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Chapter 12

Model Selection with Informative Normalized Maximum
Likelihood: Data Prior and Model Prior

Jun Zhang

University of Michigan

12.1. Introduction

Model selection has, in the last decade, undergone rapid growth for evalu-
ating models of cognitive processes, ever since its introduction to the math-
ematical/cognitive psychology community (Myung, Forster, & Browne,
2000). The term “model selection” refers to the task of selecting, among
several competing alternatives, the “best” statistical model given experi-
mental data. To avoid ambiguity, “best” here has a now-standard oper-
ational definition – the commonly accepted criterion is that models must
not only show reasonable goodness-of-fit in accounting for existing data,
but also demonstrate some kind of simplicity so that it would not capture
sampling noise in the data. This criteria, emphasizing generalization as
opposed to fitting as the goal of modeling, embodies Occam’s Razor, the
principle of offering parsimonious explanation of data with fewest assump-
tions. Though mathematical implementations may differ, resulting in the
various methods such as AIC, BIC, MDL, etc., each invariably boils down to
balancing two aspects of model evaluation, one measuring its goodness-of-
fit over existing data and the other measuring its complexity or capability
for generalization.

The Minimum Description Length (MDL) Principle (Rissanen, 1978,
1983, 1996, 2001) is an information theoretic approach to inductive infer-
ence with roots in algorithmic coding theory. It has become one of the
most popular means for model selection (Grünwald, Myung, & Pitt, 2005;
Grünwald, 2007). Under this approach, data are viewed as codes to be
compressed by the model. The goal of model selection is to identify the
model, from a set of candidate models, that permits the shortest descrip-
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tion length (code) of the data. The state-of-the-art of MDL approach to
model selection has evolved into using the so-called Normalized Maximum
Likelihood, or NML for short (Rissanen, 1996, 2001), as the criterion for
model selection. In this chapter, this framework is revisited, and then
modified by formally introducing the notion of “data prior”. This turns
the (non-informative) NML framework into the “informative” NML frame-
work, which carries Bayesian interpretations. Informative NML subsumes
(the traditional, non-informative) NML for the case of data prior being
uniform, much in the same way that Bayesian inference subsumes maximal
likelihood inference for the case of prior over hypotheses (parameters) being
uniform.

12.2. A Revisit to NML

12.2.1. Construction of normalized maximal likelihood

Denote the set of probability distributions f over some sample space X as1

B = {f : X → [0, 1], f > 0,
∑
x∈X

f(x) = 1} .

We will use the term “model class”, denoted byMγ with a structural index
γ, to specifically refer to a parametric family Mγ of probability distribu-
tions all of functional form

Mγ = {f(·|θ) ∈ B, ∀θ ∈ Θ ⊆ <m} ;

in other words, for any fixed θ,

f(x|θ) > 0 ,
∑
x∈X

f(x|θ) = 1 .

The NML distribution p∗(x) computed from the entire model class is, by
definition,

p∗(x) =
f(x|θ̂(x))∑
y∈X f(y|θ̂(y))

, (12.1)

where θ̂(·) denotes the maximum likelihood estimator

θ̂(x) = argmaxθf(x|θ) . (12.2)
1We assume, for ease of exposition, that sample space X is discrete and hence use
the summation notation

P
x∈X {·}. When X is uncountable, then f is taken to be

the probability density function with the summation sign replaced by
R
X{·}dµ where

µ(dx) = dµ is the background measure on X .
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Note that, in general p∗(x) itself may not be a member of the family Mγ

of the distributions in question,

p∗(·) /∈Mγ ,

because it is obtained by a) selecting one parameter θ̂(x) (and hence one
distribution in Mγ) for each point x of the sample space X (i.e., for each
data point), then b) using the corresponding value of the distribution func-
tion f(x|θ̂(x)), and finally c) normalizing across all possible data points
x ∈ X . The NML distribution is a universal distribution, in the sense of
being generated from the familyMγ (i.e., an entire class) of probability dis-
tributions; it (generally) does not, however, correspond to any individual
distribution within that family. See Figure 1.

