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a b s t r a c t

Animals increase or decrease their future tendency of emitting an action based on whether performing
such action has, in the past, resulted in positive or negative reinforcement. An analysis in the companion
paper [Zhang, J. (2009). Adaptive learning via selectionism and Bayesianism. Part I: Connection between
the two. Neural Networks, 22(3), 220–228] of such selectionist style of learning reveals a resemblance
between its ensemble-level dynamics governing the change of action probability and Bayesian learning
where evidence (in this case, reward) is distributively applied to all action alternatives. Here, this
equivalence is further explored in solving the temporal credit-assignment problem during the learning
of an action sequence (‘‘operant chain’’). Naturally emerging are the notion of secondary (conditioned)
reinforcement predicting the average reward associated with a stimulus, and the notion of actor–critic
architecture involving concurrent learning of both action probability and reward prediction. While both
are consistent with solutions provided by contemporary reinforcement learning theory (Sutton & Barto,
1998) for optimizing sequential decision-making under stationary Markov environments, we investigate
the effect of action learning on reward prediction when both are carried out concurrently in any on-line
scheme.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Operant conditioning is the learning process in which the
frequency of occurrence of a behavior is modified by the
consequences of such behavior. Actions that produce a satisfying
(discomforting) effect in a particular situation become more (less)
likely to be emitted again under such situation in the future. This
so-called ‘‘Law of Effect’’, as first suggested by Thorndike (1898),
governs operant learning. In most cases, however, the effects of an
action (whether reward or punishment) do not immediately follow
its execution; a sequence of actions must be completed before
a reinforcing or aversive event finally appears as a consequence
of the animal having executed the entire action sequence. The
fundamental challengehere is how tomodify the actionprobability
of intermediate components of an operant sequence in the
absence of any accompanyingprimary reinforcement, the so-called
temporal ‘‘credit-assignment problem’’. Empirically, how chaining
of actions in a sequence is accomplished based on a terminal,
primary reinforcement has been studied extensively in the operant
conditioning literature (see e.g., (Catania, 1968; Reynolds, 1968)).
Conceptually, an operant consists of a behavior or action Ri (i =

1, . . . ,N) that is (1) drawn from an action repertoire R = {R1,
R2, . . . , RN} with certain probability p = (p1, . . . , pN), pi ≥ 0;∑
i pi = 1; (2) emitted under a given context called discriminative
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stimulus S; and (3) resulted in a reinforcer ri with reward value
θi. During conditioning, action probabilities pi (i = 1, . . . ,N)
increase or decrease, depending on the reinforcement structure
{θi, i = 1, 2, . . . ,N}. As in the companion paper (Zhang, 2009), we
only deal with positive reinforcement θi ≥ 0. After conditioning,
the best rewarded action among this set of possible actions
will be selected and executed, with probability approaching 1.0,
whenever the animal is under environmental context S. The events
S–R–r in proper order represent a basic operant unit. Note that
the discriminative stimulus or context S itself then acquires a
reinforcement value due to its repeated pairing with the primary
reinforcer r — it becomes a conditioned reinforcer that predicts
the unconditioned, primary reinforcer and hence can be used to
reward another operant unit. This is a key step in establishing an
operant chain (for a concise review of the underlying psychological
principles, see, e.g., (Catania, 1968; Mackintosh, 1983; Reynolds,
1968)). Operant chaining can thus be envisioned as connecting
many operant units (segments) into a sequence, as long as the S
for the subsequent unit has acquired a reinforcing value and can
function as an r for the preceding unit.
Note that the relationship between S and r in a segment

of the operant chain is analogous to first- and higher-order
classical conditioning between the two stimuli — their association
strength increases as the animal gradually acquires the operant
(i.e., executes the correct response). Therefore, the psychological
foundation for establishing an arbitrary action sequence is: (a)
the simultaneous operation of two learning principles (the operant
principle for behavioral modification and the Pavlovian principle
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for stimulus association); and (b) the dual nature of a stimulus,
serving a discriminative function (for initiating the action of
subsequent segment) and a reinforcing function (for rewarding the
action of the preceding segment).
Such psychological insight for solving the temporal credit-

assignment problem has now been crystallized as the celebrated
reinforcement learning algorithm (e.g., Barto, Sutton, & Watkins,
1990; Montague, Dayan, & Sejnowski, 1996; Samuel, 1959;
Sutton, 1988; Watkins, 1989; and numerous more recent work).
The critical element is to require the agent to learn reward-
predicting values of contexts (discriminative stimuli) associated
with intermediate stages, and/or values of all possible actions
taken from these stages. In this paper, we will adapt the Bayesian
re-formulation of operant reinforcement learning (as developed in
the companion paper) to the sequential decision context and show
how it naturally leads to the notion of incentive value, namely, the
animal’s prediction or expectancy of average reward which can in
turn be effectively used as an internally generated reinforcement
signal for modifying action probabilities of non-terminal operant
segments. So our contribution here is to connect selectionism and
Bayesianism in sequential learning context.
The remaining of the paper is organized as follows. Section 2.1

