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Frames in a Banach space B were defined as a sequence in its dual space B∗ in some recent
references. We propose to define them as a collection of elements in B by making use of
semi-inner products. Classical theory on frames and Riesz bases is generalized under this
new perspective. We then aim at establishing the Shannon sampling theorem in Banach
spaces. The existence of such expansions in translation invariant reproducing kernel Hilbert
and Banach spaces is discussed.
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1. Introduction

A main purpose of this paper is to provide a language for the study of frames and Riesz bases in Banach spaces, making
smoother the passage from Hilbert spaces. The motivation comes from the establishment of a Shannon sampling theorem
in Banach spaces of functions. To this end, we first redefine frames in Banach spaces via a compatible semi-inner product,
which is a natural substitute for inner products on Hilbert spaces. The classical theory of frames and Riesz bases for Hilbert
spaces is then generalized to Banach spaces. Although examples of frames with favorable properties will be implicitly
provided in Section 4, we leave out the explicit construction of useful frames for Banach spaces, hoping that our work could
set a foundation for such studies in the future.

We start with recalling the definition of frames and Riesz bases for Hilbert spaces. Let H be a separable Hilbert space
and I a countable index set. A frame for H is an indexed set of vectors { f j: j ∈ I} ⊆ H for which there exist positive
constants 0 < A � B < +∞ such that

A‖ f ‖H �
∥∥{

( f , f j)H
}∥∥

�2(I)
� B‖ f ‖H for all f ∈ H.
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Here, ‖ · ‖H and (·,·)H denote the norm and inner product on H, respectively. And �2(I) is the Hilbert space of square-
summable sequences on I. For simplicity, a set {α j: j ∈ I} indexed by I will be abbreviated as {α j} throughout the paper.
A Riesz basis { f j} for H is a frame that is minimal in the sense that

f j /∈ span{ fk: k ∈ I, k �= j} for any j ∈ I.

Frames and Riesz bases, as alternatives for orthonormal bases, bring more flexibility in representing elements in a Hilbert
space. They were first introduced for the purpose of studying nonharmonic Fourier analysis [10,38,44]. With the advent of
the theory of wavelets, they find wide applications in the construction of bases for signal and image processing, time fre-
quency analysis, and sampling theory [8,31]. We are particularly interested in its natural role in the complete reconstruction
of a function in a reproducing kernel Hilbert space (RKHS) from its samplings.

An RKHS on a set X is a Hilbert space H of functions defined on X such that for each x ∈ X the linear functional of
point evaluation at x

δx( f ) := f (x), f ∈ H

is continuous [2]. By the Riesz representation theorem, there exists a unique function K : X × X → C such that {K (x, ·): x ∈
X} ⊆ H and

f (x) = (
f , K (x, ·))H, x ∈ X, f ∈ H. (1.1)

The function K is called the reproducing kernel of H. Many things can be said about RKHS because of the existence of
a reproducing kernel (see, for example, [6,39,40,42,43]). As far as sampling is concerned, let us assume that there exist
sampling points x j ∈ X , j ∈ I such that K (x j, ·), j ∈ I constitute a Riesz basis for H. Then by the standard theory of Riesz
bases (see, for example, [8]), the frame operator S : H → H defined by

S f :=
∑
j∈I

(
f , K (x j, ·)

)
H K (x j, ·), f ∈ H

is bounded, self-adjoint, positive, and invertible. Applying the inverse S−1 to both sides of the above equation and notic-
ing (1.1), we obtain the following sampling expansion on H

f (x) =
∑
j∈I

f (x j)
(

S−1 K (x j, ·)
)
(x), x ∈ X, f ∈ H, (1.2)

where the series converges absolutely, and uniformly on any subset of X where K (x, x) is bounded (see [2, p. 344]). When H
is the Paley-Wiener space of square-integrable functions on R whose Fourier transforms are supported on [−π,π ], and
x j = j, j ∈ I = Z, the reproducing kernel K is the sinc function and (1.2) becomes the celebrated Shannon sampling series.
The general formula (1.2) was first discovered by Nashed and Walter in [34]. Recent developments can be found in Refs.
[13,17,18,21,32]. One of the main purposes of this paper is to extend it to Banach spaces of functions. This goal motivates
the need of understanding the correspondence of Frames, Riesz bases, and RKHS in Banach spaces.

There have been definitions of frames and Riesz bases for a separable Banach space B [1,3,4,16]. Two Banach spaces are
said to be isomorphic to each other if there is a bijective bounded linear operator between them. Since it is no longer true
that two Banach spaces of the same dimension must be isomorphic to each other, it is important to choose the appropriate
sequence spaces in the definition of frames and Riesz bases for Banach spaces. With this consideration, the notion of BK-
spaces is needed. A BK-space Xd on I is a Banach space of sequences c = {c j} ∈ CI with the property that the coordinate
linear functionals c → c j , j ∈ I are continuous on Xd .

Definition 1.1. (See [1,3,4].) An indexed set { f j} ⊆ B is an Xd-Riesz basis for B if span{ f j} = B,
∑

j∈I
c j f j converges in B

for all c ∈ Xd and there exists 0 < A � B < +∞ such that

A‖c‖Xd �
∥∥∥∥∑

i∈I

c j f j

∥∥∥∥
B

� B‖c‖Xd for all c ∈ Xd. (1.3)

Due to the lack of an inner product in a general Banach space B, a frame for B was defined as an indexed set of linear
functionals from the dual space B∗ in [1,3,4,16]. Specifically, {μ j} ⊆ B∗ was called an Xd-frame for B if {μ j( f )} ∈ Xd for
every f ∈ B and there exist constants 0 < A � B < +∞ such that

A‖ f ‖B �
∥∥{

μ j( f )
}∥∥

Xd
� B‖ f ‖B for all f ∈ B. (1.4)

Thus, according to the above definition, a frame for B consists of elements from the dual space B∗ , not of elements in
the original space B as one might have expected. However, this inconvenience can be avoided using the tool of semi-inner
products [27] for Banach spaces.
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A semi-inner product on B is a function on B × B, usually denoted by [·,·], such that for all f , g,h ∈ B and α ∈ C

1. [ f + g,h] = [ f ,h] + [g,h],
2. [α f , g] = α[ f , g], [ f ,αg] = ᾱ [ f , g],
3. [ f , f ] > 0 for f �= 0,
4. |[ f , g]|2 � [ f , f ][g, g].

Every Banach space B has a semi-inner product [·,·] that is compatible in the sense that (see [15,27])

[ f , f ]1/2 = ‖ f ‖B for all f ∈ B.

The striking difference between a semi-inner product [·,·] and an inner product is that [·,·] is nonadditive with respect
to its second variable unless it becomes an inner product [36]. Semi-inner products make possible the development of
Hilbert space type arguments in Banach spaces (see, for example, [26–28,37]). They have recently been applied to machine
learning. With the aid of semi-inner products, Der and Lee [9] studied hard margin classification in Banach spaces, and we
established the theory of reproducing kernel Banach spaces (RKBS) in a recent work [45]. The detailed definition of RKBS
will be introduced in Section 4. We present our definition of frames for Banach spaces via semi-inner products below.

Definition 1.2. Let [·,·] be a compatible semi-inner product on B. We call { f j} ⊆ B an Xd-frame for B if {[ f , f j]} ∈ Xd for
all f ∈ B and there exist two positive constants A, B such that

A‖ f ‖B �
∥∥{[ f , f j]

}∥∥
Xd

� B‖ f ‖B for all f ∈ B. (1.5)

We shall discuss the connection of the above definition of frames with that in [1,3,4,16] in Section 2, where we shall
generalize the classical theory of frames and Riesz bases for Hilbert spaces to Banach spaces. Many of the results and
arguments for their proofs in Section 2 are merely translations of those in [3,4] in the language of semi-inner products and
duality mappings. Besides making the exposition of the paper self-contained, another reason for including the results and
proofs is that under the new language they seem to be natural extensions of the counterparts in Hilbert spaces. We shall
illustrate two such results here. Let B and Xd have properties that will be described at the beginning of the next section.
Also denote by [·,·] a compatible semi-inner product on B. By properties 3 and 4 of semi-inner products, for each f ∈ B the
function that sends g ∈ B to [g, f ] is a bounded linear functional on B. We shall denote this functional associated with f
by f ∗ and call it the dual element of f . The mapping f → f ∗ will be called the duality mapping from B to B∗ . The following
two results will be proved in Proposition 2.13 and Theorem 2.15 respectively:

1. An indexed set { f j} ⊆ B is an Xd-Riesz basis for B if and only if it is minimal in B and { f ∗
j } forms an X∗

d -frame for B∗ .
2. If { f ∗

j } is an X∗
d -Riesz basis for B∗ then there exists a unique Xd-Riesz basis {g j} for B such that

[g j, fk] = δ j,k, j,k ∈ I,

where δ j,k is the Kronecker delta, and

f =
∑
j∈I

[ f , f j]g j, f ∗ =
∑
j∈I

[g j, f ] f ∗
j for all f ∈ B.

In Section 3, we shall investigate the conditions for the frame operator on Banach spaces to be invertible. A frame { f j}
for a Hilbert space H has the remarkable property that ( f , f j)H are the most economical coefficients for a decomposition of
f ∈ H into S−1 f j , where S is the frame operator associated with { f j}. We shall also establish this result for Banach spaces
in Section 3. Our main focus is on Section 4, where we discuss sampling expansions of the form (1.2) in RKBS. Examples
based on existing research on weighted Paley–Wiener spaces [29,30,35] and generalized interpolating refinable function
vectors [19,23,24] will be presented. The main finding of the paper is the negative result that such expansions do not exist
for some common translation invariant RKBS. In particular, as a corollary of this fact, the RKHS of the Gaussian kernels on
Rd do not possess a complete sampling expansion (1.2). The last section is devoted to the discussion of finite-dimensional
Banach spaces. Especially, we shall present a nonlinear Gram–Schmidt process to generate a Riesz basis for B whose dual
elements automatically form a Riesz basis for B∗ .

2. Frames and Riesz bases via semi-inner products

We start with introducing necessary preliminaries on semi-inner products, and desired properties of the Banach space B
and BK-space Xd under consideration.

