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Reproducing Kernel Banach Spaces for Machine Learning

Haizhang Zhang, Yuesheng Xu and Jun Zhang

Abstract— Reproducing kernel Hilbert space (RKHS) meth-
ods have become powerful tools in machine learning. However,
their kernels, which measure similarity of inputs, are required
to be symmetric, constraining certain applications in practice.
Furthermore, the celebrated representer theorem only applies
to regularizers induced by the norm of an RKHS. To remove
these limitations, we introduce the notion of reproducing kernel
Banach spaces (RKBS) for pairs of reflexive Banach spaces of
functions by making use of semi-inner-products and the duality
mapping. As applications, we develop the framework of RKBS
standard learning schemes including minimal norm interpola-
tion, regularization network, and support vector machines. In
particular, existence, uniqueness and representer theorems are
established.

I. INTRODUCTION

This note serves as an extended abstract for our recent
work [1], which aims at building a theoretical basis for
developing kernel methods for learning in Banach spaces.

Learning a function from its finite samples is a funda-
mental science problem. The essence in achieving this is to
choose an appropriate measurement of similarities between
elements in the domain of the function. A recent trend in
machine learning is to use a positive definite kernel [2] to
measure the similarity between elements in an input space
X, [3]-[7]. A function K : X x X — C is called a positive
definite kernel if for all finite subsets x := {z; : j € N,,} C
X the matrix

K[x] := [K(zj,zk) : 7, k € N, (1)

is hermitian (especially symmetric, when K is real-valued)
and positive semi-definite. The reason of using positive
definite kernels to measure similarity lies in the celebrated
theoretical fact due to Mercer [8] that there is a bijective cor-
respondence between them and reproducing kernel Hilbert
spaces (RKHS). An RKHS H on X is a Hilbert space
of functions on X for which point evaluations are always
continuous linear functionals. One direction of the bijective
correspondence says that if K is a positive definite kernel
on X then there exists a unique RKHS H on X such that
K(x,-) € H for each € X and for all f € H and y € X
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where (-, )3 denotes the inner product on H. Conversely, if
‘H is an RKHS on X then there is a unique positive definite
kernel K on X such that {K(z,) : * € X} C H and
(2) holds. In light of this bijective correspondence, positive
definite kernels are usually called reproducing kernels.
By taking f := K(z,-) for x € X in equation (2), we get
that
K(z,y) = (K(z,"), K(y, ))n, z.y€X. (€)]

Thus K (x,y) is represented as an inner product on an RKHS.
This explains why K (z,y) is able to measure similarities
of x and y. The advantages brought by the use of an
RKHS include: (1) the inputs can be handled and explained
geometrically; (2) geometric objects such as hyperplanes are
provided by the RKHS for learning; (3) the powerful tool
of functional analysis applies, [3]. Based on the theory of
reproducing kernels, many effective schemes have been de-
veloped for the learning from finite samples, [3][4][5][9][10].
In particular, the widely used regularized learning algorithm
works by outputting a predictor function from the training
data {(z;,y;) : 7 € N,} € X x C as the minimizer of

min L(f(x;),v;) "‘NHJC”%(K’ )

where H denotes the RKHS corresponding to the positive
definite kernel K, L is a prescribed loss function, and p is
a positive regularization parameter.

This paper is motivated from machine learning in Banach
spaces. There are advantages of learning in Banach spaces
over in Hilbert spaces. Firstly, there is essentially only one
Hilbert space once the dimension of the space is fixed.
This follows from the well-known fact that any two Hilbert
spaces over C of the same dimension are isometrically
isomorphic. By contrast, for p # ¢ € [1,+o0], L0, 1]
and L?[0,1] are not isomorphic, namely, there does not
exist a bijective bounded linear mapping between them (see
[11, pp. 180]). Thus, Banach spaces possess much richer
geometric structures than Hilbert spaces. Secondly, in some
applications, a norm from a Banach space is invoked without
being induced from an inner product. For instance, it is
known that minimizing about the /7 norm on R? leads to
sparsity of the minimizer when p is close to 1 (see, for
example, [12]). In the extreme case that ¢ : R? — [0, +-00) is
strictly concave and p > 0, one can show that the minimizer
for

min{(z) + pllalls : x € RY}

has at most one nonzero component. The reason is that the
extreme points on a sphere in the /' norm must lie on
axes of the Euclidean coordinate system. Thirdly, RKHS
methods require symmetric kernels, which might be violated
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by certain data structures with asymmetric similarity. Finally,
one sometimes considers regularizers other than || - ||3,
as in (4), and needs to look for corresponding representer
theorems. Hence, there is a need to modify the algorithms
by adopting norms in Banach spaces.

