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On Decomposing Stimulus and Response Waveforms
in Event-Related Potentials Recordings

Gang Yin and Jun Zhang*

Abstract—Event-related potentials (ERPs) reflect the brain ac-
tivities related to specific behavioral events, and are obtained by av-
eraging across many trial repetitions with individual trials aligned
to the onset of a specific event, e.g., the onset of stimulus (s-aligned)
or the onset of the behavioral response (r-aligned). However, the
s-aligned and r-aligned ERP waveforms do not purely reflect, re-
spectively, underlying stimulus (S-) or response (R-) component
waveform, due to their cross-contaminations in the recorded ERP
waveforms. Zhang [J. Neurosci. Methods, 80, pp. 49–63, 1998]
proposed an algorithm to recover the pure S-component wave-
form and the pure R-component waveform from the s-aligned and
r-aligned ERP average waveforms—however, due to the nature of
this inverse problem, a direct solution is sensitive to noise that dis-
proportionally affects low-frequency components, hindering the
practical implementation of this algorithm. Here, we apply the
Wiener deconvolution technique to deal with noise in input data,
and investigate a Tikhonov regularization approach to obtain a
stable solution that is robust against variances in the sampling
of reaction-time distribution (when number of trials is low). Our
method is demonstrated using data from a Go/NoGo experiment
about image classification and recognition.

Index Terms—Component waveform, event-related potentials
(ERPs), null space, stimulus–response decomposition, Tikhonov
regularization, Wiener deconvolution.

I. INTRODUCTION

IN event-related potentials (ERP) studies, ERP averages are
typically calculated with individual trials (in an ensemble of

many repetitions) aligned with respective to the onset of stimu-
lus, as in the study of various ERP elements thought to be related
to stimulus processing, such as P300 [1], [2] and N400 [3]. When
behavioral response is required, ERP averages have also been
calculated with individual trials aligned with respect to the onset
of behavioral response, as in the study of error-related negativ-
ity (ERN) [4], [5], and lateralized readiness potential (LRP).
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Therefore, as long as the reaction time (RT), defined as the time
elapse between the stimulus onset and the behavioral response
onset for each trial, is not uniform across the ensemble of trials
and has a nonzero variance, the stimulus-aligned ERP average
and the response-aligned ERP average will differ in their wave-
forms. The stimulus-aligned (response-aligned) ERP average
does not contain purely those elements that are time-locked to
stimulus or response onset, since both these component wave-
forms contribute towards the stimulus (response)-aligned ERP
average waveforms, and are hence cross-contaminated therein.

To see this, let fs(t), fr (t) denote, respectively, the underlying
stimulus-locked and response-locked component waveforms.
Denote the RTs as ti . Then the stimulus-aligned ERP average
waveform Fs(t) and its response-aligned waveform Fr (t) are,
respectively:

Fs(t) =
1
N

∑

i

(fs(t) + fr (t − ti) + ξi(t))

≈ fs(t) +
1
N

∑

i

f r (t) ∗ δ (t − ti) (1)

Fr (t) =
1
N

∑

i

(fs (t + ti) + fr (t) + ηi(t))

≈ fr (t) +
1
N

∑

i

f s(t) ∗ δ (t + ti) (2)

where ξi and ηi are white noise (measured with respect to
stimulus onset and response onset) on trial i, N is total trial
number, δ(t) is the Kronecker delta function, and ξi(t) =
ηi (t − ti) ⇔ ξi (t + ti) = ηi(t); they are averaged “out” dur-
ing ensemble averaging, assuming the noise is “white.” But
the summation terms in the expression of Fs(t) and Fr (t) do
not vanish in general; they represent residual contaminations:
Fs(t) %= fs(t), Fr (t) %= fr (t).

Zhang [6] proposed an algorithm that recovers the stimulus-
and response-locked waveforms fs(t), fr (t) from stimulus-
aligned and response-aligned ERP averages Fs(t), Fr (t), as
long as the empirically obtained RT distribution is given. The
algorithm (as follows) provided a unique solution that can be
implemented, in theory, through either the Fourier transform
method or an iterative procedure (for solving integral equations)
that is guaranteed to converge. Zhang’s [6] method has recently
been extended to separate N components in ERP recordings
given N behavioral event times (especially the N = 3 case use-
ful for many paradigms) [7]. The basic assumptions for these
algorithms are that noise is stationary across trials, and that the
stimulus- and response-locked waveforms have the same shapes
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and amplitude across single trials (see Section V for a relaxation
to allow latency jitter).

One of the challenges in applying Zhang’s [6] method to real
ERP datasets is the issue of input noise, especially when the
trial number in an experiment is low. It will be shown below
that because the power of the low-frequency Fourier compo-
nents (in the limit, dc component) of the RT distribution is
close to 1, making the recovery of low-frequency components
an ill-posed problem, noise-reduction techniques are called for
in implementing the method of Zhang [6]. Recently, Takeda
et al. [8], using an essentially identical method, applied a high-
pass filter to EEG recordings before the decomposition of the
stimulus-locked and response-locked component waveforms.
This, we believe, leads to an undue attenuation of low-frequency
signal (slow waveform) while not resolving the instability prob-
lem in the recovered waveforms caused by a lack of consistent
estimation of RT distribution (which is due to limited number
of experimental trials).

In this paper, we apply two common techniques to deal with
input noise in the decomposition algorithm of Zhang [6]. First,
we consider Wiener deconvolution method for noise control.
Wiener filter theory was developed to find an optimal filter that
adapts to the SNR by estimating the power spectra of both the
noise and the signal and then minimizing mean-square error
(MSE) for signal recovery. Wiener theory for optimal noise
filtering of biomedical signals was adopted by, for instance,
Walter [9], modified by, for instance, Doyle [10], and widely
applied to resolve deconvolution problems [11]. Here, in de-
parture from the standard treatment, we have to consider a 2-D
signal, arising from being locked to stimulus and to response,
which are themselves coupled through the same RT distribution
function. Therefore, specialized formulas need to be developed
for the current application. The second approach for noise re-
duction we consider here is the Tikhonov regularization method
for computing stabilized solutions to an ill-posed problem. The
main challenge to be addressed is to determine the appropri-
ate value of the regularization parameter. Below, we compare
the Wiener deconvolution approach with Tikhonov regulariza-
tion approach (including methods of determining the optimal
regularization parameter) for noise control in our problem. We
compare these algorithms on simulated single-trial data under
different noise levels, different variances of RT distributions,
and different amount of available trial numbers. Finally, we
apply our noise control method to the decomposition of ERP
components in a Go/NoGo experiment.