Let B be a separable Banach space and [·,·] a compatible semi-inner product on B. We require that B be reflexive and
strictly convex. In other words, (B∗)∗ = B, and whenever ‖ f + g‖B = ‖ f ‖B + ‖g‖B where f , g �= 0 then f = αg for some
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α > 0. An important consequence [12] is that the duality mapping from B and B∗ is bijective. In other words, for every
linear functional μ ∈ B∗ there exists a unique f ∈ B such that

μ(g) = f ∗(g) = [g, f ] for all g ∈ B. (2.1)

We also note that the duality mapping is isometric, namely,∥∥ f ∗∥∥
B∗ = ‖ f ‖B for all f ∈ B. (2.2)

Furthermore, it was observed in [15] that the function [·,·]∗ : B∗ × B∗ → C defined by[
f ∗, g∗]

∗ := [g, f ], f , g ∈ B (2.3)

is a compatible semi-inner product on B∗ .
Let I be a countable index set that has been well-ordered. We shall denote by In , n ∈ N, the subset of the first n indices

in I. If #I < +∞ then In = I for n � #I. The notation Xd will always be reserved to denote a BK-space on I. We shall also
require that the canonical unit vectors e j , j ∈ I form a Schauder basis for Xd . In other words, every c ∈ Xd equals

∑
j∈I

c je j
in the sense that

lim
n→∞

∥∥∥∥c −
∑
j∈In

c je j

∥∥∥∥
Xd

= 0,

and the coefficients in a decomposition of c into e j are unique. By a result in [25], the dual space X∗
d of Xd is also a

BK-space of sequences d = {d j} ⊆ C such that

d(c) =
∑
j∈I

c jd j, c ∈ Xd, d ∈ X∗
d .

For instance, if Xd = �p(I), 1 < p < +∞ then X∗
d = �q(I), where 1/p + 1/q = 1. We impose several more crucial assumptions

on Xd , which are satisfied by �p(I), p ∈ (1,+∞). Specifically, we require that Xd be reflexive, the canonical unit vectors e j ,
j ∈ I form a Schauder basis for X∗

d as well, if d = {d j} ∈ CI satisfies∑
j∈I

c jd j (2.4)

converges for every c ∈ Xd then d ∈ X∗
d , and if the above series converges for all d ∈ X∗

d then c ∈ Xd .
The above notations and requirements about the spaces B and Xd are assumed throughout the rest of the paper.

2.1. Frames

We shall see that the lower bound inequality in Definition 1.1 and the upper bound inequality in Definition 1.2 each lead
to a new object in Banach spaces, whose precise definitions are given below.

Definition 2.1. An indexed set { f j} is called an Xd-Bessel sequence for B if {[ f , f j]} ∈ Xd for all f ∈ B. It is said to be an
Xd-Riesz–Fischer sequence for B if for all c ∈ Xd there exists some f ∈ B such that

[ f , f j] = c j, j ∈ I. (2.5)

One might replace Xd by X∗
d , B by B∗ , or both in Definitions 1.1, 1.2, or 2.1 to obtain other definitions. For instance, we

get by (2.2) and (2.3) the following useful fact.

Lemma 2.2. Let { f j} ⊆ B. Then { f ∗
j } is an X∗

d -frame for B∗ if and only if {[ f j, f ]} ∈ X∗
d for all f ∈ B and there exist two positive

constants A, B such that

A‖ f ‖B �
∥∥{[ f j, f ]}∥∥X∗

d
� B‖ f ‖B for all f ∈ B. (2.6)

The purpose of this subsection is to explore the properties of frames, Bessel sequences and Riesz–Fischer sequences,
and relationships among them. Before moving on, let us make connections with the existing definitions [1,3,4,16] of frames
and Bessel sequences in Banach spaces, and the classical ones [8,10,31,44] for Hilbert spaces. We shall discuss frames only.
Recall that in Refs. [1,3,4,16], an Xd-frame for B consists of elements μ j ∈ B∗ , j ∈ I that satisfies {μ j( f )} ∈ Xd for all f ∈ B
and Eq. (1.4). One sees from (2.1) that { f j} is an Xd-frame for B satisfying Definition 1.2 if and only if { f ∗

j } is an Xd-frame

for B in the sense of [1,3,4,16]. When [·,·] is an inner product on B and Xd = X∗ = �2(I), by
d
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[ f , g] = [g, f ], f , g ∈ B,

{ f j} is an Xd-frame for B if and only if { f ∗
j } is an X∗

d -frame for B∗ . Example 5.3 in Section 5 illustrates that this in general
does not hold if B is a Banach space.

We work toward our goal by starting with Bessel and Riesz–Fischer sequences. The results below generalize the classical
one for Hilbert spaces (see, for example, [44]).

For an indexed set { f j} ⊆ B, we introduce two linear operators U : B → CI and V : B∗ → CI by setting

U f := {[ f , f j]
}
, f ∈ B (2.7)

and

V (μ) := {
μ( f j)

}
, μ ∈ B∗.

One observes that

V
(

f ∗) = {[ f j, f ]}, f ∈ B.

Using the operator U , Definition 1.2 might be abbreviated as { f j} ⊆ B is an Xd-frame for B if and only if U f ∈ Xd for all
f ∈ B and

A‖ f ‖B � ‖U f ‖Xd � B‖ f ‖B. (2.8)

Similar formulations hold for Xd-Bessel sequences for B, X∗
d -frames for B∗ , and X∗

d -Bessel sequences for B∗ .

Proposition 2.3. If { f j} is an Xd-Bessel sequence for B then there exists some B > 0 such that∥∥{[ f , f j]
}∥∥

Xd
� B‖ f ‖B for all f ∈ B. (2.9)

If { f j} is an Xd-Riesz–Fischer sequence for B then there is some A > 0 such that for every c ∈ Xd there exists f ∈ B that satisfies (2.5)
and

A‖ f ‖B � ‖c‖Xd . (2.10)

Proof. Suppose that { f j} is an Xd-Bessel sequence for B, that is, U f ∈ Xd . Then it is obvious that U has a closed graph. By
the closed graph theorem, U is bounded. Thus, (2.9) holds true for some B > 0.

Let us deal with the second claim. Let { f j} be an Xd-Riesz–Fischer sequence for B, and C the set of all the elements
f ∈ B such that f ∗

j ( f ) = 0, j ∈ I. Clearly, C is a closed subspace of B. We denote for each f ∈ B by f̃ the element f + C
in the quotient space B/C . Introduce a mapping T : Xd → B/C which sends c ∈ Xd to f̃ where f is some element in B
satisfying (2.5). Clearly, T is well-defined and has a closed graph. It is hence bounded. In other words, for each c ∈ Xd there
exists g ∈ B satisfying {[g, f j]} = c and

A‖g̃‖B/C � ‖c‖Xd .

Since B is reflexive, there exists h ∈ B such that (see [5, p. 133])

‖g − h‖B = inf
{∥∥g − h′∥∥

B : h′ ∈ C
} = ‖g̃‖B/C .

By the above two equations, f := g − h satisfies our requirements. �
There is a characterization of Riesz–Fischer sequences that is easy to apply.

Proposition 2.4. An indexed set { f j} is an Xd-Riesz–Fischer sequence for B with (2.10) if and only if

A‖d‖X∗
d

�
∥∥∥∥∑

j∈I

d j f ∗
j

∥∥∥∥
B∗

(2.11)

for all d ∈ X∗
d with at most finitely many nonzero components.

Proof. Suppose that { f j} is an Xd-Riesz–Fischer sequence for B with (2.10). Let d ∈ Xd be of finitely many nonzero compo-
nents. We find c ∈ Xd with

‖c‖Xd = 1 and

∣∣∣∣∑ c jd j

∣∣∣∣ = ‖d‖X∗
d
.

j∈I
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By the assumption, there exists some f ∈ B with (2.5) and ‖ f ‖B � 1/A. We get that∣∣∣∣∑
j∈I

c jd j

∣∣∣∣ =
∣∣∣∣∑

j∈I

[ f , f j]d j

∣∣∣∣ =
∣∣∣∣
(∑

j∈I

d j f ∗
j

)
( f )

∣∣∣∣ � ‖ f ‖B

∥∥∥∥∑
j∈I

d j f ∗
j

∥∥∥∥
B∗

� 1

A

∥∥∥∥∑
j∈I

d j f ∗
j

∥∥∥∥
B∗

.

Combining the above two equations yields (2.11).
On the other hand, suppose that (2.11) holds true for all d ∈ Xd with finitely many nonzero components. Let C = span{ f ∗

j }
and define a linear functional ν on C by setting for each d ∈ X∗

d with finitely many nonzero components

ν

(∑
j∈I

d j f ∗
j

)
=

∑
j∈I

d jc j .

By (2.11),∣∣∣∣∑
j∈I

d jc j

∣∣∣∣ � ‖d‖X∗
d
‖c‖Xd � 1

A
‖c‖Xd

∥∥∥∥∑
j∈I

d j f ∗
j

∥∥∥∥
B∗

, (2.12)

which implies that ν is bounded. We extend ν by the Hahn–Banach theorem to be on the whole space B∗ . The resulting
linear functional on B∗ is still denoted by ν . By (2.12), its norm ‖ν‖B∗∗ is bounded by ‖c‖Xd /A. Since B is reflexive, there
exists f ∈ B such that

‖ f ‖B = ‖ν‖B∗∗ � 1

A
‖c‖Xd (2.13)

and (∑
j∈I

d j f ∗
j

)
( f ) = ν

(∑
j∈I

d j f ∗
j

)
=

∑
j∈I

d jc j .

In particular, the above equation implies that

f ∗
j ( f ) = [ f , f j] = c j, j ∈ I. (2.14)

We conclude by (2.13) and (2.14) that { f j} is an Xd-Riesz–Fischer sequence for B with (2.10). �
We then study the two inequalities in the definition of frames. The following proposition shows that the lower bound

inequality leads to a completeness condition in the dual space.

Proposition 2.5. Let { f j} ⊆ B. If there exists a positive constant A such that

A‖ f ‖B �
∥∥{[ f , f j]

}∥∥
Xd

for all f ∈ B (2.15)

then

span
{

f ∗
j

} = B∗. (2.16)

Similarly, if for some A > 0

A‖ f ‖B �
∥∥{[ f j, f ]}∥∥Xd

for all f ∈ B

then there holds

span{ f j} = B. (2.17)

Proof. We shall rely on the well-known fact that a subset Y ′ of a Banach space Y satisfies spanY ′ = Y if and only if there
does not exist a nonzero μ ∈ Y ∗ that vanishes everywhere on Y ′ . Suppose that (2.15) holds true. We assume to the contrary
that (2.16) is not true. By the fact and the reflexivity of B, there exists some nonzero f ∈ B such that

[ f , f j] = f
(

f ∗
j

) = 0 for all j ∈ I,

which leads by (2.15) to the contradiction that ‖ f ‖B = 0. The second claim can be proved similarly using the additional fact
that B∗ = { f ∗: f ∈ B}. �

Let us turn to the upper bound inequality.
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Proposition 2.6. A subset { f j} ⊆ B forms an Xd-Bessel sequence for B satisfying (2.9) if and only if
∑

j∈I
d j f ∗

j converges in B∗ for all
d ∈ X∗

d and∥∥∥∥∑
j∈I

d j f ∗
j

∥∥∥∥
B∗

� B‖d‖X∗
d
. (2.18)

Proof. (See, also, Proposition 3.2 of [3] and Proposition 2.2 of [4].2) Suppose that { f j} is an Xd-Bessel sequence for B
satisfying (2.9). Let d ∈ X∗

d . We estimate for positive integers m > n that∥∥∥∥ ∑
j∈Im\In

d j f ∗
j

∥∥∥∥
B∗

= sup
f ∈B,‖ f ‖B �1

∣∣∣∣ ∑
j∈Im\In

d j f ∗
j ( f )

∣∣∣∣ = sup
f ∈B,‖ f ‖B �1

∣∣∣∣ ∑
j∈Im\In

d j[ f , f j]
∣∣∣∣

�
∥∥∥∥ ∑

j∈Im\In

d je j

∥∥∥∥
X∗

d

sup
f ∈B,‖ f ‖B �1

∥∥{[ f , f j]}
∥∥

Xd

�
∥∥∥∥ ∑

j∈Im\In

d je j

∥∥∥∥
X∗

d

B. (2.19)

As e j form a Schauder basis for X∗
d , ‖∑

j∈Im\In
d je j‖X∗

d
goes to zero as m,n tend to infinity. As a result,

∑
j∈I

d j f ∗
j converges

in B∗ .
Let ε > 0. Then for large enough n,∥∥∥∥∑

j∈In

d je j

∥∥∥∥
X∗

d

� ‖d‖X∗
d
+ ε.

