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13.1 Introduction

Convex analysis has wide applications in science and engineering, such as
mechanics, optimization and control, theoretical statistics, mathematical eco-
nomics and game theory, and so on. It offers an analytic framework to treat
systems and phenomena that depart from linearity, based on an elegant math-
ematical characterization of the notion of “duality” (Rockafellar, 1970, 1974,
Ekeland and Temam, 1976). Recent work of David Gao (2000) further pro-
vided a comprehensive and unified treatment of duality principles in con-
vex and nonconvex systems, greatly enriching the theoretical foundation and
scope of applications.

Central to convex analysis is the Legendre—Fenchel transform, and duality
between two sets of variables defined on a pair of vector spaces that are dual
with respect to each other. When the convex functions involved are smooth,
these variables are in one-to-one correspondence; they can actually be viewed
as two coordinate systems on a certain Riemannian manifold. This is the
viewpoint from the so-called information geometry (Amari, 1985, Amari and
Nagaoka, 2000), and it is investigated at great length in this chapter.
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438 J. Zhang, H. Matsuzoe

The link between convex functions and Riemannian geometry is shown to
be severalfold. First, the pair of convex functions conjugate to one another
are the potential functions that induce the Riemannian metric. Second, the
two sets of variables are special coordinate systems of the manifold in that
they are “biorthogonal;” that is, the Jacobian of coordinate transformation
between them is precisely the Riemannian metric. It turns out that biorthog-
onal coordinates are global coordinates for a pair of dually flat connections
on the Riemannian manifold. Third, the Fenchel inequality provides a natu-
ral way to construct directed (“pseudo-") distance over the convex point set;
this is the Bregman divergence (a.k.a. canonical divergence), which gives rise
to the dually flat connections. Finally, the geometric structure (Riemannian
metric, conjugate/dual connections) can be induced from graph immersions
of a convex function into a higher-dimensional affine space.

Our goal in this chapter is to review such a geometric view of convex
functions and the associated conjugacy/duality, as well as provide some new
results. We review the background of convex analysis and Riemannian ge-
ometry (and affine hypersurface theory) in Section 13.2, with attention to
the well-established relation between biorthogonal coordinates and dually
flat (also called “Hessian”) manifolds. In Section 13.3, we develop the full-
fledged a-Hessian geometry, which extends the dually flat Hessian manifold
(a = £1), and give an example from theoretical statistics when such geome-
try arises; this parallels the generalization of the convex-induced divergence
function with arbitrary o (Zhang, 2004) from Bregman divergence (o = £1).
To close, we give a summary and discuss some open problems in Section 13.4.

13.2 Convex Functions and Riemannian Geometry

13.2.1 Convex Functions and the Associated
Divergence Functions

A strictly convex (or simply “convex”) function ¢: V C R" — R,z +— &(z)
is defined by

1-— 1

1-—- 1
@(y)@( 2&$+%y> >0 (13.1)
for all @ # y for any |a| <1 (the inequality sign is reversed when |a| > 1). In
this chapter, V' (and V below) identifies a subset of R™ both as a point set
and as a vector space. We assume @ to be sufficiently smooth (differentiable
up to fourth order). Define

B‘I‘(xvy) = QS(Q;) - @(y) - <$ - Y 8¢(y)>7 (132)
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where 00 = [019D,...,0,P] with §; = 0/0x" denotes the gradient valued
in the co-vector space V' C R", and (-, -),, denotes the canonical pairing of a

point/vector z = [x!,...,2"] € V and a point/co-vector u = [uy,...,u,] € V
(dual to V):

(@, u)y = qu (13.3)

(Where there is no danger of confusion, the subscript n in (-,-), is often
omitted.) A basic fact in convex analysis is that the necessary and sufficient
condition for a smooth function @ to be convex is

Bo(z,y) >0 (13.4)

for z # y. We remark that Bg is sometimes called “Bregman divergence”
(Bregman, 1967), widely used in convex optimization literature (Della Pietra
et al., 2002, Bauschke, 2003, Bauschke and Combettes, 2003, Bauschke et al.,
2003).

Zhang (2004) introduced the following family of functions on V x V as
indexed by o € R,

o 4 11—« 1+« 11—« 1+«
Dé)(x,y):m (T¢($)+T¢(y)—¢< 9 9C+Ty)>
(13.5)

Here DSV (2, y) is defined by taking limg .11

DY (x,y) = DY V(y,2) = Ba(z,y),
DS V(z,y) = DY (y,x) = Baly,2).

Note that Déa)(:n,y) satisfies the relation (called “referential duality” in
Zhang, 2006a)

D5 () = Dy (y, 2);
that is, exchanging the asymmetric status of the two points (in the directed
distance) amounts to a <> —a.

From its construction, Dé)a)(z,y) is nonnegative for |a| < 1 due to equa-
tion (13.1), and for |a] = 1 due to equation (13.4). For |a| > 1, assuming

(1—a)/2)z+ (1+ @) /2)y) € V, the nonnegativity of Dgl) (z,y) can also
be proven due to the inequality (13.1) reversing its sign. Therefore, we have

Lemma 13.1. For a smooth function @: V C R™ — R, the following condi-
tions are equivalent (for x,y € V).

(1) @ is strictly convez.
(it) DY (x,9) > 0.
(iii) DG (2,y) > 0.
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(iv) D(;O‘) (z,y) >0 for all |a| < 1.
(v) Déa)(ac,y) >0 for all || > 1.

Recall that, when & is convex, its convex conjugate oV CR" - Ris
defined through the Legendre—Fenchel transform:

P(u) = ((00) " (), u) — S((9P) " (u)), (13.6)

with @ = @ and (89) = (9®)~*. The function & is also convex, and through
which (13.4) precisely expresses the Fenchel inequality

®(z) + P(u) — (z,u) >0
forany z € V,u € V, with equality holding if and only if
u = (00)(z) = (00) (z) — z = (8D)(u) = (80) ' (u), (13.7)

or, in component form,
b . 0P
= - <— r = .
ox? ou;

(13.8)

Uq

With the aid of conjugate variables, we can introduce the “canonical di-
vergence” Ag: V xV — Ry (and Az: V x V — Ry ) where Ry = RT U {0}

Agp(z,v) = B(z) + D(v) — (z,v) = Az (v, ).
They are related to the Bregman divergence (13.2) via
By (x, (9) " (v) = As(w,v) = B5((09)(w),v),

Bregman (or canonical) divergence! provides a measure of directed distance
between two points; that is, it is nonnegative for all values of z,y € V', and
vanishes only when x = y. More formally, a divergence function D: V x V —
R, is a smooth function (differentiable up to third order) that satisfies

(i) D(z,y) > 0 Va,y € V with equality holding if and only if z = y,
(i) 0 D(z,y),=y, = ayiD(x,y)|x:y =0,
(i) 9,:0,i D(z,y)|

_ is negative definite.
a=y

Here 9,: denotes partial derivative with respect to the ith component of the
x-variable only.?