12.2.2. Code length, universal distribution, and complexity

measure

In algorithmic coding theory, the negative logarithm of a distribution cor-
responds to the “code length”. Under this interpretation, p∗(x) is identified
as the length of an ideal code for a model class

ideal code length = − log p∗(x) = − log f(x|θ̂(x)) + log
∑
y∈X

f(y|θ̂(y)).

(12.3)
For arguments of such coding scheme being “ideal” in the context of model
selection, see Myung, Navarro, and Pitt (2006). It suffices to point out
that as a criterion for model selection, the two terms in (12.3) describe on
the one hand the goodness-of-fit of a model with its best-fitting parame-
ter (first term) and on the other the complexity of a model class (second
term). Therefore, the general philosophy of NML falls in the same spirit of
properly balancing two opposing tensions in model construction, namely,
better approximation versus lower complexity, to achieve the goal of best
generalizability.

Note that in (12.1) the probability that the universal distribution p∗

assigns to the observed data x is proportional to the maximized likelihood
f(x|θ̂(x)), and the normalizing constant

Cγ =
∑
y∈X

f(y|θ̂(y)) (12.4)

is the sum of maximum likelihoods of all potential data that could be ob-
served in an experiment. It is for this reason that p∗ is often called the
normalized maximum likelihood (NML) distribution associated with model
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Fig. 12.1. Figure 1. Schematic diagram of normalized maximum likelihood (NML) for
a model class Mγ whose likelihood functions f(·|θ) are parameterized by θ. Each row

represents the probability density (mass) indexed by a particular θj value as parameter,

so each row sums to 1. On the bottom, x represents all possible data, with each data
point xi “selecting” (across the corresponding column) a particular θ̂ with the largest

likelihood value, indicated by a box. The ML function f(x|θ̂(x)), which is also denoted
L(x|γ) ≡ Lγ(x), is a map from x to the largest likelihood value shown in the box.

Their sum, denoted Ĉγ , may not equal 1. Normalizing f(x|θ̂(x)) by Ĉγ gives the NML

function.

class Mγ . The NML distribution is specified once the functional (i.e.,
parametric) form of the model class is given. It is determined prior to an
experiment, that is, prior to any specific data point x being given. Model
complexity, as represented by the second term of (12.3), is operationalized
as the logarithm of the sum of all best-fits a model class can provide collec-
tively. This complexity measure therefore formalizes the intuition that the
model that fits almost every data pattern very well would be much more
complex than a model that provides a relatively good fit to a small set of
data patterns but does poorly otherwise.

The NML distribution p∗ is derived as a solution to a minimax prob-
lem: Find the distribution that minimizes the worst-case average regret
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(Rissanen, 2001):

p∗ ←− inf
q∈B

sup
g∈B

Eg

{
log

f(y|θ̂(y))
q(y)

}
(12.5)

where p, q ranges over the entire B, the set of all probability distributions,
and Eg{·} denotes the taking of expectation

Eg{F (y)} =
∑
y∈X

g(y)F (y) .

The solution, p∗, is not constrained to be in the setMγ . The basic idea of
this minimax approach to model selection is to identify a single probabil-
ity distribution that is “universally” representative of an entire paramet-
ric family of distributions and that mimics the behavior of any member of
that family in the sense formulated in (12.5) (Barron, Rissanen, & Yu, 1998;
Hansen & Yu, 2001). Since its computation does not invoke or even assume
the existence of a true, data-generating distribution, the NML distribution
is said to be “agnostic” from the truth distribution (Myung, Navarro, &
Pitts, 2006), though such claim about “agnosticity” is the subject of some
debate (Karabatsos & Walker, 2006; Grünwald & Navarro, 2009; Karabat-
sos & Walker, 2009). The debate is centered around whether the Bayesian
approach under a non-informative Dirichlet process prior can be viewed as
identical to that of maximal likelihood estimator, and whether the choice
of a particular form of penalty function is a priori motivated.