Using the same technique as that engaged in (2.19), we obtain for such n that∥∥∥∥∑
j∈In

d j f ∗
j

∥∥∥∥
B∗

� B

∥∥∥∥∑
j∈In

d je j

∥∥∥∥
X∗

d

� B
(‖d‖X∗

d
+ ε

)
.

Eq. (2.18) follows immediately from the above equation.
Conversely, assume that

∑
j∈I

d j f ∗
j converges in B∗ for all d ∈ X∗

d and (2.18) holds true. Then

lim
n→∞

∑
j∈In

d j[ f , f j] = lim
n→∞

(∑
j∈In

d j f ∗
j

)
( f ) =

(
lim

n→∞
∑
j∈In

d j f ∗
j

)
( f ) =

(∑
j∈I

d j f ∗
j

)
( f ), f ∈ B.

By our requirements on Xd and X∗
d , {[ f , f j]} ∈ Xd for all f ∈ B. We also estimate by (2.18) for every d ∈ X∗

d that∣∣∣∣∑
j∈I

d j[ f , f j]
∣∣∣∣ =

∣∣∣∣
(∑

j∈I

d j f ∗
j

)
( f )

∣∣∣∣ �
∥∥∥∥∑

j∈I

d j f ∗
j

∥∥∥∥
B∗

‖ f ‖B � B‖d‖X∗
d
‖ f ‖B,

from which (2.9) follows. The proof is complete. �
Let { f j} be an Xd-Bessel sequence for B. One can see from the above proof that if Xd and X∗

d possess the additional
property that for all c ∈ Xd and d ∈ X∗

d , series (2.4) converges absolutely then
∑

j∈I
d j f ∗

j converges unconditionally in B∗ .
In other words,

∑
j∈I

d j f ∗
j converges to the same element in B∗ independent of the arrange of the summation order. The

observation applies to most of the convergence in the paper and we shall not point it out explicitly any more.
We have a parallel result for X∗

d -Bessel sequence for B∗ .

Proposition 2.7. Let { f j} ⊆ B. Then { f ∗
j } ⊆ B is an X∗

d -Bessel sequence for B∗ , that is, {[ f j, f ]} ∈ X∗
d for all f ∈ B and there exists

B > 0 such that∥∥{[ f j, f ]}∥∥X∗
d

� B‖ f ‖B for all f ∈ B

if and only if
∑

j∈I
c j f j converges in B for all c ∈ Xd and

2 The proof provided here can be considered as a translation of those of Proposition 3.2 of [3] and Proposition 2.2 of [4] in the language of semi-inner
products and duality mappings. We shall not repeat this footnote.
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∥∥∥∥∑
j∈I

c j f j

∥∥∥∥
B

� B‖c‖Xd .

By Proposition 2.6, if { f j} is an Xd-Bessel sequence for B then U is a bounded linear operator from B to Xd and its
adjoint U∗ : X∗

d → B∗ has the form

U∗d =
∑
j∈I

d j f ∗
j , d ∈ X∗

d . (2.20)

Proposition 2.7 implies that if { f ∗
j } is an X∗

d -Bessel sequence for B∗ then V is bounded from B∗ to X∗
d and V ∗ : Xd → B is

of the form

V ∗c =
∑
j∈I

c j f j, c ∈ Xd. (2.21)

There is a characterization of Xd-frames for B and X∗
d -frame for B∗ in terms of U∗ and V ∗ , respectively.

Lemma 2.8. A sequence { f j} is an Xd-frame for B if and only if the operator U is bounded from B to Xd and has a bounded inverse on
R(U ). Likewise, { f ∗

j } is an X∗
d -frame for B∗ if and only if V is bounded and possess a bounded inverse on R(V ).

Proof. The results are straightforward reformulations of the definitions. �
We remark that U is bounded and has a bounded inverse on R(U ) implies that R(U ) is closed in Xd . Thus, if { f j} is an

Xd-frame for B then R(U ) is a closed subspace of Xd .

Proposition 2.9. A sequence { f j} is an Xd-frame for B if and only if U∗ defined by (2.20) is bounded and surjective from X∗
d to B∗ .

Similarly, { f ∗
j } is an X∗

d -frame for B∗ if and only if V ∗ given by (2.21) is bounded and surjective from Xd to B.

Proof. (See, also, Theorem 2.4 of [4].) The results follow from Lemma 2.8 and the fact that a bounded linear operator
between two Banach spaces has a bounded inverse on its range if and only if its adjoint is surjective. �
2.2. Riesz bases

Recall Definition 1.1 of Xd-Riesz bases for B. By the definition, { f ∗
j } is an X∗

d -Riesz basis for B∗ if and only if span{ f ∗
j } =

B∗ ,
∑

j∈I
d j f ∗

j converges in B∗ for all d ∈ X∗
d and there exists 0 < A � B < +∞ such that

A‖d‖X∗
d

�
∥∥∥∥∑

j∈I

d j f ∗
j

∥∥∥∥
B∗

� B‖d‖X∗
d

for all d ∈ X∗
d . (2.22)

It is straightforward that an Xd-Riesz basis for B must be a Schauder basis. We next show that a Riesz basis automatically
generates a frame in the dual space.

Proposition 2.10. If { f ∗
j } is an X∗

d -Riesz basis for B∗ satisfying (2.22) then { f j} is an Xd-frame for B satisfying (1.5). On the other
hand, if { f j} is an Xd-Riesz basis for B satisfying (1.3) then { f ∗

j } is an X∗
d -frame for B∗ satisfying (2.6).

Proof. (See, also, Corollary 2.5 of [4].) We shall only provide the proof for the first result. Suppose that { f ∗
j } is an X∗

d -Riesz
basis for B∗ satisfying (2.22). Eq. (2.22) implies that U∗ given by (2.20) is bounded from X∗

d to B∗ and has a bounded inverse
on R(U∗). Thus, R(U∗) is closed in B∗ . This together with span{ f ∗

j } = B∗ implies that U∗ is surjective. By Proposition 2.9,
{ f j} is an Xd-frame for B. By (2.22), U∗ is also injective. Therefore, U∗ is bijective from X∗

d to B∗ . As a result, U is bijective
from B to Xd . That the X∗

d -Riesz basis { f ∗
j } for B∗ and the Xd-frame { f j} for B share the same bounds A, B follows from

the fact that

‖U‖ = ∥∥U∗∥∥ and
∥∥U−1

∥∥ = ∥∥(
U−1)∗∥∥ = ∥∥(

U∗)−1∥∥. (2.23)

The proof is complete. �
We next give a characterization of Riesz bases. To this end, we note by the Hahn–Banach theorem that {v j} ⊆ V is

minimal in a Banach space Y if and only if there exists μ j ∈ Y ∗ , j ∈ I such that

μ j(vk) = δ j,k, j,k ∈ I.
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Proposition 2.11. Let { f j} ⊆ B. Then { f ∗
j } ⊆ B∗ is an X∗

d -Riesz basis for B∗ satisfying (2.22) if and only if { f ∗
j } is minimal in B∗ and

{ f j} is an Xd-frame for B satisfying (1.5).

Proof. (See, also, Proposition 2.7 of [4].) Suppose first that { f ∗
j } ⊆ B∗ is an X∗

d -Riesz basis for B∗ satisfying (2.22). By
Proposition 2.10, (1.5) holds true. Assume to the contrary that { f ∗

j } is not minimal, that is, there exists some j ∈ I such that

f ∗
j ⊆ span

{
f ∗
k : k ∈ I, k �= j

}
.

Then there exists dn ∈ X∗
d , n ∈ N, with dn

j = 0 and dn
k �= 0 for at most finitely many indices k ∈ I such that

lim
n→∞

∑
k∈I

dn
k f ∗

k = f ∗
j .

We get by (2.22) that

A
∥∥dn − dm

∥∥
X∗

d
�

∥∥∥∥∑
k∈I

dn
k f ∗

k −
∑
k∈I

dm
k f ∗

k

∥∥∥∥
B∗

, m,n ∈ N,

which implies that dn converges to some d ∈ X∗
d as n → ∞. Since dn

j = 0 for every n ∈ N and coordinate functionals are
continuous on X∗

d , d j = 0. We reach that

f ∗
j −

∑
k∈I,k �= j

dk f ∗
k = 0,

which contradicts (2.22).
Conversely, suppose that { f ∗

j } is minimal and (1.5) holds true. By Proposition 2.5, span{ f ∗
j } = B∗ . Note that Eq. (1.5)

implies that f j form an Xd-frame for B. By Propositions 2.6 and 2.9,
∑

j∈I
d j f ∗

j converges in B∗ for all d ∈ X∗
d , ‖U∗‖ � B

and U∗ is surjective. That { f ∗
j } being minimal implies that U∗ is also injective and is hence bijective. Thus, U is bijective as

well. The first inequality in (2.22) then follows from Eq. (2.23). �
Another characterization of X∗

d -Riesz bases for B∗ is given below.

Proposition 2.12. An indexed set { f ∗
j } is an X∗

d -Riesz basis for B∗ if and only if span{ f ∗
j } = B∗ and U is surjective onto Xd.

Proof. If { f ∗
j } is an X∗

d -Riesz basis for B∗ then by Proposition 2.10, U is bounded from B to Xd . Moreover, U∗ is bijective.
So is U . In particular, U is surjective. On the other hand, suppose that span{ f ∗

j } = B∗ and U is surjective onto Xd . Then U
is injective and by the closed graph theorem, U is bounded. Thus, U is bounded and bijective. It follows that U ∗ is bounded
and bijective as well. Therefore, { f ∗

j } is an X∗
d -Riesz basis for B∗ . �

The following result about Xd-Riesz bases for B can be proved in a similar way.

Proposition 2.13. A sequence { f j} is an Xd-Riesz basis for B satisfying (1.3) if and only if f j are minimal in B and { f ∗
j } is an X∗

d -frame
for B∗ satisfying (2.6).