1 The divergence function, also called the “contrast function,” is a terminology arising out
of the theoretical statistics literature. It has nothing to do with the divergence operation
in vector calculus.

2 The reader should not confuse the shorthand notations 9; with 9,; (or 0Oyi): the former
operates on a function defined on V such as @: z — &(z) € R, whereas the latter operates
on a function defined on V' X V such as D: (z,y) — D(z,y) € R4.
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13.2.2 Differentiable Manifold: Metric and Connection
Structures

A differentiable manifold 901 is a space that locally “looks like” a Euclidean
space R™. By “looks like,” we mean that for any base (reference) point p €
M, there exists a bijective mapping (“coordinate functions”) between the
neighborhood of p (i.e., a patch of the manifold) and a subset V' of R™. By
locally, we mean that various such mappings must be smoothly related to one
another (if they are centered at the same reference point) or consistently glued
together (if they are centered at different reference points) and globally cover
the entire manifold. Below, we assume that a coordinate system is chosen
such that each point is indexed by x € V, with the origin as the reference
point.

A manifold is specified with certain structures. First, there is an inner-
product structure associated with tangent spaces of the manifold. This is
given by the metric tensor field g which is, when evaluated at each location x
(omitted in our notation), a symmetric bilinear form g(-, ) of tangent vectors
X,Y € T,(9M) ~ R™ such that g(X,X) is always positive for all nonzero
vectors X. In local coordinates with bases 0; = 9/92%, i = 1,...,n (i.e.,
X,Y are expressed as X = >, X'9;, Y =3, Y0;), the components of g are
denoted as

9ij(x) = 9(9i, 0)). (13.9)

The metric tensor allows us to define distance on a manifold as the shortest
curve (called “geodesic”) connecting two points. It also allows the measure-
ment of angles and hence defines orthogonality of a vector to a submanifold.
Projections of vectors to a lower-dimensional submanifold become possible
once a metric is given.

Second, there is a structure associated with the notion of “parallelism” of
vector fields on a manifold. This is given by the affine (linear) connection (or
simply “connection”) V, mapping two vector fields X and Y to a third one
denoted by Vy X : (X,Y) — Vy X. Intuitively, it represents the “intrinsic”
difference of the vector field X from its value at point x and its value at a
nearby point connected to  (in the direction given by Y'). Here “intrinsic”
means that vector comparison at two neighboring locations of the manifold is
through a process called “parallel transport,” whereby a vector’s components
are adjusted as it moves across points on the base manifold. Under the local
coordinate system with bases d; = 9/9x%, components of V can be written
out in “contravariant” form denoted I'}; (which is a collection of n® functions
of z),

Vo, 0y = T}o (13.10)
l

Under coordinate transform x — Z, the new set of functions I are related to
old ones I' via
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~ 0z’ Ox’ 02z o0zt

Lo (F) = ; 3 %—m%ﬁ;(x) + Semam | 3 (13.11)
A curve whose tangent vectors are intrinsically parallel along it is called an
“auto-parallel curve.”

As a primitive on a manifold, affine connections can be characterized in
terms of their torsion and curvature. The torsion T of a connection I", which
is a tensor itself, is given by the asymmetric part of the connection T'(9;, 0;) =
Vo,0; —Vp,0; = Yk Ti];@k, where Tilz. is its local representation® given as

Thi(x) = Ij(w) = Iji(x).

The curviness/flatness of a connection I is described by the curvature tensor
R, defined as

R(0;,04)0k = (Vo,Va;, —V,V,)0k.
Writing R(0;,0;)0k = >, Réﬂjal and substituting (13.10), the components of
the curvature tensor are?

Rly(o) = 228D _OTule) | Sm )1 a) = 3 T ()T o).

m

By definition, R}, ; 1s antisymmetric when ¢ < j. A connection is said to be
flat when Rfﬂ.j (x) = 0. Note that this is a tensorial condition, so that the
flatness of a connection V is a coordinate-independent property even though
the local expression of the connection (in terms of I') is highly coordinate-
dependent. For any flat connection, there exists a local coordinate system
under which I i’;- (z) =0 in a neighborhood; this is the affine coordinate for a
flat connection.

In the above discussions, metric and connections are treated as inducing
separate structures on a manifold. On a manifold where both are defined,
then it is convenient to express a connection I” in its “covariant” form

Tk = 9(Vo,05,00) = > guTi;. (13.12)
l

Although I’ Z’; is the more primitive quantity that does not involve the metric,
I';;,1 represents the projection of an intrinsically differentiated vector field
onto the manifold spanned by the bases 0. The covariant form of the curva-

3 Here and below, we restrict to holonomic coordinate systems in R™ only, where all
coordinate bases commute [9;, 9;] = 0 for @ # j.

4 This componentwise notation of curvature tensor here follows standard differential ge-
ometry textbooks, such as Nomizu and Sasaki (1994). On the other hand, information ge-
ometers, such as Amari and Nagaoka (2000), adopt the notation R(9;,0;)0, = 3, jokal,
with Rijkl = Zl R;?kgml-
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ture tensor is (cf. footnote 4)
Rikij = Zglm Ry
m

When the connection is torsion free, R;;; is antisymmetric when ¢ < j or
when k < [, and symmetric when (4,7) < (I, k). It is related to the Ricci
tensor Ric (to be defined in (13.27) below) via Rick; = >, , Rikijg'.