12.2.3. NML and Bayesianism with non-informative prior

Under asymptotic expansion, the negative logarithm of the NML distribu-
tion can be shown (Rissanen, 1996) to be:

− log p∗(x) = − log f(x|θ̂(x)) +
k

2
log
( n

2π

)
+ log

∫
Θ

√
det I(θ) dθ + o(1)

(12.6)
where n denotes the sample size, k is the number of model parameters, and
I(θ) is the Fisher information matrix

I(θ) =
∑
x∈X

f(x|θ) ∂ log f(x|θ)
∂θi

∂ log f(x|θ)
∂θj

.

The expression (12.6) was called the “Fisher information approximation
(FIA) to the NML criterion” (Pitt, Myung, & Zhang, 2002). The first two
terms are known as the Bayesian Information Criterion (BIC; Schwartz,
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1978). The third term of (12.6) involving the Fisher information also ap-
peared from a formulation of Bayesian parametric model selection (Bala-
subramanian, 1997). This hints at the deeper connection between NML
approach and Bayesian approach to model selection. We elaborate here.

In Bayesian model selection, the goal is to choose, among a set of candi-
date models, the one with the largest value of the marginal likelihood for
observed data x, defined as

pBayes(x) =
∫

Θ

f(x|θ)π(θ)dθ (12.7)

where π(θ) is a prior on the parameter space. A specific choice is the
Jeffrey’s prior πJ(θ), which is non-informative

πJ(θ) =

√
det I(θ)∫

Θ

√
det I(θ)dθ

.

An analysis by Balasubramanian (1997) shows that if πJ(θ) is used in (12.7),
then an asymptotic expansion of− log pBayes(x) yields an expression with the
same three leading terms as in (12.6). In other words, for large n, Bayesian
model selection with (the non-informative) Jeffrey’s prior and NML be-
come virtually indistinguishable. This observation parallels the findings by
Takeuchi & Amari (2005) that the asymptotic expressions of various es-
timators, including MDL, projected Bayes estimator, bias-corrected MLE,
each of which indexes a point (value of θ) in the model manifold, were
related to the choice of priors; this in turn has an information geometric
interpretation (Matsuzoe, Takeuchi, & Amari, 2006).

Note that in the NML approach, data is assumed to be drawn from the
sample space according to a uniform distribution: the summation

∑
x∈X

treats every data x with the same weight. In algorithmic coding applica-
tions, this is not a problem because here the data are the symbols under
transmission which can be pre-defined to occur equally likely by the en-
coder and the decoder. In model selection applications where data will
most likely be generated from a non-uniform distribution, care must be
taken to calculate such quantities like (12.4). If the summation is taken
over the stream of data that follow each other (i.e., as the data generation
process is being realized), then the multiplicity in any sample value x will
be naturally taken into account. On the other hand, if the summation is
taken a priori (i.e., the data generation process is being assumed), then
proper weighting of the data stream is called for. In this contribution, we
explore a generalization of the NML formulation about model complexity
measure by explicitly considering the modeler’s prior belief about data and
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prior belief of the model classes (“prior” in comparison with data collecting
data and model fitting).

12.3. NML with Informative Priors

Recall that the normalizing constant in (12.1) is obtained by first finding
the maximum likelihood value for each sample point and then summing
all such maximum likelihood values across the sample space. An implicit
assumption behind this definition of model complexity is that every sample
point is equally likely to occur a priori (i.e., before data collection). In terms
of the Bayesian language, this amounts to assuming no prior information
about possible data patterns. In this sense, NML may be viewed as a
“non-informative” MDL method.