2.3. Reconstruction

Let { f j} be an Xd-frame for B. By Lemma 2.8 and the remark following it, U : B → Xd given by (2.7) is bounded linear,
injective, has a closed range R(U ) and a bounded inverse on R(U ). We are concerned with the reconstruction of an element
f ∈ B from its data U f ∈ Xd . Following [16], we call { f j} a Banach frame for B if there exists a bounded linear operator
T : Xd → B such that

T U f = f for all f ∈ B. (2.24)

We say that R(U ) has an algebraic complement in Xd if there exists another closed linear subspace C of Xd such that
Xd = R(U ) ⊕ C in the sense that R(U ) ∩ C = {0} and for every c ∈ Xd there exists c1 ∈ R(U ) and c2 ∈ C such that c =
c1 + c2. By a result in [16] (see, also, [3,4]), an Xd-frame { f j} for B is a Banach frame if and only if R(U ) has an algebraic
complement in Xd . If Xd = �2(I) then every closed linear subspace C of it has an orthogonal complement, which is an
algebraic complement of C . As a consequence, every �2(I)-frame for B is a Banach frame. Conversely, if every closed linear
subspace of Xd has an algebraic complement then Xd must be isomorphic to an Hilbert space [5].

Assume that R(U ) has an algebraic complement in Xd and T is a bounded linear operator from Xd to B satisfying (2.24).
Setting g j := T e j , j ∈ I, we obtain for each f ∈ B that
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f = T U f = T

(∑
j∈I

[ f , f j]e j

)
=

∑
j∈I

[ f , f j](T e j) =
∑
j∈I

[ f , f j]g j. (2.25)

It is observed for all c ∈ Xd that∥∥∥∥∑
j∈I

c j g j

∥∥∥∥
B

=
∥∥∥∥T

(∑
j∈I

c je j

)∥∥∥∥
B

� ‖T ‖‖c‖Xd .

Moreover, (2.24) implies that T is surjective onto B. Thus, every element in B must be of the form
∑

j∈I
c j g j for some

c ∈ Xd . By Proposition 2.9, {g∗
j } is an X∗

d -frame for B. We hence reach the following result.

Theorem 2.14. If { f j} is an Xd-frame for B and R(U ) has an algebraic complement in Xd then there exists an X∗
d -frame {g∗

j } for B∗
such that

f =
∑
j∈I

[ f , f j]g j for all f ∈ B (2.26)

and

f ∗ =
∑
j∈I

[g j, f ] f ∗
j for all f ∈ B. (2.27)

Proof. It remains to prove (2.27). By (2.26),

g∗( f ) = [ f , g] =
∑
j∈I

[ f , f j][g j, g] for all f , g ∈ B. (2.28)

We estimate that there exists some B > 0 such that for all m,n ∈ N∣∣∣∣
( ∑

j∈Im\In

[g j, g] f ∗
j

)
( f )

∣∣∣∣ =
∣∣∣∣ ∑

j∈Im\In

[g j, g][ f , f j]
∣∣∣∣ �

∥∥{[ f , f j]
}∥∥

Xd

∥∥∥∥ ∑
j∈Im\In

[g j, g]e j

∥∥∥∥
X∗

d

� B‖ f ‖B

∥∥∥∥ ∑
j∈Im\In

[g j, g]e j

∥∥∥∥
X∗

d

,

which implies that
∑

j∈In
[g j, g] f ∗

j converges in B∗ as n → ∞. By (2.28), it converges to g∗ . Eq. (2.27) is hence proved. �
If additionally, f ∗

j are minimal then by Proposition 2.11, { f ∗
j } is an X∗

d -Riesz basis for B∗ . Moreover, we have in this

case that U is bijective. Thus, the only T : Xd → B satisfying (2.24) is U−1. We then get that g j = U−1e j are minimal. By
Proposition 2.13 and Theorem 2.14, {g j} is an Xd-Riesz basis for B. We draw the conclusion below.

Theorem 2.15. If { f j} is an Xd-frame for B for which { f ∗
j } is minimal in B∗ then there exists a unique Xd-Riesz basis {g j} for B such

that there hold (2.26), (2.27), and

[g j, fk] = δ j,k, j,k ∈ I. (2.29)

Proof. It remains to prove (2.29). By (2.26),

g j =
∑
k∈I

[g j, fk]gk.

Since {g j} is minimal, we obtain (2.29). �
3. The standard reconstruction operator

It is well-known that if B is a Hilbert space and { f j} ⊆ B is an �2(I)-frame for B then the operator S : B → B defined
by

S f :=
∑
j∈I

[ f , f j] f j, f ∈ B (3.1)

is bijective and bounded. As a consequence, there holds
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f =
∑
j∈I

[ f , f j]S−1 f j, f ∈ B. (3.2)

The purpose of this section is to examine conditions for the above reconstruction strategy to hold in separable Banach
spaces.

Let us return to the Banach space setting. For (3.1) to be a well-defined bounded linear operator from B to itself, we shall
assume that the operator U : B → Xd defined by (2.7) and the operator V ∗ : Xd → B defined by (2.21) are both bounded.
By Propositions 2.6 and 2.7, the operator U∗ given by (2.20) is bounded from X∗

d to B∗ and f ∗
j form an X∗

d -Bessel sequence
for B∗ .

We first present necessary and sufficient conditions for the operator S given as (3.1) to be bijective. Before that, it is
worthwhile to point out that when B is a Banach space, that { f j} is an Xd-frame for B alone in general is insufficient to
guarantee the bijectivity of S . We shall construct in Example 5.3 an Xd-frame { f j} for a finite-dimensional B for which
span{ f j} �= B. As a consequence, the operator S is not surjective in this example.

Theorem 3.1. Suppose that U : B → Xd defined by (2.7) and V ∗ : Xd → B by (2.21) are bounded. Then the operator S given by (3.1)
is bijective and bounded if and only if { f ∗

j } is an X∗
d -frame for B∗ , { f j} is an Xd-frame for B, and { f j} is an R(U )-Riesz basis for B.

Proof. Note that S = V ∗U . Thus, S is bounded. Suppose that S is bijective. Then V ∗ is surjective, which implies by Proposi-
tion 2.9 that f ∗

j form an X∗
d -frame for B∗ . Since S∗ = U∗V and S∗ is bijective as S is, U∗ is surjective from X∗

d to B∗ . Again,
by Proposition 2.9, f j constitute an Xd-frame for B. As a result, R(U ) is a closed subspace of Xd . For the third condition,
let us study the operator V ∗ . By S = V ∗U , V ∗ is surjective from R(U ) to B. Also, by the injectivity of S and U , V ∗ must
be injective on R(U ). We hence obtain that V ∗ is a bounded bijective linear operator from the Banach space R(U ) to B.
By the open mapping theorem, { f j} is an R(U )-Riesz basis for B.

On the other hand, suppose that { f ∗
j } is an X∗

d -frame for B∗ , { f j} is an Xd-frame for B, and { f j} is an R(U )-Riesz basis
for B. Then U is injective and V ∗ is injective on R(U ). It follows that S is injective as well. Finally, S is surjective as V ∗ is
surjective from R(U ) to B. �

When S is bijective, one immediately has the reconstruction formula (3.2). This fact is stated in the following proposition.

Proposition 3.2. If the bounded linear operator S given by (3.1) is bijective then there holds (3.2) and

f ∗ =
∑
j∈I

[ f j, f ](S−1)∗
f ∗

j =
∑
j∈I

[
S−1 f j, f

]
f ∗

j , f ∈ B. (3.3)

Proof. Suppose that S is bijective. We get by the definition of S and the continuity of S−1 that

f = S−1(S f ) = S−1
(∑

j∈I

[ f , f j] f j

)
=

∑
j∈I

[ f , f j]S−1 f j, f ∈ B.

As the adjoint of S , S∗ of the following form is also bijective:

S∗ f ∗ =
∑
j∈I

[ f j, f ] f ∗
j , f ∈ B.

Applying (S∗)−1 = (S−1)∗ to both sides of the above equation yields the first equality in (3.3). By (3.2), there holds for all
f , g ∈ B that

[g, f ] =
∑
j∈I

[g, f j]
[

S−1 f j, f
]
,

which implies that

f ∗ =
∑
j∈I

[
S−1 f j, f

]
f ∗

j , f ∈ B.

The proof is complete. �
A remarkable property of an arbitrary �2(I)-frame { f j} for a Hilbert space B is that [ f , f j] are the most economical

coefficients for a decomposition of f ∈ B into S−1 f j . Specifically, if c �= {[ f , f j]} ∈ �2(I) satisfies that

f =
∑

c j S−1 f j (3.4)

j∈I
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then

‖c‖�2(I) >
∥∥{[ f , f j]

}∥∥
�2(I)

.

We shall prove a similar property for frames in a separable Banach space B. The following fact was proved in [41] for
semi-inner products and extended to generalized semi-inner products in [46].

Lemma 3.3. Let [·,·]Xd be a compatible semi-inner product on Xd. Then Xd is strictly convex if and only if whenever [c1, c2]Xd = 0
and c1 �= 0 then ‖c1 + c2‖Xd > ‖c2‖Xd .

We shall use [·,·]Xd to denote a compatible semi-inner product on Xd . Recall that for each c ∈ Xd , c∗ denotes its dual
element in X∗

d determined by

c∗(c′) = [
c′, c

]
Xd

, c′ ∈ Xd.

Proposition 3.4. Suppose that the bounded linear operator S defined by (3.1) is bijective. Let f ∈ B. If Xd is strictly convex and
{[ f , f j]}∗ ∈ R(V ) then

‖c‖Xd >
∥∥{[ f , f j]

}∥∥
Xd

(3.5)

for any c �= {[ f , f j]} ∈ Xd satisfying (3.4).

Proof. Suppose that Xd is strictly convex, {[ f , f j]}∗ ∈ R(V ), and c �= {[ f , f j]} ∈ Xd satisfies (3.4). By (3.2),

∑
j∈I

(
c j − [ f , f j]

)
f j = S

(∑
j∈I

(
c j − [ f , f j]

)
S−1 f j

)
= S( f − f ) = 0.

In other words, c − U f ∈ K(V ∗), the kernel of V ∗ . Since each element in K(V ∗) vanishes on R(V ) (see [5, p. 168]) and
(U f )∗ ∈ R(V ), we get that

[c − U f , U f ]Xd = (
(U f )∗

)
(c − U f ) = 0.

By Lemma 3.3,

‖c‖Xd = ∥∥(c − U f ) + U f
∥∥

Xd
> ‖U f ‖Xd ,

which is (3.5). �
Back to the discussion of the conditions ensuring the bijectivity of S . In the most convenient case when R(U ) = Xd ,

we observe by Theorem 3.1 that S is bijective if and only if { f j} and { f ∗
j } are respectively an Xd-Riesz basis for B and an

X∗
d -Riesz basis for B∗ . One has the following conclusion under there two conditions.