13.2.3 Dualistic Structure on a Manifold:
Compatibility Between Metric and Connection

A fundamental theorem of Riemannian geometry states that given a metric,
there is a unique connection (among the class of torsion-free connections)
that “preserves” the metric; that is, the following condition is satisfied:

ng(8:,0;) = g(V5,0:,0;) + 9(05, V5, 0;). (13.13)

Such a connection, denoted as @, is known as the Levi-Civita connection. Its
component forms, called Christoffel symbols, are determined by the compo-
nents of the metric tensor as (“Christoffel symbols of the second kind”)

kl
SN~ 9 (99a |, Ogii  Ogij
L= ; 2 <8xj s T Bl

and (“Christoffel symbols of the first kind”)

. 1 <agik agjk agij)
ik =g - .

oxI ozt oxk

The Levi-Civita connection is compatible with the metric, in the sense that
it treats tangent vectors of the shortest curves on a manifold as being parallel
(or equivalently, auto-parallel curves are also geodesics).

It turns out that one can define a kind of “compatibility” relation more
general than expressed by (13.13), by introducing the notion of “conjugacy”
(denoted by *) between two connections. A connection V* is said to be “con-
jugate” to V with respect to g if

0k9(0:,0;) = 9(Vo,0:,05) + 9(0;, V5, 07). (13.14)

Clearly, (V*)* = V. Moreover, @, which satisfies (13.13), is special in the
sense that it is self-conjugate (V)* = V.
Because metric tensor g provides a one-to-one mapping between points

in the tangent space (i.e., vectors) and points in the cotangent space (i.e.,
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co-vectors), (13.14) can also be seen as characterizing how co-vector fields are
to be parallel-transported in order to preserve their dual pairing (-, ) with
vector fields.

Writing out (13.14) explicitly,

59ij _
ozk

where analogous to (13.10) and (13.12),

V5,0, => T o
l

Fki,j +F1:j,i7 (13.15)

so that
I =9(V5,06,0) = > gali.
1
In the following, a manifold 9t with a metric g and a pair of conjugate
connections I', I'* with respect to g is called a “Riemannian manifold with
dualistic structure,” and denoted by {9, g, I, I'*}. Obviously, I" and I'* sat-
isfy the relation (in either covariant or contravariant forms)

~ 1
L=g(I+1).

More generally, in information geometry, a one-parameter family of affine
connections I"(®) | called “a-connections” (a € R), is introduced (Amari, 1985,
Amari and Nagaoka, 2000)

1 1-—
+aF+ o

(@ —
2 2

re. (13.16)

Obviously, I = I,

It can be shown that the curvatures Ryyij, Rjj,; for the pair of conjugate
connections I, I'* satisfy

Ripij = Rl*kij'

So, I' is flat if and only if I'™* is flat. In this case, the manifold is said to be
“dually flat.” When I', I'* are dually flat, then I'(®) is called “a-transitively
flat” (Uohashi, 2002). In such case, {9, g, '™, '} is called an “a-Hes-
sian manifold,” or a manifold with a-Hessian structure.

13.2.4 Biorthogonal Coordinate Transformation

Consider coordinate transform x — u,
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i 0 ozt 9 "
0 :a_ul_ l 0_’&1@_2:(] 31,

where the Jacobian matrix J is given by

Ou; . ox' . .
Jij(x) = gujv I (u) = 82, > b =4, (13.17)
J 1

where 517 is the Kronecker delta (taking the value of 1 when ¢ = j and 0
otherwise). If the new coordinate system u = [ug, ..., u,]| (with components
expressed by subscripts) is such that

J”(.’L‘) = gij(.’E), (1318)

then the z-coordinate system and the u-coordinate system are said to be
“biorthogonal” to each other because, from the definition of a metric tensor
(13.9),

9(0:,07) = g(9;, Y _JV9) => " Jg(0i,0) =>_ T gu =6l
1 1 1
In such a case, denote N o
g7 (u) = g(0", &), (13.19)

which equals J% (u), the Jacobian of the inverse coordinate transform u ~ .
Also introduce the (contravariant version) of the affine connection I under
the u-coordinate system and denote it by an unconventional notation I7®
defined by

Vord® =Y I7°0"
t
similarly 17" is defined via

Vpe0® =Y Iy0"
t

The covariant version of the affine connections is denoted by superscripted
I and I'™:

[k () = g(Vpud?,0%), Tk (u) = g(V5,07,0%). (13.20)
As in (13.11), the affine connections in u-coordinates (expressed in super-

script) and in z-coordinates (expressed in subscript) are related via

]"75’

2k
_Z ox” 033 0“x Ouy, (13.21)

auz 5‘u (@) + Ou,Oug Ot
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and

Z Ox" Ox° Oxt 9%zt

TS t
r Ou,; Buj Ouy Lijk() + Ou,Oug

(13.22)

Similar relations hold between I'7"*(u) and I7(z), and between I™*"**(u)
and I ij, k( )
Analogous to (13.15), we have the following identity,
Pzt g™ (u)
AusOu,  Ousg

_ I—vrs,t(u) _’_F*ts7r(u),

which leads to

Proposition 13.1. Under biorthogonal coordinates, the component forms of
the metric tensor satisfy

ng u)gr; (¥) = 0

while the pair of conjugate connections I', I'* satisfies

reer(u) = = g™ (u)g’* (u)g™ (u)Fij () (13.23)
N
and _
Iy (u) = —Zg”(U)F}r(ﬂv)- (13.24)

Next, we discuss the conditions under which biorthogonal coordinates exist
on an arbitrary Riemannian manifold. From its definition (13.18), we can
easily show that

Lemma 13.2. A Riemannian manifold M with metric g;; admits biorthog-
onal coordinates if and only if Ogi; /0x" is totally symmetric,®
9gij(x) _ Ogik(x)

= —ai (13.25)

That (13.25) is satisfied for biorthogonal coordinates is evident by virtue
of (13.17) and (13.18). Conversely, given (13.25), there must be n functions
wi(x), i =1,2,...,n such that

agl:y(f ) 9ij(x) = gji(z) = aqu(;c !