II. MATHEMATICAL ANALYSIS

A. S–R Decomposition: A Revisit to [6]

Suppose, we have the following experimental data: 1) the
stimulus-aligned ERP average waveform denoted Fs(t), 2) the
response-aligned ERP average waveform Fr (t), and 3) the
distribution of RTs g(t). The problem is how to recover the
stimulus component waveform time-locked to stimulus onset
(“S-component”) fs(t) and the response component waveform
time-locked to response onset (“R-component”) fr (t). From (1)
and (2), and casting them in the limiting case of continuous time

with infinite trials, we can derive the following two mathemati-
cal equations:

Fs(t) = fs(t) +
1
N

N∑

i=1

fr (t) ∗ δ (t − ti)

= fs(t) + fr (t) ∗ g(t) (3)

Fr (t) = fr (t) +
1
N

N∑

i=1

fs(t) ∗ δ (t + ti)

= fr (t) + fs(t) ∗ g (−t) (4)

where N is the total number of trials. We define g(t) =
1
N

∑N
i=1 δ (t − ti), with its Fourier transform

g̃(w) =
∫

g(t)e−iw tdt

where “∼” denotes frequency-domain representation. Solving
for the frequency components f̃s(w), f̃r (w), and then applying
inverse-Fourier transform, Zhang [6] obtained a closed-form
solution

fs(t) =
1
2π

∫
F̃s(w) − F̃r (w) · g̃(w)

1 − |g̃(w)|2
eiwtdw (5)

fr (t) =
1
2π

∫
F̃r (w) − F̃s(w) · g̃(−w)

1 − |g̃(w)|2
eiwtdw. (6)

B. Methodological Limitation

In subsequent discussions, RT distribution g(t) is estimated
using the empirical distribution (frequency count of proportion
of trials associated with a particular RT value t as measured from
a fixed stimulus onset moment, denoted as t = 0, to the moment
of behavioral response on individual trials). It is convenient to
work in the frequency (as opposed to time) domain. Denote the
matrix H(w) as follows:

H(w) =
[ 1 g̃(w)

g̃(−w) 1

]
(7)

with which (3) and (4) can now be converted to matrix form

y = Hx; y =
[

F̃s(w)
F̃r (w)

]
and x =

[
f̃s(w)
f̃r (w)

]
. (8)

Note that the complex conjugate (denoted by C ) of g(w) is

g̃C (w) =
∫

g(t)eiwtdt =
∫

g(t)e−i(−w )tdt = g̃(−w).

This means |g̃(w)| = |g̃(−w)|, which implies that the H matrix
in (7) is Hermitian, that is, its conjugated transpose (denoted by
#) equals itself

H#(w) = H(w).

Therefore, H has real eigenvalues, with associated eigenvectors
orthogonal to each other. Solving the eigenequation, Ht = λt,
we obtain that the two eigenvalues of H are

λ1 = 1 + |g̃(w)| , λ2 = 1 − |g̃(w)|
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Fig. 1. Relationship between |g̃(w)| and Cond(H). Note that when w → 0
(at lower frequency approaching dc) then |g̃(w)| → 1, so Cond (H) → +∞.

with corresponding orthonormal eigenvectors

t1 =
1√
2

[
1

eiφ

]
, t2 =

1√
2

[
1

−eiφ

]
.

Denote the condition number of H as the ratio of its two eigen-
values λ1 , λ2

Cond(H) =
λ1

λ2
=

1 + |g̃(w)|
1 − |g̃(w)| .

The condition number determines how input (at the correspond-
ing frequency component) will be amplified—the larger the
value of Cond(H), the greater the amplification of small fluctu-
ating noise. Since 0 ≤ |g̃(w)| ≤ 1, Cond(H) is monotonically
related to |g̃(w)| and bounded between 1 and ∞. Fig. 1 shows
the relationship between |g̃(w)| and Cond(H)—as frequency
goes to 0, |g̃(w)| approaches 1, resulting in the explosion of the
condition number of H, and hence disproportionate amplifica-
tion of input noise. Fig. 2 demonstrates how artifacts might be
introduced in the method of Zhang [6] when different amounts
of noise are injected. For example, we can create, by (21), the
ground-truth waveforms fs(t), fr (t) with a known RT distribu-
tion. We then generate an ensemble of trial, and from which, the
s-aligned and r-aligned ERP average waveforms. Plugging these
s- and r-aligned waveforms as well as the RT distribution as input
to (5) and (6) allows us to calculate fs(t), fr (t). With different
low-frequency noise added [SNR = 20, 30, and 40 dB, define by
(24)], (5) and (6) give different outputs of fs(t), fr (t); the recov-
ered waveforms have more distortions with more low-frequency
noise added. Put in another way, a pair of (carefully chosen) S-
and R-component waveforms may cancel themselves out dur-
ing the trial-by-trial stimulus- and response-aligned averaging,
thus resulting in only noise in the ERP average waveforms. In
short, the S–R decomposition algorithm of Zhang [6] suffers
from disproportionate noise amplification at low-frequency—
low-frequency distortions in the recovered waveforms may oc-
cur if noise is not handled properly.

C. Wiener Deconvolution

Wiener deconvolution refers to the application of Wiener filter
to deal with noise inherent in a linear input–output system.
Working in the frequency domain, the goal of the deconvolution
technique is to minimize the impact of noise at all frequencies.
Given a linear input–output system

y(t) = h(t) ∗ x(t) + n(t)

where x(t) is an unknown input signal, h(t) is the known re-
sponse, n(t) is an unknown additive noise independent of x(t),
and y(t) is an observed signal. The goal of Wiener deconvolu-
tion is to find some d(t) so that we can estimate x(t) as follows:

x̂(t) = d(t) ∗ y(t) (9)

where x̂(t) is an estimate of x(t) based on minimizing the MSE
defined as

MSE = E[‖x̂(t) − x(t)‖2 ]. (10)

The Wiener deconvolution filter d̃(w) provides such a solution,
which is conveniently given in the frequency domain

d̃(w) =
h̃C (w)

|h̃(w)|2 + n(w)/s(w)
.