There has been considerable work on learning in Banach
spaces in the literature. References [13]-[17] considered the
problem of minimizing a regularized functional of the form

LG y) + 6l fls), fEB,

JEN,

where B is Banach space, A; are in the dual B*, y; € C, £
is a loss function, and ¢ is a strictly increasing nonnegative
function. In particular, paper [16] considered learning in
a Besov space (a special type of Banach spaces). On-line
learning in finite dimensional Banach spaces was studied, for
example, in [18]. Learning of an L? function was considered
in [19]. Classifications in Banach spaces, and more generally
in metric spaces were discussed in [13][20][21][22][23].

The above discussion indicates that there is a need of
introducing the notion of reproducing kernel Banach spaces
for the systematic study of learning in Banach spaces. Such
a definition is expected to result in consequences similar to
those in an RKHS. A generalization of RKHS to non-Hilbert
spaces using point evaluation with kernels was proposed
in [24], although the spaces considered there might be too
general to have favorable properties of an RKHS. We shall
introduce the notion of reproducing kernel Banach spaces
and a general construction in Section 2. It will become clear
that the lack of an inner product may cause arbitrariness of
the associated reproducing kernel. To overcome this, we shall
establish in Section 3 s.i.p. reproducing kernel Banach spaces
by making use of semi-inner-products for normed vector
spaces first defined by G. Lumer [25] and further developed
by J. Giles [26] and B. Nath [27]. Semi-inner-products were
first used in the context of machine learning by Der and Lee
[20] to develop hard margin hyperplane classification in Ba-
nach spaces. The availability of a semi-inner-product makes
possible the study of basic properties of reproducing kernel
Banach spaces and their reproducing kernels. In the last
section, we shall develop in the framework of reproducing
kernel Banach spaces standard learning schemes including
minimal norm interpolation, regularization network, and sup-
port vector machines. Existence, uniqueness and representer
theorems will be proved. Due to space limitations, we omit
all proofs. Interested readers are referred to [1].

II. REPRODUCING KERNEL BANACH SPACES

Without specifically mentioned, all vector spaces in the
paper are assumed to be complex. Let X be a prescribed
input space. A normed vector space B is called a Banach
space of functions on X if it is a Banach space whose
elements are functions on X, and for each f € B, its norm
Il fllz in B vanishes if and only if f, as a function, vanishes
everywhere on X.

Influenced by the definition of RKHS, our first intuition
is to define a reproducing kernel Banach space (RKBS) as a

Banach space of functions on X on which point evaluations
are continuous linear functionals. If such a definition was
adopted then the first example that comes to our mind would
be C'[0, 1], the Banach space of continuous functions on [0, 1]
equipped with the maximum norm. It satisfies the definition.
However, the reproducing kernel for C|0, 1] would have to
be the delta distribution, which is not a function that can be
evaluated. This example suggests that the dual of an RKBS
should still consist of functions. Note that the dual space V'*
of a normed vector space V is a notion by construction. It
depends not only on the topology of V' but also on how the
following bilinear form on V' x V'*

(u,v")y =v"(u), veV, v eV

is defined. We make the convention throughout this paper
that whenever we write V* we mean that it along with the
above bilinear form has been chosen. In particular, if V' is
a Hilbert space then naturally elements in V'* are identified
with those in V' by the Riesz representation theorem [28].
In addition to requiring that the dual of an RKBS be a
space of functions, later on we will find it very convenient
to jump freely between a Banach space and its dual. For this
reason, we would like an RKBS B to be reflexive in the sense
that (B*)* = B. These considerations lead to the following
definition.

We call a reflexive Banach space B of functions on X a
reproducing kernel Banach space (RKBS) if B* is also a
Banach space of functions and point evaluations on both B
and B* are continuous.

It follows immediately from the definition that if 5 is an
RKBS on X then so is B*. Moreover, an RKHS is a special
RKBS. We shall show that there indeed exists a reproducing
kernel for an RKBS.

Theorem 2.1: Suppose that B is an RKBS on X. Then
there exists a unique function K : X x X — C such that the
following statements hold.