In practice, however, it is common that information about the possible
patterns of data is available prior to data collection. For example, in a
memory retention experiment, one can expect that the proportion of words
recalled is likely to be a decreasing function of time rather than an increas-
ing function, that retention performance will be in general worse under free
recall than under cued recall, that the rate in which information is forgot-
ten or lost in memory will be greater for uncommon, low frequency words
than for common, high frequency words, etc. Such prior information im-
plies that not all data patterns are equally likely. It would be advantageous
to incorporate such information in the model selection process. The expo-
sition below explores the possibility of developing an “informative” version
of NML.

12.3.1. Universal distribution with data-weighting

Recall that in point estimation, a given data point x ∈ X selects, within
the entire model class Mγ , a particular distribution with parameter θ̂:

x→ θ̂ ; f(·|θ̂) ∈Mγ .

Here θ̂ : X → Θ is some estimating function, for example, the MLE as given
by (12.2). The; sign is taken to mean “selects”. The expression f(y|θ̂(x)),
when viewed as a function of y for any fixed x, is a probability distribution
that belongs to the family Mγ (i.e., is one of its elements). Evaluated
at y = x, we denote f(x|θ̂(x)) ≡ Lγ(x), viewed now as a function of the
data x explicitly (recall that γ is the index for model classMγ). Note that
Lγ(x) is not a probability distribution;

∑
x Lγ(x) 6= 1 in general. The NML

distribution p∗(x), which is the normalized version of Lγ(x), is derived as
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the solution of the minimax problem (12.5), over the yet-to-be determined
distribution q(x), with regret given as log(Lγ(x)/q(x)). Now, instead of
using this regret function, we use log(s(x)Lγ(x)/q(x)) and consider a more
general minimax problem

inf
q∈B

sup
g∈B

Eg

{
log

s(y)Lγ(y)
q(y)

}
, (12.8)

where s(x) is any positively-valued function of x.

Proposition 12.1. The solution to the minimax problem (12.8) is given
by q(·) = p(·|γ) where

p(x|γ) ≡ s(x)Lγ(x)
Ĉγ

=
s(x)Lγ(x)∑
y∈X s(y)Lγ(y)

; (12.9)

the minimaximizing bound is log Ĉγ where

Ĉγ =
∑
y∈X

s(y)Lγ(y) . (12.10)

Proof. Our proof follows that of Rissenan (2001) with only slight modi-
fications. First, noting the elementary relation

inf
q∈B

sup
g∈B

G(g, q) ≥ sup
g∈B

inf
q∈B

G(g, q)

for any functional G(g, p). Applying this to (12.8), the quantity {·} under
minimaximizing,

Eg

{
log

s(y)Lγ(y)
q(y)

}
= Eg

{
log

g(y)
q(y)

}
− Eg

{
log

g(y)
s(y)Lγ(y)

}
= Eg

{
log

g(y)
q(y)

}
− Eg

{
log

g(y)
p(x|γ)

}
+ log Ĉγ = D(g||q)−D(g||p) + log Ĉγ ,

where D(·||·) is the non-negative Kullback-Leibler divergence

D(g||q) = Eg

{
log

g(y)
q(y)

}
=
∑
y∈X

g(y) log
g(y)
q(y)

.

Therefore

inf
q∈B

sup
g∈B

Eg

{
log

s(y)Lγ(y)
q(y)

}
≥ sup

g∈B
inf
q∈B

(D(g||q)−D(g||p) + log Ĉγ)

= sup
g∈B

(−D(g||p) + log Ĉγ) = log Ĉγ

where the infimum (over q) in the last-but-one step is achieved for q = g

and the supremum (over g) in the last step is achieved for g = p. Therefore,
the solution to (12.8) is achieved when q = p(·|γ). �
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Remark 12.1. The distribution p∗(x), that is, non-informative NML
(12.1), is known (Shtarkov, 1987) also to be the solution of the following
slightly different minimax problem:

inf
q∈B

sup
y∈X

log
f(y|θ̂(y))
q(y)

.