Here, s(w) and n(w) are, respectively, the mean power spectrum
of the signal x(t) and of the noise n(t), and h̃C (w) is the
complex conjugate of the Fourier spectrum h̃(w) of the transfer
function h(t). In actual application, one can: 1) find an initial
estimate of signal x0(t) (by assuming zero noise, for instance)
and calculate its signal power spectrum s0(w); 2) subtract the
signal x0(t) from trial-by-trial data to obtain an estimate of
noise power spectrum n0(w); 3) substitute the signal and noise
power spectra into the Wiener filter (9) to get new estimate of
signal x1(t); 4) repeat steps 1) to 3) until convergence. The final
solution x(t) has the property that E[‖n(w)‖2 ] is minimized.

Our signal model assumes that for every single trial, noise
is independent of signal. With noise considered, (3) and (4)
become, in matrix form,

[
F̃s(w)
F̃r (w)

]
=

[ 1 g̃(w)
g̃(−w) 1

] [
f̃s(w)
f̃r (w)

]
+

[
ξ̃s(w)
ξ̃r (w)

]
(11)

in which ξ̃s(w) and ξ̃r (w) are the Fourier transform of noise
waveforms time-locked to stimulus onset and to response onset,
respectively. In vector notation, it is

y = Hx + ξ. (12)

In order to apply the Wiener deconvolution method to the vec-
torial equations (11) and (12), we need to invert H. Denote

Ĥ =

[
1 −g̃(w)

−g̃(−w) 1

]

such that

ĤH = HĤ = λ1λ2I

where I is the identity matrix. We can then convert (12) into (by
multiplying both sides with Ĥ)

Ĥy = λ1λ2x + ξ̂

with ξ̂ = Ĥξ, and then apply Wiener deconvolution filter to
each of the vector component

x =
λ1λ2

(λ1λ2)2 + SNR−1 Ĥy



YIN AND ZHANG: ON DECOMPOSING STIMULUS AND RESPONSE WAVEFORMS IN EVENT-RELATED POTENTIALS RECORDINGS 1537

Fig. 2. Illustration of how artifacts in stimulus–response decomposition may arise. (a) Simulated S- and R-component waveforms created by (21), RT distribution,
and resulting stimulus- and response-aligned waveforms. (b) Different low-frequency noise (SNR = 20, 30, and 40 dB) produced by (22) and (23). Note the
difference in ordinate scales. (c) With different amount of low-frequency noise added into the ensemble of trials, resulting stimulus- and response-aligned waveforms
change only slightly. (d) Recovered S- and R-component waveforms (dotted line) from (5) and (6) under different SNR condition and original S- and R-component
waveforms (thick lines). Clearly, input noises greatly affect recovery even though their effect on ERP averages is small.

or more explicitly,
[

f̃s(w)

f̃r (w)

]
=

λ1λ2

(λ1λ2)2 + SNR−1

[
F̃s(w) − g̃(w)F̃r (w)

F̃r (w) − g̃(−w)F̃s(w)

]
.

(13)
Here, SNR is the estimated signal-to-noise ratio which we

take as E[‖f̃s‖2 ]/E[‖ξ̃s‖2 ] in the calculation of the first vector
(stimulus) component and E[‖f̃r‖2 ]/E[‖ξ̃r‖2 ] in the calcula-
tion of the second vector (response) component. To estimate
signal and noise power spectra, we use an iterative procedure
by subtracting the currently-estimated waveforms from the raw,
single trial data (see Section II-D). Since in the above procedure,
Wiener filters are applied to the S-component waveform fs and
R-component waveform fr directly, we call this method Wiener
deconvolution with coupling of filters.

We have also investigated Wiener deconvolution with uncou-
pled filters, which turns out to work much better (as follows).
First, we observe that the orthonormal eigenvectors of H satisfy

t#
1 · t1 = t#

2 · t2 = 1, t#
1 · t2 = t#

2 · t1 = 0.

We may expand the experimentally obtained waveform y by

y = (t#
1 · y)t1 + (t#

2 · y)t2 ≡ y1 + y2

where y1 and y2 represent the projections of y onto t1 and t2
directions (the two terms in summation), respectively. Similarly,
we can also expand the unknown waveform x as

x = (t#
1 · x)t1 + (t#

2 · x)t2 ≡ x1 + x2

so that

Hx = (t#
1 · x)Ht1 + (t#

2 · x)Ht2

= λ1(t#
1 · x)t1 + λ2(t#

2 · x)t2 = λ1x1 + λ2x2 .

Of course, we do not know x yet, so its projection onto the two
eigendirections would have to be calculated.

According to our signal model equation (12), the noise com-
ponent ξ may also project in the two eigendirections

ξ = (t#
1 · ξ)t1 + (t#

2 · ξ)t2 ≡ ξ1 + ξ2

with their respective power spectra to be estimated. Note, how-
ever, that it is the noise power ξ2 in the direction (subspace) of
t2 sustained by the second eigenvalue λ2 that needs to be esti-
mated accurately, as this will be the null space of the operator
H(w) when the frequency goes to zero.