(a) For every x € X, K(-,x) € B* and
f(x)=(f,K(-,x))s, forall feB.
(b) For every x € X, K(x,-) € B and

f*(x) = (K(z,-), )5, forall f*¢c B*.

(¢) The linear span of {K(z,-) : © € X} is dense in B,

namely,

span{K(z,-):x € X} =8B
(d) The linear span of {K(-,x) : x € X} is dense in B,
namely,

span{K(-,z):z € X} = B". Q)

(e) For all x,y € X, K(z,y) = (K(z,-),K(-,y))s-

We call the function K in Theorem 2.1 the reproducing
kernel for the RKBS B. By Theorem 2.1, an RKBS has
exactly one reproducing kernel. However, different RKBS
may have the same reproducing kernel. Examples will be
given later. This results from a fundamental difference be-
tween Banach spaces and Hilbert spaces that a norm defined
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on a subset of a Banach space B whose linear span is dense
in B may not be extended to the whole space in a unique
way.

In the following, we shall characterize reproducing kernels
for RKBS. The characterization will at the same time provide
a convenient way of constructing reproducing kernels and
their corresponding RKBS.

Theorem 2.2: Let VW be a reflexive Banach space with
dual space W*. Suppose that there exists ® : X — W, and
" X — W* such that

span®(X) =W, sSpand*(X)=W". (6)
Then B := {(u, ®*(-))w : u € W} with norm
[[(w, @*(-))wlls == llullw

is an RKBS on X with the dual space B* := {(®(-),u")yy :
u* € W*} endowed with the norm

(@ (), wIwl

and the bilinear form

R (Y

((u, @*())w, (2(), u")w)s = (U, u™)w, uveEW, u* € W*.

Moreover, the reproducing kernel K for B is

We call the mappings ®,®* in Theorem 2.2 a pair of
feature maps for the reproducing kernel K. The spaces W,
W* are called the pair of feature spaces associated with
the feature maps for K. As a corollary to Theorem 2.2, we
obtain the following characterization of reproducing kernels
for RKBS.

Theorem 2.3: A function K : X x X — C is the
reproducing kernel of an RKBS on X if and only if it is
of the form (7), where W is a reflexive Banach space, and
mappings ® : X — W, ®* : X — W* satisfy (6).

To demonstrate how we get RKBS and their reproducing
kernels by Theorem 2.2, we now present a nontrivial example
of RKBS. Set X :=R, I:=[—1, 1], and p € (1, +00). We
make the convention that ¢ is always the conjugate number of
p, thatis, p~1 +¢~* = 1. Define W := LP(I), W* := L4(I)
and ®: X — W, &*: X — W* as

O(x)(t) := e 2™ d*(2)(t) ;=™ zeR, tel

Clearly, the density requirement (6) is satisfied. For f €
L'(R), its Fourier transform f is defined as

f(t) = / f(z)e @™y, t € R,
R
and its inverse Fourier transform f is defined by

() = /R F@)e2™tdn, 1 R.

The Fourier transform and the inverse Fourier transform can
be defined on temperate distributions.
By the construction described in Theorem 2.2, we obtain

B:={feCR):suppfCL feL’(D} ()

with norm || f||5 := Hf||Lp(H), and the dual

B*:={g9€C(R): suppg C I, g € LU(I)}

with norm ||g|
we have

B+ = |||l Lar). For each f € B and g € B*,

(f,9)8 = /Hf(t)g(t)dt.

The kernel K for B is given as
sinm(z —y)

m(z —y)
When p = ¢ = 2, B reduces to the classical space of
bandlimited functions.

In the above example, B is isometrically isomorphic to
L?(I). As mentioned in the introduction, L?(T) with different
p are not isomorphic to each other. As a result, for different
indices p the spaces B defined by (8) are essentially different.
However, we see that they all have the sinc function as
the reproducing kernel. In fact, if no further conditions are
imposed on an RKBS, its reproducing kernel can be rather
arbitrary. For instance, one can prove by Theorem 2.3 that if
the input space X is a finite set, then any nontrivial function
K on X x X is the reproducing kernel of some RKBS on
X. This fact reveals that due to the lack of an inner product,
the reproducing kernel for a general RKBS can not only
be nonsymmetric, non-positive definite, but also be arbitrary.
In order for reproducing kernels of RKBS to have desired
properties as those of RKHS, we may need to impose certain
structures on RKBS, which in some sense are substitutes
of the inner product for RKHS. For this purpose, we shall
adopt the semi-inner-product introduced by Lumer [25]. A
semi-inner-product possesses some but not all properties of
an inner product. Hilbert space type arguments and results
become available with the presence of a semi-inner-product.
We shall introduce the notion of semi-inner-product RKBS.