5 Note that (Bgij/axk) = 0;(9(0:,05)) # (0kg)(0i,05), the latter is necessarily totally
symmetric whenever there exist a pair of torsion-free connections I, I'* that are conjugate
with respect to g.
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The above identity, in turn, implies that there exists a function @ such that
u; = 0;® and, by positive definiteness of g;;, ¢ would have to be a strictly
convex function! In this case, the z- and u-variables satisfy (13.7), and the
pair of convex functions, @ and its conjugate 5, is related to g;; and g% by

0*d(z i 2d(u
gyl = 22D oy = THD
10U

It follows from Lemma 13.2 that a necessary and sufficient condition
for a Riemannian manifold to admit biorthogonal coordinates is that its
Levi-Civita connection is given by

Fop(w) = 9gir | 99k 0gi; | _ 19gi
k% OxJ Oxt  Oxk 2 Oxk”

From this, the following can be shown.

Proposition 13.2. A Riemannian manifold {9M, g} admits a pair of bior-
thogonal coordinates x and w if and only if there exists a pair of conjugate
connections vy and v* such that v;j x(x) = 0, v*">'(u) = 0. In other words,
biorthogonal coordinates are affine coordinates for dually flat conjugate con-
nections.

In fact, we can now define a pair of torsion-free connections by

. dg;;
Yijk(w) =0, 'Yij,k(x) = #
and show that they are conjugate with respect to g; that is, they satisfy

(13.14). This is to say that we select an affine connection v such that z is its
affine coordinate. From (13.22), when +* is expressed in u-coordinates,

89& 9gij(x) | 09" (u)
*rs t zr J
Zg 8Ut 8x’“ + aur

—g " ( %(t)gij(mo + 6gat;(ru)

0975 (u 39“(%) _
Zé o =0.

t 8“7‘

This implies that u is an affine coordinate system with respect to v*. There-
fore, biorthogonal coordinates are affine coordinates for a pair of dually flat
connections. Such a manifold {9M,g,7v,7*} is called a “Hessian manifold”
(Shima, 2007, Shima and Yagi, 1997). It is a special case of the a-Hessian
manifold (introduced in Section 13.3.2).
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13.2.5 Equiaffine Structure and Parallel Volume Form
on a Manzifold

For a restrictive class of connections, called “equiaffine” connections, the
manifold 9t may admit uniquely a parallel volume form w(zx). Here, a volume
form is a skew-symmetric multilinear map from n linearly independent vectors
to a nonzero scalar, and “parallel” is in the sense that (O;w)(91,...,0,) =0
where

(Oiw) (01, ... ,0n) = (Vo,w)(01,...,0)

or
Ologw(x)
Uiy —
§l Th(a) = ——==. (13.26)

Whether a connection is equiaffine is related to the so-called Ricci tensor
Ric, defined as the contraction of the curvature tensor R,

Ricij(z) = > Rf;(@). (13.27)
k

For a torsion-free connection I z’j =TI ﬁ,
ture tensor R to the above yields

. ) 0 0
Ric;; — Ricj; = 90 <Z F]ll(af)> = 9 (Z Ffz(@) (13.28)
1 !
= ZRZU-
k

One immediately sees that the existence of a function w satisfying (13.26)
is equivalent to the right side of (13.28) being identically zero. In other
words, the necessary and sufficient condition for a torsion-free connection

applying the definition of the curva-
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to be equiaffine is that its Ricci tensor is symmetric, Ric;; = Ricj;, or equiv-
alently, >, R,’jij =0.

Making use of (13.26), it is easy to show that the parallel volume form of
a Levi-Civita connection I is given by

W(x) = y/detlgij(x)] — W(u) = /det[g¥ (u)].

The parallel volume forms w, w* associated with I" and I'* satisfy (apart from
a positive, multiplicative constant)

(x))? = det[gi;(x)], (13.29)
(u))? = det[g” (u)). (13.30)
Let us now consider the parallel volume forms under biorthogonal coordi-

nates. Contracting the indices ¢ with = in (13.24), and invoking (13.26), we
obtain

Ologw™(u) Oxd dlogw(x)  dlogw*(u) = Ologw(w(u))
T Ous Z Ous Oxi Oug + Ous =0
After integration,
w*(u) w(x) = const. (13.31)
From (13.29)~(13.31),
w(u)w*(x) = const. (13.32)

The relations (13.31) and (13.32) indicate that the volume forms of the
pair of conjugate connections, when expressed in biorthogonal coordinates
respectively, are inversely proportional to each other. Note that w(z) =
w(O1y...,0,) and w*(x) = w*(01,...,0n), as skew-symmetric multilinear
maps, transform to w(u) = w(d,...,d") and w*(u) = w*(d1,...,0") via

w(z) = det[J;;(z)]w(u) «— w*(z) = det[JY (u)|w* (u),

where det[J;;(z)] = det[g;;(2)] = (det[J¥ (w)]) ™! = (det[g"” (u)])~".

When the pair of equiaffine connections I', I'* are further assumed to be
dually flat, then the entire family of a-connections I'(®) given by (13.16) are
equiaffine (Takeuchi and Amari, 2005, Matsuzoe et al., 2006, Zhang, 2007).
The I'®-parallel volume element w(® can be shown to be given by

(@) = (14027 (1=0)/2,

Clearly,

W (2)w = (2) = det[gi; ()] «— W (W)~ (u) = det[g” (u)].
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13.2.6 Affine Hypersurface Immersion (of
Co-Dimension One)

We next discuss dualistic geometry from convex functions as related to hy-
persurfaces in affine space, which is the subject of study in affine differential
geometry (Simon et al., 1991, Nomizu and Sasaki, 1994).

Let A" be the standard affine space of dimension n + 1, and 9 an
n-dimensional manifold immersed into A”t! as a hypersurface with affine
coordinates f = [f!,..., f*T1]; that is, f: M — A"l Assume that the
local coordinate system on Mis z = [wl, cox] Let € = [€Y,..., €7 be
a vector field defined on 9 that is “transversal,” that is, nowhere tangential
to M. Denote the vector space associated with A" as V, with dim(V) =
n + 1, and the canonical pairing of V' with its dual vector space 1% (with
dim(V) =n+1) as (, Ypp1; see (13.3). The duplet {f, £} is called an “affine
immersion.” In local coordinates, they can be explicitly written as functions
of z: {f(x),&(x)}, where f is valued in A and & is valued in V.