With the above notations, the signal model equation (12)
breaks into two equations

y1 = Hx1 + ξ1

y2 = Hx2 + ξ2
or

(t#
1 · y)t1 = λ1x1 + (t#

1 · ξ)t1

(t#
2 · y)t2 = λ2x2 + (t#

2 · ξ)t2 .
(14)

The left-hand sides are what we can calculate from the data,
and x1 and x2 are unknown 2-D vectors. Applying Wiener
deconvolution method, we obtain

xi =
λi

λ2
i + (SNRi)−1 (t#

i · y)ti , i = 1, 2 (15)

where SNRi = E[‖xi‖2 ]/E[‖ξi‖2 ], estimated separately for
i = 1, 2 components. This is what we call Wiener deconvo-
lution with “decoupled filters.” Note that since λ1 is always
greater than or equal to 1, the denominator (SNR1)−1 can (in
most cases of noise range) be dropped in the estimate of x1 .
The more crucial application of Wiener filter is to obtain the
x2 component robustly against input noise, as noted earlier. In
the next section, we provide a detailed algorithm for estimating
SNR2 .
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D. Estimating Signal and Noise Power Spectra

Below, we describe in detail the estimation of signal and
noise power spectra in the current context where “signals” are
2-D and coupled. We need to derive expressions that link signal
power spectra (for both underlying S-component waveform and
R-component waveform), noise power spectrum, and the dif-
ference of trial-by-trial waveform from the ensemble averaged
waveforms.

Our signal model (for any single trial i) is

si(t) = fs(t) + fr (t − ti) + ni(t);

ri(t) = fs (t + ti) + fr (t) + ni (t + ti)

or, explicitly,

s1(t) = fs(t) + fr (t − t1) + n1(t);
r1(t) = fs (t + t1) + fr (t) + n1(t + t1)
s2(t) = fs(t) + fr (t − t2) + n2(t);
r2(t) = fs (t + t2) + fr (t) + n2 (t + t2)
...
sk (t) = fs(t) + fr (t − tk ) + nk (t);
rk (t) = fs (t + tk ) + fr (t) + nk (t + tk )

where n1 , n2 , . . . , nk are noise waveforms on each trial, as-
sumed to be independent of the signal and independent of each
other. Averaging across trials, we obtain

Fs(t)=
1
k

k∑

i=1

si(t) = fs(t) + fr (t) ∗ g(t) +
1
k

k∑

i=1

ni(t)

Fr (t)=
1
k

k∑

i=1

ri(t)=fr (t)+fs(t) ∗ g (−t)+
1
k

k∑

i=1

ni(t+ti)

where

ξs(t) =
1
k

k∑

i=1

ni(t), ξr (t) =
1
k

k∑

i=1

ni (t + ti) .

In order to estimate the power spectrum of the signal and of
the noise, we subtract s-aligned average signal from single trial
waveform

si(t) − Fs(t)

= (fs(t) + fr (t − ti) + ni(t)) − Fs(t)

= (fr (t − ti) − fr (t) ∗ g(t)) +

(
ni(t) −

1
k

k∑

i=1

ni(t)

)
(16)

where

fr (t) ∗ g(t) =
1
k

k∑

i=1

fr (t − ti).

In frequency domain, (16) becomes

s̃i(w) − F̃s(w) = (f̃r (w) · e−jwti − f̃r (w) · g̃(w))

+

(
ñi(w) − 1

k

k∑

i=1

ñi(w)

)
.

As noise is independent of the signal,

E[|s̃i(w) − F̃s(w)|2 ] = E[|(f̃r (w) · e−jwti − f̃r (w) · g̃(w))|2 ]

+ E




∣∣∣∣∣

(
ñi(w) − 1

k

k∑

i=1

ñi(w)

)∣∣∣∣∣

2

 .

(17)

Evaluating the first term on the right-hand side

E[|(f̃r (w) · e−jwti − f̃r (w) · g̃(w))|2 ] = |f̃r (w)|2

·E[(1 + |g̃(w)|2 − (g̃C (w) · e−jwti + g̃(w) · ejwti ))]

and summing over i yields

1
k

k∑

i=1

E[|(f̃r (w)e−jwti − f̃r (w)g̃(w))|2 ]

= |f̃r (w)|2(1 − |g̃(w)|2).

The second term on the right-hand side of (17) is

E




∣∣∣∣∣

(
ñi(w) − 1

k

k∑

i=1

ñi(w)

)∣∣∣∣∣

2



= E[|ñi(w)|2 ] − 2
k

E[|ñi(w)|2 ] +
1
k2 E

[
k∑

i=1

|ñi(w)|2
]

=
(

1 − 1
k

)
E[|ñi(w)|2 ]

where we have used the property that noise is independent of
each other on individual trials but with the same expected power
spectrum,

E[|ñ1(w)|2 ] = E[|ñ2(w)|2 ] = · · · =E[|ñk (w)|2 ]≡ k|ξ̃s(w)|2 .

Therefore, we obtain the relation

1
k

k∑

i=1

|s̃i(w) − F̃s(w)|2

= |f̃r (w)|2 · (1 − |g̃(w)|2) + (k − 1)|ξ̃s(w)|2 . (18)

A similar expression can be derived for the r-aligned analysis

1
k

k∑

i=1

|s̃i(w) − F̃r (w)|2

= |f̃s(w)|2 · (1 − |g̃(w)|2) + (k − 1)|ξ̃r (w)|2 . (19)

The left-hand sides of (18) and (19) can be calculated from the
experimental data directly. Once |f̃r (w)|2 or |f̃s(w)|2 is known,
then |ξ̃s(w)|2 or |ξ̃r (w)|2 can be estimated, which, in turn, can
be used in the Wiener deconvolution filter to estimate S- and
R-component waveforms. This creates an iterative procedure,
just as in the vanilla Wiener deconvolution case described in
Section II-C.

In Section II-C, we discussed two approaches, one based on
coupling of filters (see (13)), and the other on uncoupling of
filters (see (15)). The difference is whether we first project all
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Fig. 3. Flow diagram of S–R waveform decomposition with noise control.
During the first pass, x1 , x2 is calculated without estimating signal and noise
spectra. During the second and subsequent passes, Wiener deconvolution filter
is used for calculating x1 , x2 (as indicated by the open arrow, distinct from all
other arrows).

waveforms in the eigendirections of the H operator or not. In
the “coupled filter” approach, no distinctions are made whether
noise lie inside or outside the null space of the H operator. In the
“decoupled filter” approach, which is mathematically rigorous,
we treat the projections of the noise onto t1 and t2 directions
distinctly and apply Wiener filters separately; this is based on
the noise decomposition given by (14). Our algorithm is shown
in Fig. 3.