K(z,y) = (2(2), 2" (y))w = = sinc (z —y).

III. S.1.p. REPRODUCING KERNEL BANACH SPACES

The purpose of this section is to establish the notion of
semi-inner-product RKBS and study its properties. We start
with necessary preliminaries on semi-inner-products.

A. Semi-Inner-Products

A semi-inner-product on a vector space V is a function
(generally complex-valued), denoted by [-,-]y, on V x V
such that for all z,y,z € V and A € C

D [z +y,zlv = [, 2v + [y, 2]v,

2) [Az,ylv = Az, ylv,

3) [x,x]y > 0 for x # 0,

4) (Cauchy-Schwartz) |z, ylv|” < [z,]v [y, y]v.

In general, a semi-inner-product [, -]y~ does not satisfy the
conjugate symmetry [z, y]y = [y, ]y forall z,y € V. As a
consequence, there always exist z,y, z € V such that

[mvy + Z}V 7é [‘ray]V + [:Evz]V~

In fact, a semi-inner-product is always additive about the
second variable when it degenerates to an inner product.
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It was shown in [25] that a vector space V' with a semi-
inner-product is a normed space equipped with

1/2

|z||v = [z, z]/", zeV. )

Therefore, if a vector space V' has a semi-inner-product, we
always assume that its norm is induced by (9) and call V' an
s.i.p. space. Conversely, every normed vector space V has a
semi-inner-product that induces its norm by (9) and satisfies
the following homogeneous condition [26]

[z, \yly = Az, y]v, forall z,y € V, A€ C. (10)

Thus, we shall always impose the above property on semi-
inner-products. It is worthwhile to mention that if the
Cauchy-Schwartz inequality is replaced by a Holder inequal-
ity [27]

1/p

1
[z, ylv| < [z, 2]/ /4

[ya y]V

with p,q > 1, % + % = 1, then we have the notion of semi-
inner-product of order p generalizing [?]. In this case, (9)
becomes

lellv := [z,a]y/*, z€V.

while (10) becomes
[z, Mgy = AANP 2 [2,y]v, forall 2,y € V, A € C.

By the Cauchy-Schwartz inequality, if V' is an s.i.p. space
then for each x € V, y — [y,x]y is a continuous linear
functional on V. We denote this linear functional by z*.
Following this definition, we have that

[z, ylv =y"(z) = (z,y")v, z,y€V.

In general, a semi-inner-product for a normed vector
space may not be unique. However, a uniformly Fréchet
differentiable normed vector space always has a unique semi-
inner-product [26]. We shall impose one more condition
on an s.i.p. space that will lead to a Riesz representation
theorem. A normed vector space V is uniformly convex if
for all € > 0 there exists a 6 > 0 such that

|z+yl|y < 2—6 for all ||z||y = ||lylly = 1 with |z—y|v > e.

The space LP(Q,u), 1 < p < 400, on a measure space
(Q, F, ) is uniformly convex. In particular, by the paral-
lelogram law, any inner product space is uniformly convex.
By a remark in [28, pp. 134], a uniformly convex Banach
space is reflexive. If 53 is a uniformly convex and uniformly
Fréchet differentiable Banach space then so is 5%, [29]. The
important role of uniform convexity is displayed in the next
lemma [26].

Lemma 3.1: (Riesz Representation Theorem) Suppose
that B is a uniformly convex, uniformly Fréchet differentiable
Banach space. Then for each [ € B* there exists a unique
x € B such that f = x*, that is,

f(y) = [y,CC}B, y € B.

Moreover, ||f|z = ||z||5-
Let B be a uniformly convex and uniformly Fréchet
differentiable Banach space. By Lemma 3.1, z — x* defines

a bijection from B to B* that preserves the norm. Note
that this duality mapping is in general nonlinear. We call
x* the dual element of z. Since B* is uniformly Fréchet
differentiable, it has a unique semi-inner-product, which is
given by

[l‘*,y*]g* = [y,l']zg, T,y € B.