Because the tangent space T,(90) is spanned by

afe afe _
{{axl,...,axn},a—l,...,n—i—l},

we may decompose the second derivatives of f as

0% fe afe o
9270w Z Tham +hpt  (i=1...n), (13.33)
where h;; = hj; (called “induced bilinear form” or “affine fundamental

form”); if f is convex, then h;; is positive definite. The set of coefficients
I, 113 is called the “induced connection” on 91, because it is induced by a flat
connection on A"t!. Under coordinate transform, these coefficients can be
shown to transform according to (13.21). Similarly, decompose the derivative

of &% as

o¢a B)
8531, = ZS’“ f + T, (13.34)

”

where S¥ is known as the “affine shape operator,” and 7; is a 1-form on 9
called the “transversal connection form;” when 7 = 0 everywhere on 9, the
affine immersion {f, £} is called “equiaffine.”

We define a volume form w on 9 arising out of the immersion of {f,¢},

w(al, .. ,8n) = Det(81f, .. ~7anfa 5)5

where Det is the determinant form on A" and 8;f is the vector field
Oif = [0;fY,...,0:f""1]. The covariant derivative of w is given as follows
(see Nomizu and Sasaki, 1994):
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(Vaiw)(&, ey 8n) = Tiw(ﬁl, . 78n>

This implies that the induced volume form w is parallel with respect to the
induced connection V if and only if {f,£} is equiaffine: 7 = 0.

In order to consider the geometry induced from convex functions and bi-
orthogonal coordinates, we consider a special kind of affine immersion called
“graph immersion:”

f=[zt ... 2" &(z)], ¢=10,...,0,1], (13.35)

where @ is some nondegenerate (in particular, convex) function. Applying
(13.33), we obtain the induced connection I'%(x) = 0 and the affine funda-
mental form h;;(z) as the Hessian of &,

0?®(z)
0xi0xI”

hij(x) =

Thus the geometry of a graph affine immersion coincides with the Hessian
geometry induced from a convex function. Because the transversal vector field
¢ is parallel along f, from (13.34), obviously 9t has an equiaffine structure.

We can define the “dual” of graph immersion, { f,€ } mapping M to A" +!
as another graph. Here f = [u1,.. un,ﬁﬁ( )], with @ and u given by (13.6)
and (13.7), respectively. The transversal vector field £ = (0, ...,0,1) is valued
in 17, the dual vector space. The affine fundamental form h is

2P (u)

R ) = S
10U

Because of the identity

92D (u Z Ox* a_xl 0?®(x)
3u28u3 Ou; duj Ozkoxt’

such affine fundamental form transforms as a 0-2 tensor

(even though second derivatives in general do not transform in a tensorlike
fashion). This means that for dual graph immersions {f, ¢} and {f, 3 }, the
induced affine fundamental form is one and the same h = h. The induced
objects {9, h, I, ['*} form a Hessian structure (i.e., induced connections are
dually flat).

More generally, for an arbitrary affine immersion, we can introduce the
notion of “co-normal mapping,” defined as (: 9t — V as
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(€(2), () ns1 =1, (13.36)
(0if(x),¢())ps1 =0 (i=1,...,n); (13.37)
that is,
n+1 n+1 a
Zfa(x)ga(x)zl, %(w)(a(m)zo (t=1,...,n).
a=1 a=1

Intuitively, the co-normal map is a uniquely defined “normal” vector of the
tangent hyperplane at f(x). (This property comes from (13.37).) The co-
normal map is not a unit vector; the “length” of the map is normalized by
(13.36). Note that the word “length” and “normal” are in quotation marks
because no metric has ever been introduced on V or ‘7; normalization is
through the pairing operation (-, ).

When {f,&} is equiaffine, then the co-normal map ¢ can be viewed as an
immersion from M to A"*! (Nomizu and Sasaki, 1994, p. 57). Specifically,
¢(9M) is taken to be (the negative of) the positional vector field (with respect
to a center point) in addition to being the transversal vector field. In this case
{f,¢} = {—=¢,¢} is an affine immersion, called the “co-normal immersion” of
{f,&}. We also call {—(, (} a “centroaffine immersion” because the immersion
has a center, with the position vector —( (the first element in the duplet)
transversal to its image 991. We denote by f, E, T, g, ... the induced objects
of {—(, (}. Then we have the following formulae (see Simon et al., 1991);

Diji = —Thij + Okhijs (13.38)
n
hij =" Sfhuj, (13.39)
k=1
7 =0,
Si=ai

Equation (13.38) implies that V and V are mutually conjugate with respect
to h. Note that I" and I’ are, respectively, the induced connections when 90t
is immersed into A"t in two distinct ways, {f,¢} and {—(,(}.

Suppose that {f,£} is a graph affine immersion with respect to some con-
vex function, and {—¢, ¢} is the co-normal immersion of {f,£}. From (13.34),
the affine shape operator S of {f,£} vanishes. This implies that h =0 from
(13.39). Thus, although the co-normal map of an equiaffine immersion is a
centroaffine hypersurface in A”*!, the co-normal map of graph immersion
has its image lie on an affine hyperplane in A"*1.

For an affine immersion {f,£} and the co-normal immersion {—(,(}, we
define the “geometric divergence” G on any two points on 9t by
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n+1

G(x,y) = (f(@) = F), CW)nir = D_(F*@) = [“®)a(y).

a=1

For a graph immersion given by (13.35), we can explicitly solve for ¢ from
(13.36) and (13.37):
C=[-0?,...,—0,9,1].

Therefore, the expression for geometric divergence becomes

G(z,y) = —(x —y,(02)(y))n + P(z) — P(y) = Ba(z,y);

geometric divergence is nothing but Bregman divergence (13.2), see Kurose
(1994) and Matsuzoe (1998).