Corollary 3.5. If { f j} and { f ∗
j } are respectively an Xd-Riesz basis for B and an X∗

d -Riesz basis for B∗ then S defined by (3.1) is bijective
and bounded. Furthermore, there hold (3.2), (3.3), and[

S−1 f j, fk
] = δ j,k, j,k ∈ I.

4. Complete sampling expansions in Banach spaces

Let B be a separable Banach space of complex-valued functions defined on a prescribed set X . Based on the results
established in the previous sections, we shall consider the complete reconstruction of a function f ∈ B from its sampled
data

IZ f := {
f (x j): j ∈ I

}
,

where Z := {x j: j ∈ I} ⊆ X is a sampling set and I is a countable index set as before. Our study of such reconstruction from
sampling in Banach spaces will be confined to an ideal framework that satisfies the following requirements:

(i) Only finite amount of data can be handled in practice. Thus, for each f ∈ B, I Z f should be of finite “energy” so that it
is approximable from its finite subsets. For this reason, we shall require that I Z f belong to some BK-space Xd for all
f ∈ B.
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(ii) The sampling process I Z : B → Xd should be stable. This implies that if there is a small perturbation f̃ of f in B with
‖ f̃ ‖B � δ, where δ measures the noise level, and we end up sampling fδ := f + f̃ , then IZ ( fδ) is expected to be close
to IZ f in Xd . In other words, the sampling operator I Z : B → Xd should be bounded.

(iii) We aim at recovering every f ∈ B from its sampled data I Z f . The recovery process should be stable as well. Therefore,
IZ should possess a bounded inverse on its range.

(iv) Sampling should not be redundant, which implies that there should not exist some j ∈ I so that for each f ∈ B, f (x j)

can be obtained from { f (xk): k ∈ I, k �= j}. We shall elaborate on this requirement later.

Note that (i)–(iii) can be summarized into that I Z (B) ⊆ Xd and

A‖ f ‖B � ‖IZ f ‖Xd � B‖ f ‖B for all f ∈ B, (4.1)

where A, B are two positive constants. The second inequality above together with that coordinate functionals are continuous
on Xd implies that for every j ∈ I, the point evaluation functional δx j is continuous on B. In the search of a suitable sampling
set Z for B, it would hence be convenient to assume that δx is continuous on B for all x ∈ B. In a recent article [20],
a Banach space B of functions on X where point evaluation functionals are always continuous was called a reproducing
kernel Banach space. In our work [45], to ensure the existence of a reproducing kernel, an RKBS was required to have
two more crucial properties: uniform Fréchet differentiability and uniform convexity. A normed vector space C is uniformly
Fréchet differentiable if for all x, y ∈ C with x �= 0

lim
t∈R, t→0

‖x + ty‖C − ‖x‖C
t

exists and the limit is uniform on S(C) × S(C), where S(C) := {x ∈ C : ‖x‖C = 1}. We say that C is uniformly convex if for all
ε > 0 there exists a δ > 0 such that

‖x + y‖C � 2 − δ for all x, y ∈ S(C) with ‖x − y‖C � ε.

For simplicity, C is said to be uniform if it is both uniformly Fréchet differentiable and uniformly convex. In this paper,
we call B a reproducing kernel Banach space (RKBS) on X if it is a uniform Banach space of functions on X where point
evaluations are always continuous linear functionals on B. Translation invariant RKBS on Euclidean spaces are the main
subject of this section. Before introducing them, let us briefly give an explicit example of RKBS that is not an RKHS. The
space Ep

τ , p ∈ (1,+∞), τ > 0 consisting of all entire functions f on C of exponential type at most τ for which

‖ f ‖
E

p
τ

:=
( ∫

R

∣∣ f (t)
∣∣p

dt

)1/p

< +∞

is an RKBS. In fact, there is a constant C depending on p and τ only such that (see [44, p. 99])∣∣ f (x + iy)
∣∣ � Ceτ |y|‖ f ‖

E
p
τ

for all x, y ∈ R, f ∈ Ep
τ .

It follows from the above two equations that Ep
τ is a Banach space isometrically isomorphic to a closed subspace of L p(R).

Consequently, Ep
τ is uniform, and is thus an RKBS on C. When p �= 2, the space is not a Hilbert space.

In this section, we shall be satisfied with the assumption that B is an RKBS on X . There are some useful consequences
following this assumption. Firstly, B has a unique compatible semi-inner product [·,·] [15]. Secondly, B is reflexive, strictly
convex, and its dual B∗ is also uniform [7]. Most importantly of all, by the arguments in the proof of Theorem 9 in [45],
there exists a unique function G : X × X → C such that G(x, ·) ∈ B for all x ∈ X and

f (x) = [
f , G(x, ·)] for all x ∈ X and f ∈ B. (4.2)

By virtue of the above equation, we call G the s.i.p. reproducing kernel of B. Set

G Z := {
G(x j, ·): j ∈ I

}
and G∗

Z := {
G(x j, ·)∗: j ∈ I

}
.

By (4.1) and (4.2), the requirements (i)–(iii) are equivalent to saying that G Z forms an Xd-frame for B. The fourth require-
ment (iv) implies that G∗

Z are minimal in B∗ . Conversely, assume that

G(x j, ·)∗ ∈ span
{

G(xk, ·)∗: k ∈ I, k �= j
}

for some j ∈ I.

Then for all f ∈ B, f (x j) could be approximated by finite linear combinations of f (xk), k ∈ I \ { j}. It is hence unnecessary
to sample at the point x j from the practical point of view. We would like our ideal sampling framework to contain no
redundant sampling points. Therefore, G∗

Z should be minimal in B∗ .
To conclude the above discussion, we observe from Proposition 2.11 that by an ideal sampling framework for B, we seek

a sampling set Z ⊆ X such that there exists some BK-space Xd for which G∗
Z is an X∗

d -Riesz basis for B∗ . Once such a
sampling set exists, one obtains by Theorems 2.14, 2.15, and Corollary 3.5 a series of sampling expansions in the Banach
space B.
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Theorem 4.1. Let B be an RKBS on X and Z = {x j} ⊆ X.

(1) If G Z is an Xd-frame for B and IZ (B) has an algebraic complement in Xd then there exists an X∗
d -frame {g∗

j } for B∗ such that

f (x) =
∑
j∈I

f (x j)g j(x) for all f ∈ B, x ∈ X . (4.3)

(2) If G∗
Z is an X∗

d -Riesz basis for B∗ then the above g j are unique and form an Xd-Riesz basis for B. Moreover,

g j(xk) = δ j,k, j,k ∈ I.

(3) If G Z and G∗
Z are respectively an Xd-Riesz basis and X∗

d -Riesz basis for B and B∗ then the operator S : B → B defined by

(S f )(x) :=
∑
j∈I

f (x j)G(x j, x), x ∈ X, f ∈ B (4.4)

is bijective and bounded. Furthermore,

f (x) =
∑
j∈I

f (x j)
(

S −1G(x j, ·)
)
(x) for all f ∈ B, x ∈ X . (4.5)

The sampling expansion (4.3) was formulated in [20]. When B is an RKHS, the formula (4.5) was first discovered in [34],
and further explored in [13,17,18,21,32].

We aim at ensuring the uniqueness of {g j} ⊆ B satisfying (4.3). For this sake, we call a subset Z ⊆ X an Xd-Riesz sampling
set for B if G∗

Z is an X∗
d -Riesz basis for B∗ . If, in addition, G Z is an Xd-Riesz basis for B, then we call Z a double Xd-Riesz

sampling set for B. By Theorem 4.1, a double Xd-Riesz sampling set enables us to reconstruct functions in B from their
sampling by the standard reconstruction operator (4.4). If B is a Hilbert space then a Riesz sampling set is automatically
a double Riesz sampling set. In the rest of this section, we shall discuss the existence of Riesz sampling sets in translation
invariant RKBS and RKHS.

We start with feature map representations of the s.i.p. reproducing kernel of RKBS. The following result was from [45].

Lemma 4.2. Let W be a uniform Banach space and Φ a mapping from X to W such that

spanΦ(X) = W, span
(
Φ(X)

)∗ = W ∗. (4.6)

Denote by [·,·]W the unique compatible semi-inner product on W . Then B := {[u,Φ(·)]W : u ∈ W } equipped with[[
u,Φ(·)]W ,

[
v,Φ(·)]W

] := [u, v]W (4.7)

and B∗ := {[Φ(·), u]W : u ∈ W } with[[
Φ(·), u

]
W ,

[
Φ(·), v

]
W

]
B∗ := [v, u]W (4.8)

are RKBS. And B∗ is indeed the dual of B with([
Φ(·), v

]
W

)([
u,Φ(·)]W

) := [u, v]W , u, v ∈ W. (4.9)

Moreover, the s.i.p. reproducing kernel G of B is given by

G(x, y) = [
Φ(x),Φ(y)

]
W , x, y ∈ X . (4.10)

We shall construct translation invariant RKBS on Rd , d ∈ N according to the above lemma. Let p,q ∈ (1,+∞) with
1/p + 1/q = 1, and φ a nonnegative Borel measurable function on Rd satisfying∫

Rd

φ(t)dt = 1. (4.11)

The feature space will be chosen as L p
φ(Rd) consisting of Borel measurable functions u on Rd for which

‖u‖L p
φ(Rd) :=

( ∫
Rd

∣∣u(t)
∣∣p

φ(t)dt

)1/p

< +∞.

The semi-inner product on L p
(Rd) has the form
φ
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[u, v]L p
φ(Rd) = 1

‖v‖p−2
Lp
φ(Rd)

∫
Rd

u(t)v(t)
∣∣v(t)

∣∣p−2
φ(t)dt, u, v ∈ Lp

φ

(
Rd). (4.12)

The feature map Φ : Rd → L p
φ(Rd) is given by

Φ(x)(t) := ex(t) := ei(x,t), t ∈ Rd, x ∈ Rd,

where (·,·) denotes the standard inner product on Rd . The dual space of L p
φ(Rd) is Lq

φ(Rd). One obtains by (4.11) and (4.12)

that for each x ∈ Rd , the dual function of ex in Lq
φ(Rd) is given as

(ex)
∗ = e−x.

Thus, it is clear that the completeness condition (4.6)

spanΦ
(
Rd) = Lp

φ

(
Rd), span

(
Φ

(
Rd))∗ = Lq

φ

(
Rd)

is satisfied. With these choices, functions f in B have the form

f (x) =
∫
Rd

u(t)e−i(x,t)φ(t)dt, x ∈ Rd, u ∈ Lp
φ

(
Rd) (4.13)

with the norm

‖ f ‖B = ‖u‖L p
φ(Rd). (4.14)

Lemma 4.2 tells us that B is an RKBS on Rd . This fact can actually be verified directly without much effort. Firstly, by (4.14),
B is isometrically isomorphic to L p

φ(Rd). Therefore, B is uniform as L p
φ(Rd) is. Secondly, we note by the Hölder inequality

that for all x ∈ Rd ,

∣∣ f (x)
∣∣ �

∫
Rd

∣∣u(t)
∣∣φ(t)dt =

∫
Rd

∣∣u(t)
∣∣φ(t)1/pφ(t)1/q dt �

( ∫
Rd

∣∣u(t)
∣∣p

φ(t)dt

)1/p( ∫
Rd

φ(t)dt

)1/q

= ‖u‖L p
φ(Rd) = ‖ f ‖B,

which implies that point evaluations are bounded on B.
Functions in B can be characterized in terms of their Fourier transforms. Define the Fourier transform û of u ∈ L1(Rd)

by

û(ξ) :=
∫
Rd

u(t)e−i(ξ,t) dt, ξ ∈ Rd.

