is an asynchronous process of
mapping the amplitude information into a strictly increasing
sequence of time points. A time encoding machine (TEM) is
a realization of such encoding. The reconstruction of input
signal from the sequence of time points is referred to as time
decoding.

A. Preliminaries

A typical IAF TEM neuron is schemtaically shown in
Fig. 2. A constant bias b (b > 0 such that z(t)+b > 0,Vt) is
added to the input signal, which is then fed to the integrator.
When the output of the integrator crosses a threshold 6, a
spike is produced. The spike triggers a zero reset of the
output of the integrator. The output of the TEM is thus a
sequence of spikes at time points, {¢x }, that models the spike
train produced by a neuron.

b
| (t)

x(t)%+—§[dt—T_:Jie

8

| Spike triggered zero reset |— ----- -

Fig. 2. Time encoding with an integrate-and-fire (IAF) neuron

Let K denote the number of spikes produced by the IAF
neuron in the duration D for which the input stimulus is
observed. From simple calculations we can easily derive,

trkt1
/ x(s)ds = k6 — b(tg+1 — t)
tr
for k = 0,.., K — 1, where t; is the time point at which
we begin to observe the signal. If |z(t)| < ¢, Vt, then the
inter-spike-interval is bounded by,

KO, <4 ‘< K0

bte— PR =p
It has been proved [1][2] that a successful recovery of x is
possible when,

KO 1
b—c < 2W
that is, the maximum inter-spike-interval is smaller than the
Nyquist period T = 1/Fy = 1/2W. Hence, the TEM IAF
neurons encode all input signals at an average rate greater
than the corresponding Nyquist rate.
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B. Integrate-And-Fire Neurons with Random Thresholds

To model the variability or randomness characteristic
of neuronal spike trains, neurons with random thresholds
were proposed in [8]. An IAF neuron model with random
thresholds is studied by Lazar in [3]. The model is identical
to the TEM shown in Fig. 2, but with random thresholds dj.
Every output spike not only resets the integrator output but
also triggers the random selection of a new threshold . The
random thresholds are assumed to be drawn from a Gaussian
distribution with known mean § and variance o2.

For random thresholds TEM, let us define a measurement
vector ¢ and error vector € of length K, as follows. For
k=0,..,.K—1,

qr = KO — b(thrl — tk),
L = K((Sk — 5)

Time-encoding can be expressed as the following system of
equations,
GX =q+e¢

where X is the N-point DFT of vector z and G (of size K
x N) is given as

trt1
Grn = / eIITNINS s
ty
for k=0,.,K—1and n=—N/2,..,N/2 (assuming N is
even and with a slight abuse of notation).
A weighted least squares with /5 penalty is used for
reconstructing an approximation X of X from ¢

X = argmin|jq — GX||*> + K)||X] 2.

Here, A is a positive smoothing parameter that regulates
the trade-off between faithfulness to the measurements and
smoothness. The regularization is used to prevent over-fitting
due to the noisy data.

For a successful recovery, the method requires that the
average spike rate be above Nyquist rate [3]. In other words,
we need the number of spikes K > NN. Note that N is the
number of samples at Nyquist rate and hence Lazar’s TEM
neuron is firing at rates above Nyquist. In the next section
we develop a low-rate model of IAF neuron that fires at a
sub-Nyquist rate.

IV. THE LOW-RATE INTEGRATE-AND-FIRE NEURON

We introduce appropriate modifications in the TEM IAF
neuron and develop a low-rate IAF neuron model. The Low-
Rate TAF neuron schematical is shown in Fig. 3. We use
fixed thresholds (§) as opposed to random thresholds used
in Lazar’s model. The randomness in inter-spike-interval ex-
hibited in neuronal spike trains is produced by an additional
component that switches off the IAF circuit for a random
amount of time 75 (with mean ) after each spike (see Fig. 3).
The process of switching off the IAF circuit mimics the
“absolute refractory” period exhibited by a neuron. After
a single impulse, a dormant period occurs during which
no other impulse can be initiated [4], which is called the

“refractory” period. We model this refractory period as a
random variable to account for the randomness in neuronal
spike trains in response to identical inputs.

b

L
+—ij’dt—T_l:L

x(t) —

Switch off
for a random time T

Fig. 3. Sparse time encoding with Low-Rate integrate-and-fire(IAF) neuron.

The time durations 75 are assumed to be uniformly dis-
tributed with mean pu. The operational equation of time-
encoding can be obtained as follows,

th+1

/ x(s)ds = K6 — b(tgs1 — te — k)
te+Tk

for k£ = 0,.., K — 1. Similar to Section III, we define

measurement vector ¢ and matrix G as follows,

qk = K0 — b(tpt1 — th — k)

tet1

ka :/ ejQWL]\L]FNs ds
tre+Tr

for k=0,.,K —1and n=—-N/2,..,N/2.