13.2.7 Centroaffine Immersion of Co-Dimension Two

Now we consider affine immersion of M (with dim(9t) = n) into a co-dimen-
sion two affine space A"*2 (rather than the co-dimension one affine space
A™*1 as discussed in the last section). In this case, in addition to specifying
the immersion, denoted by f: 9t — A" 2, we need to specify two noncollinear
vector fields, both “transversal” on 9. The vector space is denoted as V' with
dim(V') = n+ 2; the dual vector space is denoted as V with dim(V) = n+ 2.
To simply the situation, we consider centroaffine immersion such that one of
the transversal vector fields is the (negative of the) positional vector —f and
the other is, as before, denoted &, that is, the affine immersion is denoted as
{f,—f,€}; the elements are valued in A"T2 V.V respectively. The second
derivatives of f and £ are decomposed as follows (for 4,7 = 1,...,n; a =
1,...,n+2);

ana - k afa a a
oridxi ;FM Ok + hi " —tii fO,

o€” 8f“ a “
% = Zsk 15 Kif .

As in affine immersion of co-dimension one, we call I’ Z’; the “induced con-
nection,” h;; the “affine fundamental form,” 7; the “transversal connection
form,” and S¥ the “affine shape operator.” Below, we assume that A is posi-
tive definite (i.e., f is strictly convex) and 7 = 0 (the centroaffine immersion
is equiaffine).

We denote the “dual map” of {f, —f,£} as another centroaffine map tak-
ing the form of {f, —f,(}, where the elements are valued in A"12, ‘7, ‘N/,
respectively; f and ( are specified by
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or explicitly

n+2 n+2

S h@e@=1 3 @@ =0,

a=1 a=1

n+2 ~ n+2

> fala)f(x) =0, > lal@) (@) =1, (13.40)

a=1 a=1

n+2 n+2

0f“ af* .

Zfa 5 (@) =0, ;Ca(x) 55(@) =0 (i=1...n). (1341)

Denote the induced objects as I , E, T, ...; we have the following formulae

(see Nomizu and Sasaki, 1994, Matsuzoe, 1998);

Orhij = Ty + fkj,z’;
hij = hij, (13.42)

7, = 0.

We remark that (13.42) is different from (13.39) of the co-dimension one case.
If a centroaffine immersion { f, — f, £} induces {g, I'} on 9, then the dual map
{f,—f,¢} induces {g, f} on 9. This implies that the theory of centroaffine
immersions of co-dimension two is more useful than that of affine immersions
of co-dimension one when we discuss the duality of statistical manifold.
Consider the special case of graph immersion (of co-dimension two)

{fa 7fa€}; that iS,
f=t. .., 2" &(x),1], £=][0,...,0,1,0], (13.43)

where @(z) is some convex function. If {f, —f, £} has other representations,
they are centroaffinely congruent (linearly congruent) to (13.43); hence it
suffices to consider (13.43). o

From straightforward calculations, the dual map {f,—f,(} of {f,—f,&}
takes the form

f=[uy,...,—un,1,®w), ¢=10,...,0,0,1]. (13.44)

The left side equation in (13.40) then gives

— i ziu; 4+ B(x) + B(u) = 0,
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and the left side equation in (13.41) is

oP
—Uu; + %(SE) =0.
Thus, @ is the convex conjugate of @ as in (13.6), and u = [uq, ..., u,] is the

conjugate variable as in (13.7). For graph immersion, it is easy to check that
I 5 =0, Sf =0,t; =0, % =0, k; = 0 for all indices and

_0*0(x)
T Qxidxd”

hij ()

The same is true for induced objects in dual immersion.

Just as in the case of equiaffine immersion {f,£} of co-dimension one
and the associated co-normal map {—(,(}, we can construct the geometric
divergence G on 901 for centroaffine immersion {f, —f, £} of co-dimension two
and the associated dual map {f,—f, (}:

Gz, y) = (fW), f(x) = F(Y))n+2
= <f(y)a (@) nt2

= Z fa(y)fa(m)'

For graph immersion, we substitute f and f in (13.43) and (13.44) to yield

G(z,y) = — (2, (0D)(y))n + D(x) + D((0D)(y))
= Bo(z,y).

In both the equiaffine immersion of co-dimension one (discussed in Sec-
tion 13.2.6) and centroaffine immersion of co-dimension two (discussed here),
the notion of geometric divergence is a generalization of the Bregman (canon-
ical) divergence on a dually flat space.

Proposition 13.3. (Kurose, 1994, Matsuzoe, 1998) Let & be a strictly
conver function on R™. Then geometric divergence G(z,y): V xV — R in-
duced by the affine immersion of @ as a graph in A" or by the centroaffine
immersion of & as a graph in A"T? equals the Bregman divergence Bg(x,y).

13.3 The a-Hessian Structure Associated with
Convex-Induced Divergence

The discussion at the end of the last section anticipate a close relation between
convex functions and the Riemannian structure on a differentiable manifold
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whose coordinates are the variables of the convex functions. On such a mani-
fold, divergence functions take the role of pseudo-distance functions that are
nonnegative but need not be symmetric. That dualistic Riemannian manifold
structures can be induced from a divergence function was first demonstrated
by S. Eguchi.

Lemma 13.3. (Eguchi, 1983, 1992) A divergence function induces a Rie-
mannian metric g and a pair of conjugate connections I', I'* given as

9ij(@) = =040, D(@,y)|,_, ; (13.45)
Lijr(z) = —8z18zj8ykD(x,y)’y:w; (13.46)
bk (@) = =00, 0 D(@,y)| - (13.47)

It is easily verifiable that g;;, [k, I';; i, as given above satisfy (13.15). Fur-
thermore, under arbitrary coordinate transform, these quantities behave
properly as desired. Equations (13.45)—(13.47) link a divergence function D
to the dualistic Riemannian structure {9, g, I, I'*}.

Applying Lemma 13.3 to Bregman divergence Bg(x,y) given by (13.2)
yields

0?®d(x)
gzj($) = O OxI
and
. PO (x)
Ljk(x) =0, sk(@) = DD Ok

Calculating their curvature tensors shows the pair of connections are dually
flat. It is commonly referred to, in affine geometry literature, as the “Hessian
manifold” (see Section 13.2.4), although in the study by Shima (2007), the po-
tential function @ need not be convex but only semidefinite. In u-coordinates,
these geometric quantities can be expressed as

2P (u)
g (u) = ,
8ui8uj

y y 09 (u)
*1ij,k — ij,k —_
Pt =0, D) = SErE

where @ is the convex conjugate of @. Below, this link from convex functions
to Riemannian manifold is explored in greater detail.