The inverse Fourier transform ǔ of u ∈ L1(Rd) is hence given by

ǔ(ξ) := 1

(2π)d

∫
Rd

u(t)ei(ξ,t) dt, ξ ∈ Rd.

Let us assume that the Fourier transform and its inverse have been extended to temperate distributions by the duality
principle [14]. We also set for each function g on Rd

Ωg := {
t ∈ Rd: g(t) �= 0

}
.

With these definitions and notations, we observe that

B =
{

f ∈ C
(
Rd): Ω f̌ ⊆ Ωφ,

f̌

φ
∈ Lp

φ

(
Rd)} (4.15)

with the norm

‖ f ‖B =
∥∥∥∥ f̌

φ

∥∥∥∥
L p
φ(Rd)

, f ∈ B.

The semi-inner product on B is of the form
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[ f , g] =
[

f̌

φ
,

ǧ

φ

]
L p
φ(Rd)

. (4.16)

By (4.10), we identify the s.i.p. reproducing kernel G of B as

G(x, y) = [ex, e y]L p
φ(Rd) =

∫
Rd

ei(x−y,t)φ(t)dt = φ̂(y − x), x, y ∈ Rd. (4.17)

One can verify directly by (4.16) that G given above indeed is the s.i.p. reproducing kernel for B. Another obvious fact is
that B is translation invariant in the sense that for all f ∈ B and x0 ∈ Rd , the function f (· − x0) ∈ B and∥∥ f (· − x0)

∥∥
B = ‖ f ‖B.

As an example, we remark that when p = 2 and φ is a Gaussian function

φ(t) := 1

(4πσ)d/2
e− ‖t‖2

4σ , t ∈ Rd, σ > 0,

where ‖t‖ := (t, t)1/2, B is the RKHS H Gσ of the Gaussian kernel

Gσ (x, y) := exp
(−σ‖x − y‖2), x, y ∈ Rd. (4.18)

Let B be an RKBS given by (4.15) with the s.i.p. reproducing kernel G of the form (4.17) and I an infinite countable index
set. The main theme of this section is on the existence of Riesz sampling sets {x j} ⊆ Rd for B. We point out below that this
question can be reformulated into one in the feature space of G .

Lemma 4.3. Let B and G be given as in Lemma 4.2 through a feature map Φ : X → W satisfying (4.6). Then Z ⊆ X is an Xd-Riesz
sampling set for B if and only if (Φ(Z))∗ is an X∗

d -Riesz basis for W ∗ . Consequently, if B and G are respectively given by (4.15) and

(4.17) then Z = {x j} ⊆ Rd is an Xd-Riesz sampling set for B if and only if {e−x j } forms an X∗
d -Riesz basis for Lq

φ(Rd).

We shall use the above lemma and existing research [29,30,35,44] on complete interpolating sequences in Paley–Wiener
spaces to give a positive example of RKBS where Riesz sampling sets exist. Following these references, we call Z = {x j} an
Xd-complete interpolating sequence for B if there exist positive constants A � B such that

A‖ f ‖B �
∥∥{

f (x j)
}∥∥

Xd
� B‖ f ‖B for all f ∈ B

and for all c ∈ Xd there is some f ∈ B such that f (x j) = c j , j ∈ I. Note that the first conditions is equivalent to that {G(x j, ·)}
is an Xd-frame for B while the second one implies that {G(x j, ·)} forms an Xd-Riesz–Fischer sequence for B. Therefore, we
obtain by Propositions 2.4 and 2.11 the following simple fact, which to some extent justifies the notion of Xd-Riesz sampling
sets by connecting it to a known concept.

Lemma 4.4. An indexed set {x j} is an Xd-complete interpolating sequence for B if and only if it is an Xd-Riesz sampling set for B.

Example 4.5. Let p = 2, I = Z, and φ = χ[−π,π ] , the characteristic function of [−π,π ]. Then B = E2
π is the Paley–Wiener

space of square-integrable functions on R that are bandlimited to [−π,π ]. By the well-known Kadec’s 1
4 -theorem, if for

some nonnegative constant L

|x j − j| � L <
1

4
, j ∈ Z (4.19)

then ex j form a Riesz basis for L2([−π,π ]). By Lemma 4.3, Z = {x j} satisfying (4.19) is a Riesz sampling set for E2
π . More

Riesz sampling sets for E2
π can be formed by the zeros of an entire function of sine type (see [44, p. 172]). For a complete

characterization, see [35]. The Kadec’s theorem was generalized to the space Ep
π , 1 < p < +∞, in [29]. Let q be such that

1/p + 1/q = 1. It was proved there that x j ∈ R, j ∈ Z satisfying

|x j − j| � L < min

{
1

2p
,

1

2q

}
, j ∈ Z (4.20)

is an �p(Z)-complete interpolating sequence for Ep
π . By Lemma 4.4, such sequences are �p(Z)-Riesz sampling sets for Ep

π .
A characterization of �p(Z)-complete interpolating sequences, thus of �p(Z)-Riesz sampling sets was established in [29].

The next positive example is based on the study of interpolating refinable function vectors in the wavelets theory [19,
23,24].
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Example 4.6. Set Nn := {1,2, . . . ,n} for each n ∈ N. Let r ∈ N and {φ j: j ∈ Nr} be a set of compactly supported continuous
functions on R. The BK-space Xd consists of all the sequences c = {c jk ∈ C: j ∈ Nr, k ∈ Z} such that

‖c‖Xd :=
( r∑

j=1

∑
k∈Z

|c jk|p
)1/p

< +∞.

We require the function vector {φ j : j ∈ Nr} be stable in L p(R) [24] in the sense that there exists 0 < A � B < +∞ such that
for all c ∈ Xd

A‖c‖Xd �
∥∥∥∥

r∑
j=1

∑
k∈Z

c jkφ j(· − k)

∥∥∥∥
L p(R)

� B‖c‖Xd . (4.21)

It was proved in [24] that {φ j: j ∈ Nr} is stable in L p(R) if and only if {φ̂ j(ξ + 2kπ): k ∈ Z}, j ∈ Nr are linearly independent
for all ξ ∈ R. We also impose the generalized interpolation property [19] that

φ j

(
l − 1

r
+ k

)
= δ0,kδ j,l, j, l ∈ Nr, k ∈ Z. (4.22)

Let B be the closure in L p(R) of span{φ j(· − k): j ∈ Nr, k ∈ Z}. We verify that it is an RKBS. As a closed subspace of
L p(R), B is uniform. We then notice by (4.21) that functions f in B are of the form

f (x) =
r∑

j=1

∑
k∈Z

c jkφ j(x − k), x ∈ R (4.23)

where c ∈ Xd . Since φ j are compactly supported, for each x ∈ R, {φ j(x − k): j ∈ Nr, k ∈ Z} ∈ X∗
d . By the Hölder inequality

and the stability condition (4.21), we get for functions f of the form (4.23) that

∣∣ f (x)
∣∣ � ‖c‖Xd

∥∥{
φ j(x − k): j ∈ Nr, k ∈ Z

}∥∥
X∗

d
� 1

A

∥∥{
φ j(x − k): j ∈ Nr, k ∈ Z

}∥∥
X∗

d
‖ f ‖B.

Therefore, point evaluations are continuous on B, which proves that B is an RKBS.
We claim that { j−1

r + k: j ∈ Nr, k ∈ Z} is an Xd-complete interpolating sequence for B, thus by Lemma 4.4, an Xd-Riesz
sampling set for B. Firstly, it is clear by (4.22) that for all c ∈ Xd the function (4.23) satisfies

f

(
j − 1

r
+ k

)
= c jk, j ∈ Nr, k ∈ Z.

This equation also implies that

1

B
‖ f ‖B �

∥∥∥∥
{

f

(
j − 1

r
+ k

)
: j ∈ Nr, k ∈ Z

}∥∥∥∥
Xd

� 1

A
‖ f ‖B,

which concludes our example.

Let us turn to our main purpose of proving nonexistence of Riesz sampling sets for some common RKBS B of the
form (4.15). Firstly, the nonexistence can result from an inappropriate choice of the BK-space Xd . This is explained in the
following lemma.

Lemma 4.7. It is necessary that B and L p
φ(Rd) are isomorphic to a closed subspace of Xd in order for B to have an Xd-Riesz sampling

set.

Proof. Suppose that Z = {x j} is an Xd-Riesz sampling set for B. Then G(x j, ·) constitute an Xd-frame for B. As a result, B
is isomorphic to a closed subspace of Xd through the operator U = I Z . Since by Lemma 4.2 B is isometrically isomorphic
to its feature space L p

φ(Rd), L p
φ(Rd) must be isomorphic to the same subspace of Xd . �

Proposition 4.8. Let p �= 2. If there exists some x0 ∈ Rd such that φ(x0) > 0 and φ is continuous at x0 then B does not have any
�p′

(I)-Riesz sampling set regardless of the choice of p′ ∈ (1,+∞).

Proof. Assume to the contrary that B has an �p′
(I)-Riesz sampling set. Since φ is continuous and positive at x0, there exist

some a < b ∈ R and positive constants α � β such that

α � φ(t) � β for all t ∈ [a,b]d.
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Introduce a linear mapping T : L p([a,b]) → L p
φ(Rd) by setting

(T f )(t) :=
{

f (t1), t ∈ [a,b]d,

0, otherwise.

Direct computations yield the estimate that

(b − a)(d−1)/pα1/p‖ f ‖L p([a,b]) � ‖T f ‖L p
φ(Rd) � (b − a)(d−1)/pβ1/p‖ f ‖L p([a,b]).

It follows that L p([a,b]) is isomorphic to a subspace T (L p([a,b])) of L p
φ(Rd). By Lemma 4.7, L p([a,b]) must be isomorphic

to a subspace of �p′
(I). However, this is possible if and only if p = p′ = 2 (see [11, pp. 179–180]), contradicting p �= 2. �

Secondly, Riesz sampling sets can still not exist if φ is continuous and positive on the whole Rd , no matter how the
BK-space Xd is chosen. We start the proof of this main result by revealing a general phenomenon, which when B is the
Paley–Wiener space E2

π has long been known (see, for example, [44, p. 179]).