E. Tikhonov Regularization

Tikhonov regularization is the most commonly used method
for regularizating ill-posed problems. In statistics, the method is
also known as ridge regression. Given a system of linear equa-
tions Ax = b, where the matrix A may be singular (and hence
the problem is ill-conditioned), one may seek a solution that
minimizes the residual ‖Ax − b‖2 , where ‖·‖ is the Euclidean
norm. In order to give preference to solutions with certain de-
sirable properties (such as smoothest, or with minimal power),
a regularization term is included in this minimization:

‖Ax − b‖2 + β2 ‖x‖2 . (20)

An explicit solution, denoted by x̂, is given by

x̂ =
(
AT A + β2I

)−1 AT b

where I is the identity matrix, and the regularization parame-
ter β controls the quality of the final solution. An appropriate
choice of the value of the regularization parameter should bal-
ance the goodness-of-fit, the first term in expression (20), with
the amount of signal power in the null space of the A opera-
tor, related to the second term in expression (20). The criteria
for choosing a suitable regularization parameter is still a hotly
researched problem, for which several methods have been pro-

posed [12], [13]. If the norm of the noise is known a priori, as
in simulation studies, discrepancy principle (DP) can be used
to choose regularization parameter, an approach investigated in
some depth [14], [15]. Other methods that do not rely on a priori
knowledge of noise levels include generalized cross validation
(GCV) [16] and L-curve [17], [18], etc. In our current context,
where noise estimate is difficult and only indirectly obtained,
we shall compare GCV and L-curve methods in this paper.

F. GCV and L-Curve

The basic principle of the GCV method is to omit one of
the data points and then determine the regularization parameter,
with the goal of predicting the missing data point with great-
est accuracy. This is done for all data points in the set, and a
GCV score can be evaluated as a function of the regularization
parameter. Adapting GCV method to our situation, as our de-
composition algorithm is based on s-aligned ERP average and
r-aligned ERP average waveforms as input, we omit one trial
in our input data-set and determine the regularization parameter
that predicts the missing trial waveform with greatest accuracy;
this procedure is done for all trials in the input data-set to obtain
a GCV score.

The L-curve method is an alternative method for determining
the regularization parameter β. An L-curve is formed by plot-
ting the norm squared of the penalty function ‖x‖2 against the
residual from data-fitting ‖Ax − b‖2 , for a broad range of β
parameters considered. As the L-curve clearly depicts the com-
promise between minimization of these two quantities, which is
at the heart of any regularization method, the point of maximum
curvature (i.e., the L-shaped corner) is taken to be the point of
optimal regularization parameter.

III. SIMULATION

A. Simulation Parameters and Performance Measures

1) Simulated Waveform: We consider simulated ERP wave-
forms as produced by the following equation:

fk (ti) = Ak exp

(
−

(
2πλk

ti − τk

γk

)2
)

× cos(2πλk (ti − τk ) + αk ), i = 1, . . . , n, k = s, r (21)

where ti = i ∗ 0.004 s = i ∗ 4ms and n = 500. Here, Ak is the
amplitude of the stimulus (k = s) or response (k = r) com-
ponent waveform and τk is the random variable representing
trial-by-trial onset time for stimulus event or response event.
Without loss of generality, we take τs to be fixed at 100, and
τr to be sampled from a Gamma distribution, with mean and
variance given below. The value of αk (k = s, r) is taken to be
fixed between 0 and 2π. The parameter λk denotes the prin-
cipal frequency of the simulated waveform, and γk is its time
scale factor—the bigger γk , the longer duration of the wave-
form. ERP waveform on any individual trial is taken to be the
sum of the above two components (one stimulus-locked and one
response-locked), plus background noise described as follows.
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Fig. 4. Illustration of the S–R decomposition algorithm with or without noise control by the method of Wiener deconvolution. (a) S- and R-component waveforms
and noise waveforms (α-activity, nonstationary background-EEG, and white noise) used for simulation. (b) Simulated single trial waveforms created through
summing together S- and R-component waveforms, according to different RT, plus noise. (c) Comparison of original S- and R-component waveforms, s- and
r-aligned ensemble average waveforms, and recovered S- and R-components either without noise control [calculated by equations (5) and (6)] or with Wiener
deconvolution method. (d) RT distribution. (e) ERP image of the ensemble of trials for original stimulus-aligned data (Top) and for either S-component (Lower
Left) or R-component (Lower Right) after trials sorted according to RT, with no noise injected. (f) ERP image of the ensemble of trials with noise added. This is the
input to the S–R decomposition algorithm. (g) ERP image of ‘stimulus’ part and ‘response’ part, in which on each single trial, recovered R-component waveform
(or S-component waveform) is subtracted, respectively. Here, different colors in an ERP image encode different amplitude values. The black line in ‘response’
part is RT curve.

To simulate the background EEG, two autoregressive (AR)
processes with white noise are added into each trial. The coeffi-
cient of the AR2-processes is the same as that used in the paper
of Krieger et al. [20]. The first AR2 process mimics alpha-band
activity, and is specified as

v1(n) = 1.721 · v1(n − 1) − 0.819 · v1(n − 2) + u(n); (22)

the second AR2 process captures the nonstationarity of the back-
ground EEG, and is specified as

v2(n) = 1.979 · v2(n − 1) − 0.980 · v2(n − 2) + u(n). (23)

Here, u(n) represents zero-mean Gaussian white noise.
2) Performance Measures: Two measures, i.e., relative error

(RE) and correlation coefficient (COR), are used to evaluate the
performance of the various recovery algorithms. Suppose x̂ is
the estimated value for a true signal x, they are defined as

RE =
√

‖x − x̂‖2/‖x‖2 , COR = 〈x, x̂〉/‖x‖ · ‖x̂‖

where 〈·〉 denotes vector inner product. Here, waveforms (am-
plitude as a function of time) are considered as vectors in a (theo-
retically infinite-dimensional but practically finite-dimensional
with dimensionality N) vector space, with vector addition de-
fined by pointwise addition of evaluated function values.