We close this subsection with a concrete example of uni-
formly convex and uniformly Fréchet differentiable Banach
space. Let (€2, F, ;1) be a measure space and B := LP (£, u1)
for some p € (1, +00). It is uniformly convex and uniformly
Fréchet differentiable with dual B* = L9(, ). For each
f € B, its dual element in B* is

i
[r=e
T
Consequently, the semi-inner-product on B is

_ Jo falglP2dp

-2
”9”2;:(97“)

[f 9l =9"(f)

With the above preparation, we shall study a special kind
of RKBS which have desired properties.

B. S.ip. RKBS

Let X be a prescribed input space. We call a uniformly
convex and uniformly Fréchet differentiable RKBS on X
an s.i.p. reproducing kernel Banach space (s.i.p. RKBS).
Again, we see immediately that an RKHS is an s.i.p. RKBS.
Also, the dual of an s.i.p. RKBS remains an s.i.p. RKBS.
An s.i.p. RKBS B is by definition uniformly Fréchet dif-
ferentiable. Therefore, it has a unique semi-inner-product,
which by Lemma 3.1 represents all the interaction between
B and B*. This leads to a more specific representation of
the reproducing kernel. Precisely, we have the following
consequences due essentially to Lemma 3.1.

Theorem 3.2: Let B be an s.i.p. RKBS on X and K its
reproducing kernel. Then there exists a unique function G :
X x X — C such that {G(z,-) :x € X} C B and

f(x) =[f,G(x,)]s, foral feB, zeX. (1)
Moreover, there holds the relationship
K(,z)=(G(z,)", z€X (12)

and

ff(x) =[K(x,-), flg, forall feB, ze€X.

We call the unique function G in Theorem 3.2 the s.i.p.
kernel of the s.i.p. RKBS B. It coincides with the reproduc-
ing kernel K when B is an RKHS. In general, when G = K
in Theorem 3.2, we call G an s.i.p. reproducing kernel. By
(11), an s.i.p. reproducing kernel G satisfies the following
generalization of (3)

G(l’,y) = [G(x’ ')vG(yv ')]Ba T,y € X. (13)

We shall give a characterization of an s.i.p. reproducing
kernel in terms of its corresponding feature map. To this
end, for a mapping ® from X to a uniformly convex and
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uniformly Fréchet differentiable Banach space W, we denote
by ®* the mapping from X to W* defined as

D" (z) = (P(x))*, ze€X.

Theorem 3.3: Let W be a uniformly convex and uni-
formly Fréchet differentiable Banach space and ® a mapping
from X to W such that

span®(X) =W, span®*(X)=W" (14)

Then B := {[u, ®(-)]w : u € W} equipped with

[T

= [u, v

B

and B* = {[®(-), uly : v € W} with
(00w (20| o= o

.

are uniformly convex and uniformly Fréchet differentiable
Banach spaces. And B* is the dual of B with the bilinear
form

(W7¢(va[®0%vhw)6::[unde w,vEW

Moreover, the s.i.p. kernel G of B is given by
G(xvy) = [@(w),CI)(y)]W, T,y € Xv

which coincides with its reproducing kernel K.

As a direct consequence of the above theorem, we have
the following characterization of s.i.p. reproducing kernels.

Theorem 3.4: A function G on X x X is an s.i.p. repro-
ducing kernel if and only if it is of the form (15), where ®
is a mapping from X to a uniformly convex and uniformly
Fréchet differentiable Banach space W satisfying (14).

The mapping ® and space W in the above theorem will
be called a feature map and feature space of the s.i.p.
reproducing kernel G, respectively.

By the duality relation (12) and the density condition (5),
the s.i.p kernel G of an s.i.p. RKBS B on X satisfies

span{(G(z,-))" 1z € X} = B".

15)

(16)

It is also of the form (13). By Theorem 3.4, G is identical
with the reproducing kernel K for B if and only if

span{G(z,):z € X} =B. (17)

If B is not a Hilbert space then the duality mapping from B
to B* is nonlinear. Thus, it may not preserve the density of a
linear span. As a result, (17) would not follow automatically
from (16). Here we remark that for most finite dimensional
s.i.p. RKBS, (16) implies (17). This is due to the well-known
fact that for all n € N, the set of n x n singular matrices has
Lebesgue measure zero in C™*". Therefore, the s.i.p. kernel
for most finite dimensional s.i.p. RKBS is the same as the
reproducing kernel. Nevertheless, an explicit example was
presented in [1] to demonstrate that the two kernels might
be different.