Theorem 4.9. Let X be a metric space with the distance D, and B an RKBS on X with the s.i.p. reproducing kernel G. If the function
x → G(x, ·)∗ is uniformly continuous from X to B∗ then any Xd-Riesz sampling set {x j} ⊆ X for B must be separated in the sense that

D(x j, xk) � δ > 0 for all j �= k ∈ I

for some positive constant δ.

Proof. Suppose that {x j} is an Xd-Riesz sampling set for B. In other words, G(x j, ·)∗ form an X∗
d -Riesz basis for B∗ . By

Theorem 4.1, there exists an Xd-Riesz basis {g j} for B such that

g j(xk) = δ j,k, j �= k ∈ I. (4.24)

Being a Riesz basis, {g j} satisfies

A � ‖g j‖B � B, j ∈ I (4.25)

for some positive constants A, B . We get by (4.24) and the reproducing property (4.2) that for all j �= k(
G(x j, ·)∗ − G(xk, ·)∗

)
(g j) = [

g j, G(x j, ·)
] − [

g j, G(xk, ·)
] = g j(x j) − g j(xk) = 1. (4.26)

We obtain from Eqs. (4.25) and (4.26) that

∥∥G(x j, ·)∗ − G(xk, ·)∗
∥∥

B∗ � 1

B
for all j �= k ∈ I.

Since x → G(x, ·)∗ is uniformly continuous from X to B∗ , {x j} must be separated in X . �
The next lemma will pave our way to prove the main theorem. The result in the one-dimensional case d = 1 is well-

known. We follow the idea in [44, p. 162].

Lemma 4.10. If {x j} is separated in Rd then {ex j } is an �2(I)-Riesz–Fischer sequence for L2([−a,a]d) provided that a is sufficiently
large.

Proof. Let ‖ · ‖∞ be the norm on Rd defined by

‖t‖∞ := max
{|tl|: l ∈ Nd

}
.

Since {x j} is separated, there exists some γ > 0 such that

‖x j − xk‖∞ � γ for all j �= k ∈ I. (4.27)

We shall make use of a technical lemma proved in [33] that for all k ∈ N

inf
{∥∥ψ(k)

∥∥
L1([−a,a]): ψ ∈ Ck

0

([−a,a]), ψ̂(0) = 1
} = 2k−1

ak
k!,

where Ck
0([−a,a]) denotes the set of k-times continuously differentiable functions on R that are supported on [−a,a]. By

this result, we may find a nonnegative ψ ∈ C (d+2)
([−a,a]) such that
0
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ψ̂(0) = 1 (4.28)

and

∥∥ψ(d+2)
∥∥

L1([−a,a]) � 2
2d+1

ad+2
(d + 2)!. (4.29)

Since ψ is nonnegative, by (4.28),∣∣ψ̂(ξ)
∣∣ � 1, ξ ∈ R. (4.30)

Using integration by parts, we obtain by (4.29) that

∣∣ψ̂(ξ)
∣∣ � 1

|ξ |d+2

∥∥ψ(d+2)
∥∥

L1([−a,a]) � 1

|ξ |d+2

2d+2

ad+2
(d + 2)!, ξ �= 0. (4.31)

We shall then rely on Proposition 2.4. Let {c j} ⊆ C have at most finitely many nonzero components. Set

Ψ (t) :=
d∏

l=1

ψ(tl), t ∈ Rd,

where tl is the l-th component of t . Clearly,∫
[−a,a]d

∣∣∣∣∑
j∈I

c jex j

∣∣∣∣
2

dt � 1

‖ψ‖d
L∞([−a,a])

∫
[−a,a]d

∣∣∣∣∑
j∈I

c jex j (t)

∣∣∣∣
2

Ψ (t)dt. (4.32)

We further estimate by (4.28) that∫
[−a,a]d

∣∣∣∣∑
j∈I

c jex j (t)

∣∣∣∣
2

Ψ (t)dt =
∑
j∈I

|c j|2Ψ̂ (0) +
∑
j∈I

∑
k �= j

|c jck|Ψ̂ (xk − x j)

�
∑
j∈I

|c j|2 −
∑
j∈I

|c j|2
∑
k �= j

∣∣Ψ̂ (xk − x j)
∣∣. (4.33)

It remains to estimate for each j ∈ I∑
k �= j

∣∣Ψ̂ (xk − x j)
∣∣.

Fix j ∈ I. For the sake of simplicity, assume that x j = 0. Divide the whole space Rd into the union of Vm , m = 0,1,2, . . . ,
where

V 0 := {
x ∈ Rd: ‖x‖∞ � 2γ

}
, Vm := {

x ∈ Rd: 2mγ < ‖x‖∞ � 2m+1γ
}
, m ∈ N.

Note that any two distinct xk ’s in Vm are separated at least by γ under the norm ‖ · ‖∞ . By estimating the volume, we
obtain that there exists a positive constant α such that

#{k: k ∈ I, k �= j, xk ∈ Vm} � α
(2m+1 + 1)dγ d − (2m − 1)dγ d

γ d
� α

(
2m+2)d

and

#{k: k ∈ I, k �= j, xk ∈ V 0} � α3d < α4d.

Note that for xk in V m , m � 0,

‖xk − x j‖∞ � 2mγ ,

implying by (4.30) and (4.31) that

∣∣Ψ̂ (xk − x j)
∣∣ � 1

|2mγ |d+2

2d+2

ad+2
(d + 2)!.

We now get by the above four equations that
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∑
k �= j

∣∣Ψ̂ (xk − x j)
∣∣ � α

∞∑
m=0

(
2m+2)d 1

|2mγ |d+2

2d+2

ad+2
(d + 2)! = α

3
4d+1 2d+2

(γ a)d+2
(d + 2)!.

The above equation together with (4.32) and (4.33) yields that if a is large enough so that

1 >
α

3
4d+1 2d+2

(γ a)d+2
(d + 2)!,

then {ex j } is an �2(I)-Riesz–Fischer sequence for L2([−a,a]d). �
We are finally in a position to prove the main result of the section.

Theorem 4.11. Let B be given by (4.15). If φ is continuous and positive everywhere on Rd then regardless of the choice of Xd, B does
not have any Xd-Riesz sampling set.

Proof. Assume that there exists a BK-space Xd for which B has an Xd-Riesz sampling set {x j} ⊆ Rd . Since B is isomorphic
to the feature space L p

φ(Rd) through the feature map Φ(x) := ex , x ∈ Rd , we get by Lemma 4.2 that

∥∥G(x, ·)∗ − G(y, ·)∗∥∥B∗ = ∥∥e∗
x − e∗

y

∥∥
Lq
φ(Rd)

=
∫
Rd

∣∣e−i(x,t) − e−i(y,t)
∣∣q

φ(t)dt � 2q−1
∫
Rd

∣∣ei(x−y,t) − 1
∣∣φ(t)dt.

Standard arguments show that x → G(x, ·)∗ is uniformly continuous from Rd to B∗ . Thus, {x j} must be separated by Theo-
rem 4.9.

We then apply Lemma 4.3 to obtain that {e−x j } forms an X∗
d -Riesz basis for Lq

φ(Rd). In particular, its linear span is dense

in Lq
φ(Rd). We claim that span{e−x j } is dense in Lq([−a,a]d) for all a > 0. To see this, let f ∈ Lq([−a,a]d). By the continuity

and positivity of φ on Rd , there exist positive constants α,β such that

α � φ(t) � β, t ∈ [−a,a]d.

Thus, f χ[−a,a]d ∈ Lq
φ(Rd). Let ε > 0. As span{e−x j } is dense in Lq

φ(Rd), we can find f̃ ∈ span{e−x j } such that

‖ f̃ − f χ[−a,a]d‖Lq
φ(Rd) � α1/qε.

We estimate from the above two equations that

‖ f̃ − f ‖Lq([−a,a]d) = ‖ f̃ − f χ[−a,a]d‖Lq([−a,a]d) � 1

α1/q
‖ f̃ − f χ[−a,a]d‖Lq

φ(Rd) � ε.

Therefore, span{e−x j } is dense in Lq([−a,a]d) for all a > 0. By the Hölder inequality, span{e−x j } is dense in L1([−a,a]d) for
all a > 0.

We shall prove that span{e−x j } is then dense in L2([−a,a]d) for all a > 0. Assume that this is not true for some a > 0.

Then there is a nontrivial f ∈ L2([−a,a]d) such that the entire function of exponential type a

F (z) :=
∫

[−a,a]d

ei(z,t) f (t)dt, z ∈ Cd

vanishes on {−x j}. Take any b > 0 and any nontrivial h ∈ L2([−b,b]d). Define

H(z) :=
∫

[−b,b]d

ei(z,t)h(t)dt, z ∈ Cd

and set L := F H . Then L is of exponential type a + b. By the Paley–Wiener theorem [14], L̂ is supported on [−a − b,a + b]d .
Moreover, L̂ is the convolution of f and h, and hence belongs to L∞(Rd). Therefore,

L(x) = F (x)H(x) = 1

(2π)d

∫
[−a−b,a+b]d

ei(x,t) L̂(t)dt, x ∈ Rd

vanishes on {−x j}, contradicting that span{e−x j } is dense in L1([−c, c]d) for all c > 0.
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We now complete the proof. Add one more point y to {−x j} that is different from any −x j , j ∈ I. Then the result-
ing sequence is still separated. By Lemma 4.10, for large enough a > 0, {e y, e−x j : j ∈ I} is a Riesz–Fischer sequence for

L2([−a,a]d). As a result, there exists some nontrivial function f ∈ L2([−a,a]d) such that

( f , e y)L2([−a,a]d) = 1, ( f , e−x j )L2([−a,a]d) = 0, j ∈ I.

This contradicts the fact established in the last paragraph that span{e−x j } is dense in L2([−a,a]d) for all a > 0. �
As a corollary to the above theorem, we get that the RKHS of the Gaussian kernels (4.18) do not have a Riesz sampling

set. Therefore, Shannon type sampling expansions do not exist in such spaces, despite that they all consist of entire functions
of finite order.

In the search of Riesz sampling sets, the two fundamental hurdles raised in Proposition 4.8 and Theorem 4.11 should be
avoided. For the first one, one might choose the feature space as a proper subspace of L p spaces. To overcome the second
one, one might consider giving up completeness and seeking Riesz bases for subspaces of the RKBS. For studies in RKHS
along the latter approach, see, for example, [32,34,39,40]. Favorable properties of the original RKHS, for instance, translation
invariance, are generally missing from the resulting subspaces.

5. Finite-dimensional Banach spaces

In this section, we let B be a normed vector space of finite dimension n and discuss results that hold true in this special
case. Set Xd := Cn equipped with an arbitrary norm. We first examine the assumptions about B and Xd that were imposed
at the beginning of Section 2. Thanks to the finite-dimensionality condition, we shall see that most of them become true
automatically.

Note that any two norms on a finite-dimensional vector space are equivalent. As a consequence, B and Xd are reflexive
as there is always an equivalent norm that makes them into a Hilbert space. They are complete for the same reason. The
canonical unit vectors e j , j ∈ Nn form a basis for Xd and X∗

d . A basis for a Banach space of finite dimension is of course a
Schauder basis. Therefore, the assumptions on the sequence space Xd and its dual space are all satisfied.