We can modify the above to yield a minimax problem (with given s(y))

inf
q∈B

sup
y∈X

log
s(y)f(y|θ̂(y))

q(y)
,

and show that (12.9) is also its solution. The proof of this statement follows
readily from the proof of Proposition 12.1.

We call (12.9) the informative NML distribution, which depends on an
arbitrary positively-valued function s(·). Clearly, for all densities g,

Eg

{
log

s(y)Lγ(y)
p(y|γ)

}
= Eg log Ĉγ = log Ĉγ

is constant. When s(y) = const, then

Ĉγ ; const
∑
y

Lγ(y) = constCγ

with

p(x|γ) ; p∗ =
Lγ(x)∑
y Lγ(y)

,

both reducing to the (non-informative) NML solution derived by Rissanen
(2001). The difference between p(x|γ) and p∗ is, essentially, the use of
s(x)Lγ(x) in place of Lγ(x), that is, the maximal likelihood value Lγ(x) at
a data point x is weighted by a non-uniform, data-dependent factor s(x).
The data-dependency of the universal distribution (which in general still
lies outside the manifold of the model class) qualifies it for the term “infor-
mative” NML (just as the parameter-dependency of a prior distribution in
the Bayesian formulation qualifies it as an “informative prior”).

Note that the function s(x) in Proposition 12.1 can be any positively-
valued function defined on X . And the choice of s(x) would affect the
complexity measure Ĉγ , which is also always positive.
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12.3.2. Prior over data and prior over model class

The maximal likelihood values Lγ(x) from model class γ over data x are a
series of positive values; normalization over x gives the (non-informative)
NML distribution p∗(x) in Rissanen’s (2001) analysis. Here, it is presup-
posed that the modeler has a prior belief πγ about the plausibility of various
model classes γ (with πγ > 0,

∑
γ πγ = 1), and a prior belief π(x) about the

credibility of the data x (with π(x) > 0,
∑
x π(x) = 1). These two types

of prior beliefs may not be “compatible”, in some sense yet to be specified
more accurately below.

Let us take

s(x) =
π(x)∑

γ πγ Lγ(x)
. (12.11)

The meaning of such s(x) will be elaborated later — it is related to, but
not identical with, the so-called “luckiness prior” (Grünwald, 2007).

Note that (12.9) can be re-written as

p(x|γ) =
p(γ|x)π(x)∑
y∈X p(γ|y)π(y)

, (12.12)

where p(γ|x) is defined by

p(γ|x) ≡ πγ Lγ(x)∑
γ πγ Lγ(x)

.

Since the denominator of the right-hand side of the above expression in-
volves a summation over γ (and not x), we can then obtain

p(γ|x) =
πγ p(x|γ)∑
γ πγ p(x|γ)

. (12.13)

The two equations (12.12) and (12.13) clearly have Bayesian interpreta-
tions: when π(x) is taken to be the modeler’s initial belief about the data
prior to modeling, the solution to the minimax problem, now in the form of
(12.12), can be viewed as the a posterior description of the data from the
perspective of the model classMγ , with p(γ|x) as likelihood functions about
the various model classes. Likewise, when πγ is taken to be the modeler’s
initial belief about the model class Mγ prior to an experiment, p(γ|x) as
given by (12.13) can be viewed as the a posterior belief about the various
model classes after experimentally obtaining and fitting data x, whereas the
informative NML solution p(x|γ) serves as the likelihood functions about
the data. So, informative NML has two interpretations, a) as the posterior
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of the data given model, in (12.12), or b) as the likelihood function of the
model given data, in (12.13).

The above two interpretations correspond to two ways (see Figure 2) the
maximum likelihood values Lγ(x) can be normalized: a) across data x to
become the probability distribution over data p(x|γ); and b) across model
class Mγ to become the probability distribution over model class p(γ|x).
This demonstrates a duality between data and model from the modeler’s
perspective.