C. Properties of S.i.p. Reproducing Kernels

The existence of a semi-inner-product makes it possible
to study properties of RKBS and their reproducing kernels.
For illustration, we shall present three of them below.

1. Positive Definiteness. An n x n matrix M over a number
field F (C or R) is said to be positive semi-definite if for all
(¢j:jeN,) ek

Z Z CjﬁMjk > 0.

jEN, kEN,

We shall consider positive semi-definiteness of matrices G[x]
as defined in (1) for an s.i.p. reproducing kernel G on X.

Let ® : X — W be a feature map for G, that is, (15)
and (14) hold. By properties 3 and 4 in the definition of a
semi-inner-product, we have that

G(z,x) >0, z€ X (18)

and

|G(2,9)]* < G(z,2)G(y,y), z,yeX. (19

Notice that if a complex matrix is positive semi-definite then
it must be hermitian. Since a semi-inner-product is in general
not an inner product, we can not expect a complex s.i.p.
kernel to be positive definite. In the real case, inequalities
(18) and (19) imply that G[x] is positive semi-definite for all
x C X with cardinality less than or equal to two. However,
G[x] might cease to be positive semi-definite if x contains
more than two points. For instance, for the s.i.p. reproducing
kernel G defined for all z,y € R, := [0, +00) as

1+ ayp~t
A+y)5

the matrix G[x] is positive semi-definite for all x =
{z,y,z} C X if and only if p = 2.

By this example, non-positive semi-definiteness is a char-
acteristic of s.i.p. reproducing kernels for RKBS that distinct
them from reproducing kernels for RKHS.

2. Pointwise Convergence. If f, converges to f in an
s.i.p. RKBS with the s.i.p. kernel G then f,(z) converges
to f(z) for any z € X and the limit is uniform on the set
where G(z, ) is bounded.

3. Weak Universality. Suppose that X is metric space
and G is an s.i.p. reproducing kernel on X. We say that
G is universal if G is continuous on X x X and for all
compact subsets Z C X, span{G(z,-) : © € Z} is dense
in C(Z), [30][31]. Universality of a kernel ensures that it
can approximate any continuous target function uniformly
on compact subsets of the input space. This is crucial for the
consistence of the learning algorithms with the kernel. We
shall discuss the case when X is itself a compact metric
space. Here we are concerned with the ability of G to
approximate any continuous target function on X uniformly.
For this purpose, we call a continuous kernel G on a compact
metric space X weakly universal if span{G(z, ) : 2z € X}
is dense in C'(X). We shall present a characterization of

Gz, y) = [@(z), D(y)lw =

3524



weak universality. The result in the cases of positive definite
kernels and vector-valued positive definite kernels has been
proved respectively in [30] and [32].

Proposition 3.5: Let ® be a feature map from a compact
metric space X to W such that both ® : X — W and
" : X — W* are continuous. Then the s.i.p. reproducing
kernel G defined by (15) is continuous on X x X, and there
holds in C(X) the equality of subspaces

span{G(z,-) : x € X} = span{[u, D(-)]w : u € W}.
Consequently, G is weakly universal if and only if

spam{[u, () : u € W} = C(X),

Universality and other properties of s.i.p. reproducing
kernels will be treated specially in a future work. A main
purpose of this study to apply the tool of s.i.p. reproducing
kernels to learning in Banach spaces. To be specific, we shall
develop in the framework of s.i.p. RKBS several standard
learning schemes.

IV. APPLICATIONS TO MACHINE LEARNING

In this section, we assume that 3 is an s.i.p. RKBS on
X with the s.i.p. reproducing kernel G defined by a feature
®: X — W as in (15). We shall develop in this framework
several standard learning schemes including minimal norm
interpolation, regularization network, and support vector ma-
chines. For introduction and discussions of these widely used
algorithms in RKHS, see, for example, [3][4][5]1[9][33](34].