As far as B is concerned, the condition we shall need is for the duality mapping from B to B∗ induced by a compat-
ible semi-inner product on B to be bijective. To investigate this desired property, we recall the introduction [15,27] of a
compatible semi-inner product on B. Set for each f ∈ B

J f := {
μ ∈ B∗: ‖μ‖B∗ = ‖ f ‖B, μ( f ) = ‖ f ‖B‖μ‖B∗

}
.

By the Hahn–Banach theorem, J f is nonempty for every f ∈ B. A compatible semi-inner product can be defined only in
the following way. Select for each g ∈ B some μg ∈ J g and set

[ f , g] := μg( f ) for all f , g ∈ B.

The duality mapping from B to B∗ induced from such a compatible semi-inner product is thus given by f ∗ := μ f , or in
terms of the semi-inner product,

f ∗(g) := μ f (g) = [g, f ], g ∈ B.

Since B is reflexive, a result due to James [22] states that we are always able to find an appropriate μ f for each f ∈ B so
that the duality mapping is surjective onto B∗ . Therefore, it remains to check its injectivity. We point out that there exist
finite-dimensional Banach spaces for which the duality mapping fails to be injective. Set B := �1(N3). Then B∗ = �∞(N3).
For f := (1,2,1) and g := (2,1,1), we observe that

J f = J g = {
(4,4,4)

}
.

Thus, the duality mapping is not injective for this space.
To ensure the injectivity of the duality mapping, we impose the requirement that B be strictly convex. We claim that B∗

is then strictly convex as well. Assume that there exist μ,ν ∈ B∗ \ {0} such that

‖μ + ν‖B∗ = ‖μ‖B∗ + ‖ν‖B∗ .

Let f ∈ B be a nonzero element such that

(μ + ν)( f ) = ‖μ + ν‖B∗‖ f ‖B.

We observe that

(μ + ν)( f ) �
∣∣μ( f )

∣∣ + ∣∣ν( f )
∣∣ � ‖μ‖B∗‖ f ‖B + ‖ν‖B∗‖ f ‖B = (‖μ‖B∗ + ‖ν‖B∗

)‖ f ‖B.

By the above three equations,
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μ( f ) = ‖μ‖B∗‖ f ‖B, ν( f ) = ‖ν‖B∗‖ f ‖B,

which implies that both μ/‖μ‖B∗ and ν/‖ν‖B∗ are the image of f /‖ f ‖B under the duality mapping. Since B is strictly
convex, the duality mapping is injective. Consequently,

μ = ‖μ‖B∗

‖ν‖B∗
ν.

The claim is hence true. Therefore, B∗ is uniformly convex. Since a normed vector space is uniformly Fréchet differentiable
if and only if its dual is uniformly convex [7], B is a uniform Banach space.

We start with characterizing frames in B.

Proposition 5.1. Let B be of finite dimension and Xd an arbitrary BK-space. Then any finite sequence { f j} ⊆ B is an Xd-Bessel sequence
for B. It is an Xd-frame if and only if (2.16) holds true.

Proof. Since any linear operator from a finite-dimensional Banach space must be bounded, there exists some B > 0 such
that ∥∥U ( f )

∥∥
Xd

� B‖ f ‖B, f ∈ B,

which implies that f j form an Xd-Bessel sequence for B.
Suppose that (2.16) holds true. It follows that the operator U is injective. Since the range R(U ) of U is finite-dimensional,

it is a closed subspace of Xd . This together with the boundedness of U implies by the open mapping theorem that U has a
bounded inverse on R(U ). By Lemma 2.8, { f j} is an Xd-frame for B.

On the other hand, assume that (2.16) is not true. Then there exists a nontrivial ν ∈ B∗∗ such that ν( f ∗
j ) = 0, j ∈ I. Since

B is reflexive, there exists nontrivial f ∈ B such that

ν(μ) = μ( f ) for all μ ∈ B∗.
We hence reach that

[ f , f j] = f ∗
j ( f ) = ν

(
f ∗

j

) = 0, j ∈ I.

Consequently, f j do not form an Xd-frame for B. The proof is complete. �
Likewise, one obtains by (2.2) and (2.3) the following result.

Proposition 5.2. Let B be finite-dimensional. Then any finite sequence { f ∗
j } ⊆ B∗ is an X∗

d -Bessel sequence for B∗ . It is an X∗
d -frame

if and only if there holds (2.17).

We next present the promised example showing that { f j} being a frame for B does not necessarily imply that { f ∗
j } is a

frame for B∗ . The sequence { f j} used below was constructed in [45] by the Matlab for a different purpose.

Example 5.3. We investigate B := �3/2(N3) with the semi-inner product

[a,b] := ‖b‖1/2
B

3∑
j=1

a jb j|b j|−1/2, a,b ∈ B

and the following sequence in B:

f1 = (4,81,1)

(738)1/3
, f2 = (1,64,0)

(513)1/3
, f3 = (25,25,9)

(277)1/3
. (5.1)

Then

f ∗
1 = (2,9,1), f ∗

2 = (1,8,0), f ∗
3 = (5,5,3). (5.2)

It can be verified that span{ f ∗
1 , f ∗

2 , f ∗
3 } = B∗ while span{ f1, f2, f3} � B. By Propositions 5.1 and 5.2, for any BK-space Xd ,

{ f1, f2, f3} is an Xd-frame for B but { f ∗
1 , f ∗

2 , f ∗
3 } is not an X∗

d -frame for B∗ .

Turning to Riesz bases, we have a simple observation.

Lemma 5.4. A sequence f j , j ∈ I forms an Xd-Riesz basis for B if and only if #I = dim B and f j are linearly independent.
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Proof. By Propositions 2.13 and 5.2, { f j} is an Xd-Riesz basis for B if and only if f j are linearly independent and
span{ f j} = B. �

Let n = dim B. For simplicity, suppose that I = Nn . By the above lemma, any basis { f j} for B is an Xd-Riesz basis for B
regardless of the choice of the sequence space Xd . However, as we have seen from Example 5.3, this does not guarantee
that f ∗

j form an X∗
d -Riesz basis for B∗ . The reason is that f ∗

j might fail to be linearly independent. We shall propose a
nonlinear Gram–Schmidt algorithm of producing a sequence {h j} ∈ B from an arbitrary basis { f j} for B so that {h j} and
{h∗

j } are an Xd-Riesz basis for B and X∗
d -Riesz basis for B∗ , respectively. The constructed sequence is designed to satisfy

[h j,hk] = δ j,k, 1 � j � k � n. (5.3)

The algorithm bases on the characterization of best approximation proved by Giles [15] that f , g ∈ B satisfies ‖ f +αg‖B �
‖ f ‖B for all α ∈ C if and only if [g, f ] = 0.

The algorithm starts by setting

h1 := f1

‖ f1‖ .

Assume that h j , 1 � j � k have been constructed such that

[h j,hl] = δ j,l, 1 � j � l � k (5.4)

and

span{h j: 1 � j � k} = span{ f j: 1 � j � k}. (5.5)

We next construct hk+1. Let gk be the element in span{ f j: 1 � j � k} such that

‖ fk+1 − gk‖B = min
{‖ fk+1 − g‖B : g ∈ span{ f j: 1 � j � k}}.

According to the characterization of best approximation due to Giles,

[g, fk+1 − gk] = 0 for all g ∈ span{ f j: 1 � j � k}.
By (5.5), there exist constants α j ∈ C, 1 � j � k such that gk = ∑k

j=1 α jh j , where α j are uniquely determined by

[
hl, fk+1 −

k∑
j=1

α jh j

]
= 0, 1 � l � k. (5.6)

By (5.5) and the linear independence of f j ,

fk+1 −
k∑

j=1

α jh j �= 0.

We then set

hk+1 := fk+1 − ∑k
j=1 α jh j

‖ fk+1 − ∑k
j=1 α jh j‖B

.

Clearly, (5.4) and (5.5) are preserved when k is updated to k + 1 therein. Successively applying the construction until k = n,
we obtain a basis {h j: j ∈ Nn} for B satisfying (5.3). The algorithm is said to be nonlinear as Eqs. (5.6) are in general
nonlinear with respect to α j . This is because that a semi-inner product is nonadditive with respect to its second variable
unless it reduces to an inner product [36].

We fulfill a main purpose of the section by proving that for the basis {h j: j ∈ Nn} generated by the above algorithm, h∗
j

form an X∗
d -Riesz basis for B∗ .

Proposition 5.5. The above described Gram–Schmidt algorithm generates from an arbitrary basis { f j: j ∈ Nn} for B a sequence
{h j: j ∈ Nn} such that {h j: j ∈ Nn} and {h∗

j : j ∈ Nn} are an Xd-Riesz basis for B and X∗
d -Riesz basis for B∗ , respectively.

Proof. The generated sequence {h j: j ∈ Nn} remains a basis for B. In particular, it is linearly independent. By Lemma 5.4,
it is an Xd-Riesz basis for B. It remains to show that h∗

j are linearly independent as well. Assume to the contrary that they
are linearly dependent. Consequently, there exists some μ ∈ B∗∗ \ {0} such that
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μ
(
h∗

k

) = 0, k ∈ Nn.

Since B is finite-dimensional, it is automatically reflexive. Thus, there exist constants α j , j ∈ Nn all of whose are not zero
such that[∑

j∈Nn

α jh j,hk

]
= h∗

k

(∑
j∈Nn

α jh j

)
= μ

(
h∗

k

) = 0, k ∈ Nn.

Successively letting k = n,n − 1, . . . ,1 in the above equation yields by (5.3) that α j = 0 for all j ∈ Nn , a contradiction. �
By contrast to the negative result in Section 4, we close the paper by showing that a finite-dimensional RKBS always has

a Riesz sampling set.

Proposition 5.6. A finite-dimensional RKBS possesses an Xd-Riesz sampling set for any BK-space Xd.

Proof. Let B be an RKBS on X with finite dimension n and s.i.p. reproducing kernel G . By (4.2),

span
{

G(x, ·)∗: x ∈ X
} = B∗.

Since dim B∗ = dim B = n, the above equation implies that there exist n points x j ∈ X , j ∈ Nn such that G(x j, ·)∗ , j ∈ Nn , are
linearly independent. As a result,

span
{

G(x j, ·)∗: j ∈ Nn
} = B∗. (5.7)

By (5.7), | · | : B → R+ defined by

| f | := ∥∥{
f (x j)

}∥∥
Xd

, f ∈ B

is a norm on B. Since B is finite-dimensional, this norm is equivalent to the original one on B. It implies that G(x j, ·),
j ∈ Nn form an Xd-frame for B. This together with the linear independence of G(x j, ·)∗ , j ∈ Nn prove that {x j: j ∈ Nn} is an
Xd-Riesz sampling set for B. �
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