Fig. 12.2. Figure 2. Illustration of data prior, model prior, and the ML values L(x|γ) ≡
Lγ(x) for data points x1, x2, · · · , xN across various model classes Mγ1 ,Mγ2 , · · · ,Mγk .
When model prior πγ is given, ML values (viewed as columns) are used as the likelihood

function of a particular data point for different model classes, in order to derive posterior
estimates of model classes. When data prior π(x) is given, ML values (viewed as rows)

are used as the likelihood function of a particular model class for different data points,
in order to derive posterior estimates of data (informative NML solution). Data prior
and model prior can be made to be compatible (see Proposition 12.2).
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12.3.3. Model complexity measure

Let us now address the model complexity measure associated with the in-
formative NML approach. Substituting (12.11) into the expression for the
complexity measure Ĉγ , we have

πγĈγ =
∑
x

p(γ|x)π(x) . (12.14)

Explicitly written out

Ĉγ =
∑
x

π(x)Lγ(x)∑
γ πγLγ(x)

.

From (12.14), we obtain ∑
γ

πγĈγ = 1 .

This indicates that the new model complexity measure proposed here, Ĉγ ,
is normalized after weighted by πγ . The fact that πγ > 0 implies that

Ĉγ <∞ .

This solves a long-standing problem, the so-called “infinity problem”
(Grünwald, Myung, & Pitt, 2005) associated with Cγ in the non-informative
NML.

Recall that the non-informative NML follows the “two-part code” idea of
MDL, that is, one part that codes the description of the hypothesis space
(the functional form of the model class), the other part that codes the
description of the data as encoded with respect to these hypotheses (the
maximum likelihood value of the MLE). As such, the original minimax
problem (12.5) has a clear interpretation of the “ideal code” from algorith-
mic coding perspective, with Cγ as the complexity measure of the model
class. Here the normalization factor Ĉγ associated with the informative
NML solution (12.9) has an analogous interpretation. The only difference
is that the complexity measure now is dependent on the prior belief of the
data π(x) and the prior belief of the model classes πγ , in addition to its
dependency on the best-fits provided by each model class for all potential
data.

The s(x) factor introduced in the minimax problem given in (12.8) is re-
lated (but with important differences, see next subsection) to the “luckiness
prior” introduced by Grünwald (2007). In the current setting, with s(x)
taking the specific form of (12.11), we have the following interpretation: for
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the occurrence of any data point x, the denominator
∑
γ πγLγ(x) gives ex-

pected occurrence of x from the modeler’s prior knowledge about all models
he/she builds, whereas the numerator s(x) gives the modeler’s prior knowl-
edge about the data occurrence from a known data-acquisition procedure.
Since the knowledge of the modeler/experimenter about model building
and experimentation may come from different sources, the “luckiness” of
acquiring data x as resulting from an experiment thus can be operational-
ized as the ratio of these two probabilities associated with different types
of uncertainty about data.

Note that if and only if

π(x) = const
∑
γ

πγLγ(x), (12.15)

the luckiness factor s(x) = const; this is the case when the informative
NML solution (12.9) reduces to the non-informative NML solution (12.1),
both in this formulation, and in the approach reviewed by Grünwald (2007).
We say that the modeler’s prior belief over data and prior belief over model
class are mutually compatible when (12.15) is satisfied (over all possible data
values x). It is easy to see that luckiness is a constant (i.e., same across all
data points) if and only if model prior and data prior are compatible.

Proposition 12.2. The following three statements are equivalent.

(a) Luckiness s(x) is constant;
(b) Model prior πγ and π(x) are compatible;
(c) Informative NML is identical with non-informative NML.