A. Minimal Norm Interpolation (MNI)

The minimal norm interpolation is to find, among all
functions in B that interpolate a prescribed set of points,
a function with minimal norm. Let x := {z; : j € N,}
be a fixed finite set of distinct points in X and set for each
y:=(yj:jeN,) eC"

I, ={feB: f(z;) =y, 7 €N, }.
Our purpose is to find fo € Z, such that

[folls = mf{[| flls : f € Zy}

provided that Z,, is nonempty. The set Z,, is nonempty for any
y € C" if and only if Gx := {G(-,z;) : j € N,,} is linearly
independent in B*. Existence, uniqueness and a representer
theorem for the solution are addressed in the following result.
For the representer theorem in learning with positive definite
kernels, see, for example, [35][36].

Theorem 4.1: (Representer Theorem for MNI) Suppose
that Gy is linearly independent in B*. Then for any y € C"
there exists a unique fo € 1y satisfying (20). If fo is the
solution of the minimal norm interpolation (20) then there
exists ¢ = (¢; : j € N,) € C" such that

fi =" G, xy).

JEN,

(20)

Conversely, a function of the form in the right hand side
above is the solution if and only if c satisfies

[G('@k), > CjG(waj)]
JEN, B

We conclude that under the condition that G is linearly
independent, the minimal norm interpolation problem (20)
has a unique solution, and finding the solution reduces to
solving the system (21) of equations about ¢ € C™. The
solution ¢ of (21) is unique by Theorem 4.1. Again, the
difference from the result for RKHS is that (21) is often
nonlinear about c since a semi-inner-product is generally
nonadditive about the second variable.

To see an explicit form of (21), we shall reformulate it in
terms of the feature map ® from X to W. Let B and B* be
identified as in Theorem 3.3. Then (21) has the equivalent
form

=yr, keNy,. 2D

|:(I)*($(}k), Z qu>*($j):| = Yk, keN,.
JEN, B

In the particular case that W = LP(Q,pu), p € (1,400)
on some measure space (€, F, ), and W* = L1(Q, u), the
above equation rewrites as

- q—2
Jo @ () D> ¢ (x;)| > ;" (x;)|  dp
JEN, JEN,
q—2
= Yk Z Cj(p*(l'j) y k S Nn
JEN,, La(Q,p)

B. Regularization Network (RN)

In this subsection, we consider learning a predictor func-
tion fy : X — C from a finite sample data z := {(z;,y;) :
j €N, } C X x C through a regularized learning algorithm.
Let £ : C x C — Ry be a loss function that is continuous
and convex about its first variable. For each f € B, we set

(1) = Y L(F(wy)y5) and E,(F) = E(f) + ull fI13:
JEN,

where i is a positive regularization parameter. The predictor

function learned from the sample data z will be taken as the

function fj such that

Eu(fo) = mf{Ea,(f) : | € B).

Existence and uniqueness of the minimizer of (22) were
proved in [1].

In the rest of this subsection, we shall consider the
regularization network in B, that is, the loss function L is
specified as

(22)

L(a,b) = |a—b*>, a,beC.

It is continuous and convex about the first variable. As

mentioned before, there is a unique minimizer for the regu-
larization network:

: 2 2

min > |f(x;) — y;|* + ullf3-

€B
! JENR

(23)
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Theorem 4.2: (Representer Theorem for RN) Let fy be
the minimizer of (23). Then there exists some ¢ € C™ such
that

fi =" G, x).

JEN,

If G« is linearly independent then the right hand side of the
above equation is the minimizer if and only if

M@_F |:G(7xk)7 Z C]G(,ZE]):| = Yk, ke Nn' (24)
j€Nn B
By Theorem 4.2, if G is linearly independent then the
minimizer of (23) can be obtained by solving (24), which
has a unique solution in this case. Using the feature map,
the system (24) has the following form

= Yk, ke N,.

e+ |2 (o0), Y (o)

JEN, B

As remarked before, this is in general nonlinear about c.

C. Support Vector Machines (SVM)

In this subsection, we assume that all the spaces are
over the field R of real numbers, and consider learning
a classifier from the data z := {(z;,y;) : j € N,} C
X x {—1,1}. We shall establish for this task three learning
algorithms in RKBS whose RKHS versions are well-known
[31[41[51[91(37].

1) Support Vector Machine Classification:
[37], we define the loss function

Following

L(a,y) = max{l —ay,0}, (a,y) € Rx {-1,1}

and minimize

min €, ,(f) = D max{l— f(x;)y;, 0} + pl fllz. 25

fe ;
JENR

If the minimizer fy exists then the classifier will be taken as
sgn fo. It can be verified that £ is convex and continuous
about the first variable. Therefore, there exists a unique
minimizer fo € B for (25).