In an actual implementation of the Low-Rate IAF neuron
in hardware, the time durations 75 can be generated using
a pseudo-random number generator such as linear feedback
shift register (LFSR). If the seed that is used to initialize the
LFSR is assumed to be known, then 75 can be computed
by the reconstruction algorithm. An alternative is to actually
measure T using a time to digital converter (TDC). The
measurements g can thus be computed by the reconstruction
algorithm.

The low-rate neuron produces spikes at a sub-Nyquist rate
determined by the parameters § and u. Let K denote the
number of spikes produced in duration D, then K < N. We
are interested in solving for X (the N-point DFT of input
signal) given t; for £ = 0,.., K — 1, i.e., we want to solve
the following linear system of equations for the case when
K <N,

GX =q+¢

where £ is a noise vector, which can model additive noise at
the input or a time jitter noise in measuring tj. The problem
is ill-posed in general, since it is under-determined and has
infinitely many solutions. But under the assumption that X is
sparse or compressible (as described in Section II), it may be
possible to uniquely recover X. We develop a new recovery
technique to reconstruct X, which is described in the next
section.
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V. THE RECONSTRUCTION ALGORITHM

Given the measurements ¢ = GX + £ of a sparse or
compressible signal X (of length V), with number of mea-
surements K < N, the novel area of Compressive Sensing
(CS) offers explicit constructions or distributions on matrices
G and algorithms such as those proposed in [9],[10] and
[11], to recover an approximation of X (denoted by X).
One line of research assumes that the measurement matrix G
satisfies a property called the restricted isometry (RIP) [11],
and uses either greedy iterative algorithms ([9],[10],[12]) or
convex optimizations to obtain X. Another line of research
designs matrices G and algorithms jointly, optimizing for
reconstruction time [13], storage requirements of G, or
physical realizability [14] of measurement with matrix G.
The matrix G produced by an IAF time-encoding system
(whether deterministic or random) does not necessarily sat-
isfy the RIP condition. Hence, following the second line of
research, we co-designed the measurement system (i.e. the
Low-Rate IAF neuron model) and the recovery algorithm,
keeping in mind the physical realizability of the TEM as
well as the TDM (time decoding machine). In this section, we
describe the reconstruction algorithm developed for the Low-
Rate IAF neuron model presented in Section IV. We begin
by transforming GX = ¢ into a new system of equations
BX = y by doing the following.

From mean value theorem, we know that there exists s, €
(tx + Tk, ti+1) such that
te41

x(sk)(thyr —th — Th) = / x(s) ds.

tre+Tr
Thus we can define s; for & = 0,..,K — 1 and the
corresponding signal amplitudes as

g = a(sy) = ——

(th1 — te — k)
We define a new measurement vector y in this manner. The
N-point DFT X and measurement vector y can be related
as

BX =y,

where the new measurement matrix B (of size K x N) is
given by
Bk: = ejQK%FNSk

for k=0,.,K —1and n = —N/2,.., N/2. Note that B is
not really a sub-DFT matrix, since s;s do not have to lie on
a Nyquist time grid.

A pseudo-code of the reconstruction algorithm is presented
in Table I. For a vector z, supp(z) is defined as the set of
indices of the non-zero elements of 2z and z(, stands for
the best s-term approximation® of z. For an index set T C
{1,2,.., N}, zp stands for a sub-vector of z containing only
those elements of z that are indexed by 7. Similarly Gr

2The best s-term approximation of a vector z can be obtained by equating
all the elements of z to zero, except the elements that have the top s
magnitudes.

stands for a sub-matrix of GG containing only the columns of
G indexed by T

The matrix B is similar to the matrix used in [14] and
hence we use the algorithm developed in [14] to estimate the
indices of the dominant terms in X, that is, we identify the
dominant frequencies in X. The largest components in By
provide a good indication of the largest components in X
[14]. The algorithm applies this idea iteratively to reconstruct
an approximation to the signal X. At each iteration, the
current approximation induces a residual, which is the part
of the signal that has not been approximated yet. The current
approximation vector X is initialized to a zero vector and the
residual is initialized to the measurement vector y. At the end
of iterations, once the dominant frequencies are identified
(denoted by index set 7' in Table I), their coefficients (i.e.
the elements of X7) are then estimated through performing
a least squares with a truncated matrix G. We approximate
sp = (tgs1 +te + 71)/2.

The reconstruction algorithm
INPUT: N (signal length), S (sparsity), (sg,yx).k = 0,1, .., K — 1.
OUTPUT: X (S-sparse approximation to X, length N)

X(0) — 0, residual r(0) = Y

fort=0,1,2,..
6T [0 1 g,
PO+ =y - BX(+D)
until ||r(¢+1) |5 does not vary within a tolerance 6.