13.3.1 The a-Hessian Geometry

We start by reviewing a main result from Zhang (2004) linking the divergence

function Dfpa) (x,y) defined in (13.5) and the a-Hessian structure.
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Proposition 13.4. (Zhang, 2004) The manifold {IN, gx,Féa‘), EE,‘“)}G as-
soctated with Dg(;)(x,y) s given by

gij(w) = Pij (13.48)

and 4 -
« -« * (o (6%
i) () = —— Pin, (@) = —5— Pijk- (13.49)
Here, ®;;, ®iji, denote, respectively, second and third partial derivatives of
P(x)
L Po(x) B — Pd(z)
R kT 9z 0z 0k
Recall that an a-Hessian manifold is equipped with an a-independent
metric and a family of a-transitively flat connections I'(®) (i.e., I'(®) satisfying
(13.16) and I'*1) are dually flat). From (13.49),

#(o) _ po(—a)
L =T
with the Levi-Civita connection given as:
~ 1
Lij(@) = 5 Pij.

Straightforward calculation shows that:

Corollary 13.1. For a-Hessian manifold {9, g., ', Fgﬁ“*)},

(i) The curvature tensor of the a-connection is given by

o 1-— 042 * (o
R () = —— D (@B — PunPina U = RIT (),
Ik

with W' being the matriz inverse of @;;,
(i) All a-connections are equiaffine, with the a-parallel volume forms (i.e.,
the volume forms that are parallel under a-connections) given by

w® () = det[dy; (x))1~/2.

The reader is reminded that the metric and conjugated connections in the
forms (13.48) and (13.49) are induced from (13.5). Using the convex conjugate
&V >R given by (13.6), we introduce the following family of divergence
functions ZSS) (,y): V x V — R, defined by

6 The subscript in x (or u below) indicates that the z-coordinate system (or u-coordinate
system, resp.) is being used. Recall from Section 13.2.4 that under = (u, resp.) local coor-
dinates g and I', in component forms, are expressed by lower (upper, resp.) indices.
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DI (w,y) = DLV ((09) (), (09)(y)).
Explicitly written, this new family of divergence functions is

By o) = Tz (= B0 +
_é (“Ta 0P () + HTO‘ a@(y)>> .

Straightforward calculation shows that 75(%&)(:10, y) induces the a-Hessian
structure {IM, g, FQS*”‘), FJEO‘)} where I'(F®) are given by (13.49); that is, the
pair of a-connections are themselves “conjugate” (in the sense of o < —a)
to those induced by Dfpa) (x,y).

D(0P(y))

1+«
2

13.3.2 Biorthogonal Coordinates on a-Hessian

Manzifold
If, instead of choosing z = [x!,...,2"] as the local coordinates for the mani-
fold 91, we use its biorthogonal counterpart uw = [ug, ..., u,] to index points

on M. Under this u-coordinate system, the divergence function Dé,a) between
the same two points on 9 becomes

D (u,v) = DY ((99) (u), (9D)(v)).
Explicitly written,

D (u,v) = %QQ (1_?0‘ B((00) " (u)) + HTQ P((00)' (v))

.y (1 5 @ ()L () + ; a(@qﬁ)l@))) :

Recalling our notation (13.19) and (13.20), we have

Corollary 13.2. The «-Hessian manifold {9, gu,EEa),ES_a)} associated
with Dy’ (u,v) is given by

g (u) = Y (u), (13.50)
g 1 . g 1—a ~
[(@)idk (y) = % Fiik | ik (y) = Ta By (13.51)

Here, P , Piik denote, respectively, second and third partial derivatives of
P(u),
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Table 13.1 Divergence functions and induced geometry

Divergence Function Defined as Induced Geometry

D (2,y) VxV R, {@,J,F(Q) i~ a)}

DY (09)(2), (92)w)) |V x V — Ry,

{
D(;)(u, v) VxV Ry {@j’ ri=®, Fqsa)}
{

DY (08)(u), (08)(v)) |V x V — Ry

92D(u) PD(u)

és'ij — ijk _ ]
(u) du;0u;’ (u) Ou;OujOuy,

We remark that the same metric (13.50) and the same a-connections
(13.51) are induced by Dga) (u,v) = Dgx) (v, w); this follows as a simple ap-
plication of Lemma 13.3.

An application of (13.23) gives rise to the following relations.

lemnt Z 9" (u)g”™ (u)g™ (u )Fi(gtka)(v’c)a
N
F*(a)mnl Zglm gkl( )Fz(joflz( )
N
R(a)klmn(u) _ Z gik(u)gjl(u)g”m(u)g””(u)RE;ﬁy(x)'
1,7, 4,V

The volume form associated with I"(®) is
w(a)(u) - det[gﬁi.i(u)](lw)/?_

When o = £1, lsg(pa)(u,v), as well as ﬁ%a)(x,y) introduced earlier, take
the form of Bregman divergence (13.2). In this case, the manifold is dually

flat, with curvature tensor nglu)( ) = REDEmn () = 0.
We summarize the relations between the convex-induced divergence func-

tions and the geometry they generate in Table 13.1.

13.3.3 Applications of a-Hessian Geometry

Finally, we give an application of the a-Hessian geometry in mathematical
statistics. A statistical model is a set of (what we call) ¢-functions ¢ — p((),
where a (-function is an element of some function space B = {p(:): X —
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R,p(¢) > 0} over a o-finite set X with dominant measure p. A parametric
model My is defined as

My = {p(-|0) € B0 € V C R"}.

That is, My forms a smooth manifold with 6 as coordinates.

One can define divergence functionals to measure the directed distance
between two (-functions p and q. The most familiar is the Kullback—Leibler
divergence. With the aid of a smooth and strictly convex function f: R — R
and a strictly increasing function p: R — R, one can show that the following
is a general form of convex-induced divergence functional.

4 -« 1+« 1-a 14+«

— /X S—Fo(p) + ; fpla)) — f ( S—P(p) + %p(q)) dy,
(13.52)

since it is nonnegative and equals zero if and only if p(¢) = ¢(¢) almost surely.