In the simulations, the amount of noise is controlled by the
SNR, defined as

SNR = 10 · log10(‖signal‖2/‖noise‖2). (24)

B. Results

With stimulus onset time chosen as the reference zero, the
response time (τr ) relative to the stimulus time (τs) is taken
from a Gamma distribution with a mean of 300 ms and four dif-
ferent values of standard deviations (see below). Four different
SNR values were used (see below). For each condition of RT
distribution and SNR value, the simulation is repeated 50 times
to yield statistical averages. In every repeat, αk is randomly se-
lected within 0–2π, and Ak are random values between 1.0–2.0,
λs and λr are also random values between 5.0–7.0 and 4.0–6.0
respectively. Since, from (7), the smallest eigenvalue (we de-
note it λ0) of matrix H is below 1 and close to 0, while the
largest is close to 2, we only select regularization parameter β
that satisfies λ0 ≤ β2 ≤ 2 for GCV and L-corner methods.

Fig. 4 shows an example of decomposition results using the
Wiener deconvolution method, under the following simulation
parameters: γs = 1.2 and γr = 0.8, λs = 5.9 and λr = 4.7, αs =
0.36 and αr = −0.42, SNR = −10 dB, the standard deviation
of the RT distribution is 20 ms, and the number of trials 100.

Fig. 5 shows the RE and COR performance measures for vari-
ous noise control methods (Wiener deconvolution, LCV, GCV),
along with no noise control (waveforms directly calculated by
the original algorithm of Zhang [6] as given by (5) and (6)
above). We conclude that the results obtained from the GCV
method have larger errors for low SNR and smaller errors for
high-SNR conditions. On the other hand, using the L-corner
method, we can recover true signal in low-SNR condition, but
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Fig. 5. Comparison of the results of various noise control techniques (GCV,
L-corner, Wiener decovolution) under different SNR conditions (standard devi-
ation of RT is 20 ms, and total trial number is 200). Error bars represent standard
deviation over 50 repeated simulations.

Fig. 6. Performance of Wiener deconvolution method of noise control when
the number of trials are 100, 300, 500, and 700 (standard deviation of RT for
each condition is fixed at 20 ms) (Top), and when the standard deviation of RT
distribution is 10, 20, 30, and 40 ms (the number of trials for each condition is
fixed at 100) (Bottom).

not for high-SNR condition, since usually the “corner” does
not exist or cannot be determined with accuracy when SNR
is high. Our Wiener deconvolution method performed well for
both low- and high-SNR conditions—in fact, it is superior to
both the GCV and the L-corner method across all SNR values
tested.

To further explore the Wiener deconvolution approach for
noise control, we investigate how its performance degradation
(as SNR is increased) depends on the standard deviation of the
RT distribution and on the number of trials available for each
simulation condition. The results are depicted in Fig. 6. Gener-
ally, performance of our algorithm degraded as the trial number
decreased or as the standard deviation of the RT distribution
increased. However, the changes are gradual, so degradation is
graceful.

To confirm the stability of our algorithm, we choose the same
parameter values, as shown in Fig. 4, using an ensemble of 1000
trials, and then randomly subsample 100, 300, 500, 700, and 900
trials to apply our recovery algorithm to. The results are shown
in Fig. 7. Clearly, our method is quite robust with respect to
significant reduction of number of trials available as input to the
decomposition algorithm. This is important, since in many real
experiments, trial number per experimental condition cannot be
arbitrary large due to constraints on experimental design.

Lastly, we compare the results of two variants of Wiener
deconvolution, one where the filters were “coupled” and the
other “decoupled” (see Section II-D for details). Simulation
parameters: As = Ar = 1; γs = 2 and γr = 1, λs = 3.0778 and

Fig. 7. Comparison of the performance measures between direct calculation
(i.e., without noise control) and Wiener deconvolution method, using random
subsamples of 100, 300, 500, 700, and 900 trials from a fixed ensemble of 1000
trials.

Fig. 8. Comparison of signal-to-noise power spectra across different recovery
methods (power spectrum is normalized across frequencies). (Left) Power spec-
tra of the recovered signal by different recovery methods. (Right) Power spectra
of noise calculated by different recovery methods. Noise spectra are calculated
by subtracting, from each trial, the signal waveforms recovered from the various
methods, computing the power of the residue waveform (noise) of that trial, and
averaging across all trials. The blue curve is completely overlapped with the
black curve.

λr = 3.17, αs = 1.36 and αr =−1.42, the standard deviation of
the RT distribution is 20 ms, with SNR = –10 dB and the number
of trials 100, and the average results are calculated over 50
repeats. Power spectra of recovered signal by different methods
and mean power spectra of noise of all trials are shown in Fig. 8.
We can see that while Wiener deconvolution with uncoupled
filters almost perfectly recovered true power spectrum of the
simulated waveform and mean power spectra of noise of all
trials, power spectra at lower frequencies are underestimated in
the Wiener deconvolution with coupled filters and overestimated
in direct calculation method without noise control. This means
that the uncoupled Wiener filters are successful in controlling
for noise, especially at low-frequency range, which has been
problematic for applying Zhang [6].

IV. ILLUSTRATIVE EXAMPLE

A. Experimental Data

In this section, we apply our S–R decomposition algorithm
to experiment data on a Go/NoGo task. Data used were ob-
tained from an internet open source (http://www.sccn.ucsd.edu
/∼arno/fam2data/publicly_available_EEG_data.html) [21].

EEG was recorded by the experimenters with the 32-channel
system at a sampling rate of 1000 Hz, and Cz was taken as the
reference. Epochs contaminated with excessive eye movements,
blinks, muscle artifact, or amplifier blocking were manually
removed prior to averaging. The ERPs were re-referenced to the
grand average reference during offline data processing.
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Fig. 9. Result of S–R decomposition of Pz channel for one subject in a Go/NoGo task. (a) Recovered S- and R-component waveform, obtained with Wiener
deconvolution for noise control (red line) or without noise control (blue line), is compared with s-aligned ERP average, where 0 marks stimulus (or response)
onset. (b) ERP images of the empirical data-set and after S–R decomposition. (Top) ERP image of all single trials sorted according to ascending RT; black line is
the RT curve. (Bottom) ERP image of “stimulus” part and “response” part, in which recovered R-component or S-component has been, respectively, subtracted
from every single trial.