T :supp{f(}
Xr = (GHGr) “laly (Least Squares)
Xpe =0

TABLE I
THE RECONSTRUCTION ALGORITHM

The computationally intensive step of least squares is
performed only once in the algorithm. The least squares is
implemented using the accelerated Richardson iteration [15]
with runtime of O(SKlog(2/e;)) where e; is a tolerance
parameter. The structure of the measurement matrix lends
us to use the inverse NUFFT [16] with cardinal B-spline
interpolation for forming the products of the form BHr,
in a runtime of O(NlogN). Hence the total runtime of
the algorithm is dominated by O(INlogN) where I is the
number of iterations which has a gross upper bound of
logN. In practice, we find that the approximation s, =
(tk+1 + tx + 71)/2 is good when the threshold ¢ is small
enough. It is possible to update si, £ = 0,.., K — 1 using
the current approximation X at the end of each iteration,
by using Newton’s method for example. More sophisticated
methods might yield better results.

VI. RESULTS AND DISCUSSION

Lazar’s TEM neuron and our Low-Rate IAF neuron are
simulated in MATLAB, along with the reconstruction al-
gorithms. We compared the performance of our Low-Rate
neuron firing at sub-Nyquist spike-rate with TEM neurons
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in [3] operating at and above Nyquist rate. We define the
sparse-encoding ratio of Low-Rate IAF neuron as %, which
implies that the firing rate of the neuron is %FN. The
input signal, as explained, is assumed to be a mixture of
sinusoidal waveforms of S frequencies. Because we inject
additive white Gaussian noise into the input signal, we use
the traditional measure of signal-to-noise ratio (SNR) as
the performance metric. The output SNR? is defined as the
ratio between the signal energy and the reconstruction error,
whereas the input SNR is defined as the ratio between signal
energy and noise energy.

-©-Low-Rate IAF with K/N = 0.304
{>-Lazar TEM above Nyquist rate
4¢-Lazar TEM at Nyquist rate
“¥-Lazar TEM at 0.97*Nyquist rate

2]
o

[9)]
o

B
o
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*
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40 0 10
input SNR in dB

20 30

Fig. 4. Output SNR vs input SNR for signals with S = 10

In the first experiment, we choose S = 10 and compare
the recovery performance of Lazar’s TEM neuron and Low-
Rate IAF neuron. The sparse-encoding ratio of Low-Rate
neuron is chosen as K/N = 0.3052. Fig. 4 plots the mean
output SNR vs. input SNR. We see that the Low-Rate IAF
neuron (even when operating at about one third the Nyquist
rate in this example) outperforms the TEM neurons (which
are not sparse encoders) operating at and above Nyquist
rates. Moreover, we see that Lazar’s reconstruction degrades
significantly when the average firing rate of TEM neurons is
reduced to about 0.97F).

In the next experiment, we choose S = 60. Mean output
SNR vs. input SNR is plotted in Fig. 5 for Low-Rate IAF
neuron operating at different rates and Lazar’s TEM neuron
operating at about twice the Nyquist rate. To match the per-
formance of Lazar’s TEM neuron at twice the Nyquist rate,
we need to set the firing rate of the Low-Rate IAF neuron
to about 0.38 times the Nyquist rate. Fig. 5 demonstrates
that an increase in sparse-encoding ratio K /N improves the
performance of the Low-Rate IAF neuron.

VII. CONCLUSION AND FUTURE WORK

We proposed a model for a sparse encoding neuron, called
the Low-Rate IAF (integrate-and-fire) neuron, which is an
adaptation of the TEM IAF model proposed by Lazar [1],

3Output SNR(dB) = 20 log(||X||2/||X — X||2), where X is the input
signal and X is the output of the algorithm
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Fig. 5. Output SNR vs input SNR for signals with S = 60

[2], [3]. Lazar’s TEM model produces spikes above Nyquist
rate, which is usually much higher than the amount of
information actually present in the input sensory stimuli. By
exploiting the sparsity, the Low-Rate IAF neuron encodes
input stimulus into spike trains with average firing rate well
below Nyquist rate, while using the spike timing information
in a smart manner to improve the performance of stimulus
recovery. The developed reconstruction algorithm is compu-
tationally efficient and can be tailored for practical hardware
implementations. A number of other time-encoding neuron
models, including many other IAF architectures, have been
proposed in the literature. The methodology of low-rate or
sparse encoding, along with the developed reconstruction
algorithm, can be extended to these neuron models. This
direction will be explored in the future. We are also interested
in investigating the application of our Low-Rate neurons
in developing a sparse encoding model for videos. The
classification of input stimuli from low-rate spike trains is
another potential future direction.
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