A parametric model p(-|0) € My is said to be “p-affine” if there exists a set

of linearly independent functions A;(¢) € B such that

(p(¢|0)) Zel

The parameter § = [01,...,0"] is called the “natural parameter” of a p-
affine parametric model, and the functions A1(¢),..., A, (¢) are the affine
basis functions. Examples of p-affine manifold include the so-called “alpha-
affine manifolds” (Amari, 1985, Amari and Nagaoka, 2000), where p(-) takes
on the following form (indexed by g € [—1,1]),

logt 6=1,

D) =4 o
_Z _a-p)2 _
—t Bel-1,1).

When a parametric model is p-affine, the function

0= [ Fowconde= | f<;9%@>> d

can be shown to be strictly convex. Therefore, the divergence functional in
(13.52) takes the form of the divergence function Df;)(Qp, 6y) on V x V given

by

o 4 11—« 1+«
0,0 = 1 (152

Tz \ 3 P(0p) + —— P(0,)
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This is exactly (13.5)! An immediate consequence is that a p-affine mani-
fold is the a-Hessian manifold, with metric and affine connections given by
Proposition 13.4.

For any (-function ¢ — p(¢), we now define

m:/f@me@mM
X

such that n = [n1,...,m,] € V C R™. We call 7 the “expectation parameter”
of p(¢) with respect to the set of (affine basis) functions A1(¢),..., A, ({). It
can be easily verified that for the p-affine parametric models,

_ 02(0)
ni = 907

Define
@@zﬁﬂﬂmwmmw,

where f: R — R is the Fenchel conjugate of f; then ®(n) = &*((d®)~1(n))

is the Fenchel conjugate of @(6). The pair of convex functions @, &* induces
n, 6 via: B
od(0 0P

0 _ ()

00" on;

In theoretical statistics, we can call ¢(6) the generalized cumulant gen-

erating function (or partition function), and &(n) the generalized entropy

function. Natural parameter 6 and expectation parameter 7, which form bi-

orthogonal coordinates, play important roles in statistical inference.

=0".

13.4 Summary and Open Problems

For two smooth, strictly convex functions &, @ that are mutually conjugate,
the variables u = 0®(x) and x = P(u) are in one-to-one correspondence. It
has been shown in this chapter that such a pair of variables can be viewed
as biorthogonal coordinate systems on a Riemannian manifold whose metric
is the second derivative of & when the z-coordinate system is used (or of
@ when the u-coordinate system is used). Furthermore, a family of affine
connections (indexed by «) can be defined with nonzero curvatures except
for a = %1, the dually flat case (the so-called “Hessian manifold”). Each
of these a-connections is equiaffine and admits a parallel volume form, and
the entire family is induced from the divergence function DY (or ng‘) )

associated with any convex function @ (or @).
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Our analysis revealed that the conjugate (Za)-connections reflect two
kinds of duality embodied by the convex-induced divergence function. The
first is referential duality related to the choice of the reference and the com-
parison status for the two points (z versus y) for computing the value of the
divergence Déa)(x, y) = ’Dga)(y,x). The second is representational duality
related to the construction of two families of divergence functions, Dg‘)(z, Y)
versus Dg‘)((@sﬁ)(ac)7 (0®)(y)), using conjugate convex functions (see Table
13.1 in Section 13.3). The geometric quantities expressed in z-coordinates
and expressed in u-coordinates are related to each other via Proposition 13.1.
When « = +1, the two members of divergence functions coincide (and be-
come Bregman divergence), so that the two kinds of duality reveal themselves
as biduality:

Dy (w,y) = DSV (00(y), 00(x)) = DL (00(=), 00(y)) = Dy (y, ) ,
which is compactly written in the form of canonical divergence as
Asp(z,v) = Ag(v,z) .

The relation between convex-induced divergence functions and a-connec-
tions is intriguing; that « as a convex mixture parameter coincides with o as
indexing the family of connections is remarkable! We know that, in general,
there may be many families of divergence functions that could yield the same
a-connections. An explicit construction is as follows. Take the families of
divergence functions (y € R, 8 € [-1,1])

1-5

148 _
=D @) + 5D V),

9 D

which induce an a-Hessian structure whose metric and conjugate connections
are given in the forms (13.48) and (13.49), with « taking the value of (.
The nonuniqueness of divergence functions giving rise to the family of a-
connections invites the question of how to characterize the convex-induced
divergence functions from the perspective of a-Hessian geometry. There is
reason to believe that such axiomatization is possible because (i) the form of
divergence function for the dually flat manifold (o = £1) is unique, namely,
the Bregman divergence Bg; (ii) Lemma 13.1 gives that D) > 0 if and only
if By > 0 for any smooth function @. This hints at a deeper connection yet to
be understood between convexity of a function and the a-Hessian geometry.

Another topic that needs further investigation is with respect to affine
hypersurface realization of the a-Hessian manifold. We know that in affine
immersion, geometric divergence is a generalization of the canonical diver-
gence of dually flat (i.e., Hessian) manifolds. How to model the nonflat mani-
fold with a general o value remains an open question. In particular, is there a
generalization of geometric divergence that mirrors the way a convex-induced
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divergence function Dé,a) generalizes Bregman divergence Bg (or equivalently,
the canonical divergence Ag)?

Finally, how do we extend the above analysis to an infinite-dimensional
setting? The use of convex analysis (in particular, Young function and Orlicz
space) to model the infinite-dimensional probability manifold yields fruitful
insights for understanding difficult topological issues (Pistone and Sempi,
1995). It would thus be a worthwhile effort to extend the notion of bior-
thogonal coordinates to the infinite-dimensional manifold to study nonpara-
metric information geometry. To this end, it would also be useful to extend
the affine hypersurface theory to the infinite-dimensional setting and pro-
vide the formulation for co-dimension one affine immersion and co-dimension
two centroaffine immersion. Here, affine hypersurfaces are submanifolds (re-
sulting from normalization and positivity constraints on probability density
functions; see, e.g., Zhang and Hasto, 2006) of an ambient manifold of unre-
stricted Banach space functions. Preliminary analyses (Zhang, 2006b) show
that such an ambient manifold is flat for all a-connections, a € R. So it
provides a natural setting (i.e., affine space) in which probability densities
can be embedded as an affine hypersurface. The value of such a viewpoint
for statistical inference remains a topic for future exploration.
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