B. Results

1) Result From the Recognition Task: For demonstration
purpose, we first apply our Wiener deconvolution technique
to the recognition task (recognition of “hard” animal images) of
the aforementioned experiment. ERP data were taken from one
subject (fsa) at electrode Pz with a total 248 trials under analy-
sis. Results of Fig. 9 show that our Wiener deconvolution algo-
rithm (using uncoupled filters) offers a remarkable improvement
over the direct calculation method since, without noise control,
the latter method disproportionately magnified low-frequency
noise, and therefore, introduced significant distortions, causing
an artifact even in the baseline regions of the waveforms. Visu-
alizing the results using the ERP-image method (introduced by
Jung et al. [24]) show that our algorithm can faithfully recover
the underlying S- and R-component waveforms.

2) Result from the Classification Task: Here, we analyze
ERPs recorded from the categorization task. Fig. 10(a; left)
depicts the pure S-component waveform extracted from Go tri-
als, and compares it to s-aligned ERP averages on both Go and
NoGo trials across subjects on typical channels Fz, Pz, and Oz.
It can be seen that, for Fz channel, the N2 component is smaller
than that in the uncorrected s-aligned average; the P3 compo-
nent in Go trials resembles that in NoGo trials. Our results
thus reveal a significant amount of contamination, by response-
locked ERP component, in stimulus-aligned ERP average on Go
trials.

To validate our results, we split the real EEG data on Go
trials into two categories – those with short RTs and those with
long RTs (see Fig. 10(a), right). It is reasonable to assume that
this cross contamination would be less or weaker in long RT
trials (due to their larger separation) than in short RT trials
so the original s- and r-aligned averages would be closer to
“pure” S- and R-components in long RT trials than in short

RT trials. Our results (see Fig. 10(b)) show that for Fz and Oz
channels, RE values (s- and r-aligned averages versus recov-
ered S- and R-components) of long RT trials are significantly
smaller than RE values from short RT trials (Fz: t = 2.3; p =
0.04, Oz: t = 4.45; p = 0.001). For COR measure, however, no
significant difference is observed across all three channels, pre-
sumably because COR measures how similar two waveforms
are across the entire period and not only the period between
the stimulus onset and response onset. We then calculate the
L2-distance (see Fig. 10(c) light-colored bars) of the origi-
nal s- and r-aligned average waveforms (together forming the
y-vector) constructed from the short-RT trials versus those con-
structed from long-RT trials, and the L2-distance (see Fig. 10(c)
dark-colored bars) of the recovered S- and R-component wave-
forms (together forming the x-vector) constructed from the short
RT trials versus those constructed from the long-RT trials. Re-
sults show that the L2-distance (between the short- and long-RT
trials) is significantly larger in the uncorrected original wave-
forms than in the recovered waveforms across all three channels
(Fz: t = 7.1; p = 0, Pz: t = 2.66; p = 0.02, Oz: t = 4.94; p =
0.0003).

In order to illustrate spatial effect of our decomposition al-
gorithm, we choose three typical ERP components (P1—about
100 ms after stimulus onset; P3—about 350 ms after stimulus
onset; response—about 25 ms after response onset), and com-
pare the ERP topography before and after S–R decomposition,
see Fig. 10(d). Results show that for the P1 component, original
waveforms and the recovered waveforms have very similar
spatial distribution. For the P3 and response components,
significant differences are revealed in the prefrontal area and
posterior parietal areas, with much larger amplitudes, due to
S–R cross contamimation (statistical test results will be shown
in a separate report).
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Fig. 10. Result of S–R decomposition for the classification task. (a) (Left) Extracted pure S- and R-component waveforms for Go trials, and the stimulus-
aligned ERP averages for both Go and NoGo trials on channels Fz, Pz, and Oz across all subjects. (Right) Extracted pure S- and R-component waveform
for short-RT and long-RT trials, respectively. (b) Comparison of original s- and r-aligned ERP average with recovered S- and R-component for short-RT
trials and for long-RT trials, respectively. (c) Comparison of L2 distances between s- and r-aligned ERP average on short-RT trials with s- and r-aligned
ERP average on long-RT trials, and between recovered S- and R-components from short-RT trials and recovered S- and R-component from long-RT trials.
(d) Topography of the P1 component (100 ms), the P3 component (350 ms) and the response component (25 ms) of response onset of original average ERP and
recovered waveforms, respectively, for Go trials.

V. DISCUSSION

Our main aim in this report is to investigate the robustness of
the algorithm of Zhang [6] to decompose stimulus and response
components in ERP averages, when trial-by-trial variation in
RT raises issues in interpreting stimulus-aligned and response-
aligned average waveforms. The main challenge is that, due to
the ill-conditioned matrix H in (12), the solution is very suscep-
tible to noise at low frequency. Hence, recovery of component
waveforms is susceptible to distortion, where a large artifact
may be introduced in both the recovered S-component wave-
form and R-component waveform such that they approximately
cancel each other out. Put another way, there is a null space of
waveforms, with nonvanishing energy at low-frequency com-
ponents corresponding to the (approximately) zero eigenvalue
of the H matrix, that can be added to any recovered wave-
form, still leading to approximate satisfaction of (3) and (4), as
demonstrated by Fig. 2. This makes the recovery of S- and R-
component waveforms an ill-posed problem, and calls for suit-
able regularization and noise control. To this end we considered
Tikchnov regularization approach and the Wiener deconvolution
approach.

A. Tikhonov Regularization

It is common knowledge that the main challenge for Tikhonov
regularization is the choice of the regularization parameter β.

If β is too small, the problem is not sufficiently regularized for
noise to be properly controlled. If β is too large, then good-
ness of fit of the solution may be sacrificed. Obviously, optimal
choice of β represents a compromise, which depends heavily
on the SNR. In our simulation work, we considered the GCV
method and the L-corner method, and found (see Fig. 5) that
the GCV method works well in high-SNR condition but not in
low-SNR condition, while the L-corner method works well in
low-SNR condition but not in high-SNR condition. In practice,
as single-trial EEG data contain low SNR, so L-corner is pre-
ferred as the method to determine the regularization parameter.
However, our paradigm of recovering stimulus- and response-
locked components are based on ERP averages which contain
high-SNR. In such a case, the “corner” of the L-corner curve
may be hard to locate and determine, leading to practical diffi-
culty. On the other hand, the GCV method would rely on having
a large number of trials with identical statistical properties. In
the current problem, there is a large variation of RTs across tri-
als, and the number of trials with identical RT is very limited.
Therefore, the basic premise for the GCV method is at question.