We can prove the following representer theorem for fy
using the celebrated geometric consequence of the Hahn-
Banach theorem (see [28, pp. 111]) that in a normed vector
space, a closed convex subset and a point outside of it can
be strictly separated.

Theorem 4.3: (Representer Theorem for SVM) Let fj be
the minimizer of (25). Then f§ lies inside the closed convex
cone cone G, spanned by G, = {y;G(-,z;) : j € N, },
that is, there exist \j > 0 such that

£ =3 NGl ay).
eN

To solve (25), one sflbst"itutes by Theorem 4.3 equation
(26) into (25), which becomes a convex optimization about
A; subject to the constraint that A\; > 0, 7 € N,,. Standard
convex optimization algorithms thus apply.

(26)

2) Soft Margin Hyperplane Classification (SMHC): We
next focus on the soft margin hyperplane classification by
studying

. 1
lnf{2|w||$/v+05||el(Nn> rwEW,LERL,be R} @7
subject to

yi([@(x)),wlw +b) > 1—&;, jEN,.

Here, C' is a fixed positive constant controlling the tradeoff
between margin maximization and training error minimiza-
tion. If the minimizer (wo, §o,bo) € W x R% x R exists, the
classifier is taken as sgn ([®(-), wolw + bo)-

The same problem as (27) for the dual space W* is

. 1 * * * n
1nf{2|w ||)2/V*+CH€H51(N7L) cwt e W s fERJr, bER}
subject to

yi([w*, @*(x;)]w- +b) > 1—&;, jeEN,.

By considering this equivalent problem, we prove the
following result.

Theorem 4.4: (Representer Theorem for SMHC) Sup-
pose that {y; : j € N} = {—1,1}. Then the minimizer
wo of (27) uniquely exists. Moreover, the minimizer wqy of
(27) belongs to the closed convex cone spanned by y; ®(x;),
7 €N,

3) Hard Margin Hyperplane Classification: Consider in
the feature space WV the following hard margin classification
problem

inf{|lw|lw :w e W, beR} (28)

subject to
y]([q)(‘rj)aw]w + b) > 13 ] € Nn

Provided that the minimizer (wo,bp) € W X R exists, the
classifier is sgn ([®(-), wolw + bo)-

Hard margin classification in s.i.p. spaces was discussed
in [20]. Applying the results in our setting tells that if b
is fixed then (28) has a unique minimizer wy and wy €
cone{y,;®(z;) : j € N,}. As a corollary of Theorem 4.4,
we obtain here that if {y; : j € N,,} = {—1,1} then (28)
has a minimizer (wg, bg), where wq is unique and belongs
to cone{y;®(x;):j e Ny}

By Theorems 4.3 and 4.4, we come to the conclusion that
the support vector machine classifications discussed in this
subsection all reduce to a convex optimization problem.

V. CONCLUSION

We have introduced the notion of reproducing kernel Ba-
nach spaces and generalized under this setting the correspon-
dence between an RKHS and its reproducing kernel. S.i.p.
RKBS were specially treated by making use of semi-inner-
products and the duality mapping. A semi-inner-product
shares many useful properties of an inner product. These
properties and the general theory of semi-inner-products
make it possible to develop many learning algorithms in
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RKBS. As illustration, we discussed minimal norm interpo-
lation, regularization network, and support vector machines.
Various represented theorems were established.

This work attempts to provide an appropriate mathematical
foundation of kernel methods for learning in Banach spaces.
Many theoretical and practical issues are left for future
research. An immediate challenge is to construct a class of
useful RKBS and the corresponding reproducing kernels. By
the classical theory of RKHS, a function K is a reproducing
kernel if and only the finite matrix (1) is always hermitian and
positive semi-definite. This function property characteriza-
tion brings great convenience to the construction of positive
definite kernels. Thus, we ask what characteristics a function
must possess so that it is a reproducing kernel for some
RKBS. Properties of RKBS and their reproducing kernels
also deserve a systematic study. For the applications, we have
seen that minimum norm interpolation and regularization
network reduce to some system of nonlinear equations.
Dealing with the nonlinearity requires algorithms specially
designed for the underlying s.i.p. space. On the other hand,
support vector machines can be reformulated into certain
convex optimization problems. We are interested in further
careful analysis and efficient algorithms for these problems.
We shall return to these issues in future work.
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