12.3.4. Data prior versus “luckiness prior”

The data-dependent factor s(x) introduced here, while in the same spirit of
the so-called “luckiness prior” as in Grünward (2007, pp. 308-312), carries
subtle differences. In Grünward’s case, the corresponding minimax problem
is

inf
q∈B

sup
g∈B

Eg
{

log p(y|θ̂(y))− log q(y)− a(θ̂(y))
}

and the extra factor a(θ̂(y)) is a function of the maximum likelihood esti-
mator θ̂(·). In the present case, the minimax problem is

inf
q∈B

sup
g∈B

Eg
{

log p(y|θ̂(y))− log q(y) + log s(y)
}
,

with s(y) a function defined on the sample space directly (and not through
“pull-back”). However, both approaches to informative NML afford
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Bayesian interpretations. The approached described in Grünwald (2007)
will lead to the luckiness-tilted Jeffreys’ prior (p.313, ibid.),

πJ,a(θ) =

√
det I(θ) e−a(θ)∫

Θ

√
det I(θ) e−a(θ)dθ

,

which has the information geometric interpretation as an invariant volume
form under a generalized conjugate connection on the manifold of proba-
bility density functions (Takeuchi & Amari, 2005; Zhang & Hasto, 2006;
Zhang, 2007). The approach adopted in this paper gives rise to a dual
interpretation between model and data. Just as the maximum likelihood
principle can be used to select the parameter (among all “competing” pa-
rameters) of a certain model class, the NML principle has been used to
select a model class out of a set of competing models. Just as there is a
Bayesian counterpart to the ML principle for parameter selection, what is
proposed here is the Bayesian counterpart to NML, i.e., the use of maxi-
mum p(γ|x) value (with fixed x, i.e., the given data) for model selection
(among all possible model classes). The same, old debate and argument
surrounding ML and Bayes can be brought back here — we are back to
square one. Except that we are now operating at a higher level of explana-
tory hierarchy, namely, at the level of model classes (whereby each class
is represented by a universal distribution through its maximum likelihood
values after proper normalization); yet the duality between model and data
still manifests itself.

12.4. General Discussions

To summarize this chapter, from the maximum likelihood function
f(x|θ̂(x)) ≡ Lγ(x) (where θ̂ is the MLE for the model class Mγ), one can
either construct the (non-informative) NML as a universal distribution of
the model class γ through normalizing with respect to x, as Rissanen (2001)
did, or derive the posterior distribution for model selection (12.13) through
normalizing with respect to γ, as is done here. This has significant impli-
cations for model selection. In the former case, model selection is through
the comparison of NML values for various model classes. Because the NML
solution (12.1) is a probability distribution (in fact, universal distribution
representing the particular model class) with total mass 1, then necessarily
no single model can dominate (i.e., be the preferred choice) across all data!
In other words, for any data x where model class γ1 is preferred to model
class γ2, there exists some other data x′ where model class γ2 outperforms
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model class γ1. Here, in our situation, we use an (informative) universal
distribution which is interpreted as the likelihood function, with respect to
a prior belief about all model classes — model selection is through comput-
ing the Bayes factor which combines the two data scenario. The dominance
or superiority of one model class over another in accounting for all data is
permitted under the current method.

12.5. Conclusion

Normalized maximal likelihood is a probability distribution over the sample
space associated with a parametric model class. At each sample point, the
value of an NML distribution is obtained by taking the likelihood value
of the maximum likelihood estimator (ML value) corresponding to that
sample point (data), and then normalizing across the sample space to give
rise to the unit probability measure. Here, the minimax problem that
leads to the above (non-informative) NML as its solution is revisited by
our introducing an arbitrary weighting function over sample space. The
solution then becomes “informative NML”, which involves both a prior
distribution over the sample space (“data prior”) and a prior distribution
over model class (“model prior”), with obvious Bayesian interpretations of
the ML values. This approach avoids the so-called “infinity problem” of the
non-informative NML, namely the unboundedness of the logarithm of the
normalization factor (which serves as an index for model complexity), while
at the same time providing a notion of consistency between the modeler’s
prior beliefs about models and data.
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