B. Wiener Deconvolution

Wiener deconvolution is a very common method for noise
control in solving the inverse problem for linear input–output
systems. The main advantage is that there is no need to estimate
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the regularization parameter; instead, one only needs to estimate
power spectra for both signal and noise. In our current appli-
cation, two challenges emerge: 1) adapting the Wiener filter to
only the low-frequency components, and 2) estimating signal
and noise power spectra.

Our signal model treats noise that lie in the null space of the
H matrix (i.e., the directions corresponding to λ2) separately
from noise that lie in the other directions. Therefore, we ap-
ply separate Wiener filters after projecting the data into those
directions that make up such null space and those that are or-
thogonal to the null space, respectively. Signal and noise spectra
are estimated after this projection is done. This (what we call)
“decoupled Wiener filters” approach effectively controls noise
and avoids low-frequency artifact in a robust fashion. As a com-
parison, Wiener filters with coupling did not perform as well
(see Fig. 8).

The resulting algorithm, using uncoupled Wiener deconvolu-
tion filters, is shown to outperform GCV and L-corner methods
for all signal-to-noise levels (see Fig. 5), and is robust against
a wide range of variances in RT distribution (see Fig. 6, bot-
tom) and total trial numbers (see Fig. 6, top, and Fig. 7). The
recovered waveform matches the signal almost perfectly for our
simulated data (see Fig. 4), and sensibly in data from a real ERP
experiment (see Fig. 9 and Fig. 10). Taken together, the current
algorithm successfully accomplishes our goal of noise control
in S–R waveform decomposition.

C. Experiment Data in Go/NoGo Task

As an application of our method, we extracted the stimulus-
and response-locked ERP components for a Go/NoGo task. In
Go/NoGo tasks, two major ERP components have been of inter-
est to investigators, a negative potential within a latency range of
200–300 ms (N2 component), which is reported to have larger
amplitude in NoGo trials as compared with Go trials, and a
positive wave peaking within a latency range of 300–500 ms
(P3 component), which is reported to have larger amplitude for
frontal channels in the NoGo trials than in the Go trials [22],
[23]. Our analysis showed that there is a big difference be-
tween the original stimulus- and response-aligned EEG aver-
ages and recovered stimulus- and response-locked component
waveforms for channels Fz and Pz—P3 amplitude in the orig-
inal stimulus-/response-aligned ERP averages are larger than
the true underlying S-component/R-component waveforms. On
the other hand, there appears to be no difference in the P3 time
patch between recovered S-component waveform on Go sig-
nal and the stimulus-aligned ERP average on NoGo trial (see
Fig. 10, left column). This implies that the difference in P3
between Go and NoGo trials may result from the presence of
a response-locked component in Go trials, rather than any dif-
ference in stimulus processing between Go and NoGo trials.
That the P3 component (peaking around 350 ms post stimu-
lus onset) and the response component (peaking around 50 ms
post-response onset) suffer from stronger cross-contamination
is understandable since the mean RT is only 429 ms. In contrast,
the earlier component P1 suffers little cross-contamination, as
evidenced by the close resemblance of the spatial distributions

of the original stimulus-aligned ERP average and the recovered
stimulus-locked waveform. A more detailed report, including
tests of statistical significance for these effects, is forthcoming
(Yin and Zhang, in preparation).

D. Basic Assumption and Limitation

Our mathematical model [6] makes the fundamental assump-
tion that the true, underlying S- and R-components are the same
in each and every single trial, in terms of timing and overall
amplitude of the waveform. The issue of amplitude and la-
tency variation of an ERP component across single trials has
been addressed [25], and methods based on maximal likelihood
estimates [26] and Bayesian maximal a posteriori (MAP) esti-
mates [27] have been proposed. An examination of our analysis
reveals that we can easily relax the assumption on exact timing
and allow random latency jittering—in this case, the recovered
waveforms are simply the jittered version of the underlying S-
and R-component waveforms. The assumption on equal am-
plitude of the underlying waveform across individual trials is
more critical—it amounts to a multiplication of the RT distri-
bution by the RT-dependent amplitude modulation function and
hence will change depending on the RT distribution. Future re-
search will combine the template matching technique [27] with
our S–R decomposition technique to achieve better results in
extracting underlying waveforms that give rise to trial-by-trial
evoked potential.

Our signal model (see (3) and (4)) assumed that single-trial
waveforms result entirely from a stimulus-locked component
waveform and a response-locked component waveform, plus
noise. Based on this assumption, unique recovery of these com-
ponent waveforms is mathematically guaranteed. However, by
scrutinizing the results (ERP images in Fig. 9), one finds that the
recovered S-component waveform and R-component waveform
share considerable common activities (on a window from about
400 ms after stimulus onset). Such common activity seems to re-
flect a component waveform that may neither be time-locked to
stimulus nor to response (perhaps to stimulus-to-response “de-
cision”), but yet has been, unwarantedly, attributed to an S- and
R-component waveform. In [6], the possibility of a “decision-
related” component, which is time-locked to the putative tran-
sition of a stimulus processing and a response processing stage,
has been investigated. Future research will implement the so-
lution strategy outlined in that paper to isolate such decision-
related component if it exists.

VI. CONCLUSION

In this paper, we provided a robust method for decomposition
of stimulus-locked and response-locked components in ERP
recordings through careful noise control. Compared against dif-
ferent regularization-based methods, such as GCV and L-corner
methods, we found that denoising based on the Wiener deconvo-
lution technique, applied to those (low) frequency components
that fall under the null space of an operator (controlled by the
RT distribution), gives the most robust results. Our conclusion
is confirmed by both simulated data and experimental data from
a Go/NoGo task. The techniques described by this report will
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make the method of Zhang [6] practically applicable to datasets
where, despite considerable variation in trial-by-trial RTs, the
total number of trials may be limited.
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