recalls the linear operator model describing the selectionist style
of learning for a single operant segment, and the associated
ensemble-level dynamics with an equivalent Bayesian formula-
tion. Section 2.2 analyzes the linear operator model for an operant
chain with two segments/stages (without loss of generality), and
derives the appropriate reward signal for the non-terminal oper-
ant segment. Section 2.3 performs the ensemble-level analysis of
the operant chain from two perspectives, one treating it as step-
by-step sequential learning, and the other treating it as learning
of a unitary, composition action. Section 2.4 establishes the equiv-
alence between these two sets of ensemble-level equations, and
obtains their solutions, along with the Bayesian interpretation.
Section 2.5 further investigates the notion of incentive value and
the effective reinforcement signal of non-terminal segment(s), and
explains how incentive value of a state is affected by animal’s
change in policy (during learning). Section 2.6 discusses the con-
current learning of action probabilities and incentive values in the
context of action-critic architecture. Section 2.7 illustrates these
concepts in a computer simulation of a simple spatial navigation
task. The paper closeswith a discussion (Section 3) of the tight cou-
pling of action learning and incentive learning as provided by tradi-
tional theories of animal learning as well as modern reinforcement
learning
framework.

2. Mathematical analysis

2.1. Background

We briefly review our analysis of operant learning in a linear
operator model (Bush & Mosteller, 1955) given by Zhang (2009),
as a way of introducing the relevant notations for our subsequent
exposition.
Let pi (i = 1, 2, . . . ,N) denote the probability of the animal

emitting any action Ri from an action repertoire (action set) R =
{R1, R2, . . . , RN}, and θi the reward associated with such an action.
The change of action probabilities δpk,∀k after the animal executes
a particular action Ri is

δpk = ε θi (eik − pk), (Ri having been executed), (1)

with a small>0 as the learning rate parameter, and eik denotes the
Kronecker delta

eik =
{
1 if k = i
0 else . (2)

This rule of single-trial operant learning results in an increase in
pi, the probability of selecting the same action Ri due to the recent
reward θi, and a decrease in pj (j 6= i), the probabilities of selecting
all other actions in the future due to probability normalization.
The above equation describes how action probabilities are

modified after a single action is executed (and then the animal
is rewarded). During operant conditioning, however, it is possible
that any action be selected (and executed). Since the probability
of action Ri being selected is pi, the average change of action
probabilities1pk should be weighted by this factor:

1pk =
∑
i

pi δpk.

This, along with (1), gives rise to the master equation for operant
learning

1pk = ε pk (θk −Θ) k = 1, 2, . . . ,N.

Here

Θ =
∑
i

pi θi

is the average reward the animal receives at any time during
learning. The essence of operant conditioning can be viewed as an
effective increase or decrease of action probabilities depending on
whether the reward for such action is above or below the current
value of the average reward Θ (i.e., averaged across the entire
action repertoire). It is easily seen thatΘ increases monotonously
(for sufficiently small ε), until it reaches the value of θk∗ = max{θk,
k = 1, 2, . . . ,N} when the animal acquires the operant by
performing Rk∗ , the maximally rewarded action, with probability
pk∗ → 1. The discrete probability updating1pk can be replaced by
a continuous version (absorbing ε into t)

dpk
dt
= pk

(
θk −

∑
i

pi θi

)
, (3)

with analytic solution

pk(t) =
pk(0) eθkt∑
i
pi(0) eθit

. (4)

Define

Z(t) =
∑
i

pi(0) eθit ,

then

Θ(t) =
∑
i

pi(t) θi =
d log Z(t)
dt

.

2.2. Single-trial sequential learning equation

Without loss of generality, assume now that there are two
components in an operant sequence A–B, where the first action
(‘‘A’’) could be drawn from the action repertoire A = {A1,
A2, . . . , AN}, and the second action (‘‘B’’) drawn out of one of the
N repertoiresBi = {B1|i, B2|i, . . . , BM|i} associated with the state Si
that is reached as a result of chosen action Ai in the first stage. In
other words, each action Ai in the first stage (out of N alternatives)
leads to a distinct action repertoireBi fromwhich the action for the
second stage is to be chosen (out ofM alternatives). The reward θij
for this sequence is delivered only after the execution of the second
action Bj|i (Fig. 1).
Traditionally, in the theory of learning automaton (Narendra &

Thathachar, 1989; Thathachar & Ramakrishnan, 1981), this type of
sequential problem is treated by a hierarchical systemof stochastic



Author's personal copy

J. Zhang / Neural Networks 22 (2009) 229–236 231

Fig. 1. Schematic illustration of the two-stage sequential choice problem with
terminal rewards θ . Actions of the first stage are denoted Ai, i = 1, . . . ,N ,
while actions of the second stage are denoted Bj|1, . . . , Bj|N , j = 1, . . . ,M
(whose subscripts also indicate the first-stage action they are associated with). The
corresponding action probabilities are pi(t) for the first stage and pj|i(t) for the
second stage.

automata (a generalized version of linear operator model), each
operating on its own set of action probability and improving
according to (a generalized version of) the linear operator model.
The ensemble of automata is organized into a tree-like structure,
and modification of action probability proceeds at different levels
based on the reward signal feeding into all levels of the hierarchy.
Let us first treat the learning of this two-stage operant sequence

as a single or unitary action, Ai-and-Bj|i, in the composite repertoire
A × B. Denote the joint probability pij = Prob (Ai and Bj|i) of
the animal’s emitting such a composite action Ai-and-Bj|i, with∑
i,j pij = 1. At discrete time-step n, applying the single-trial

operant rule (1), we have the change of action probability pkl in
the composite repertoire as

δp(n)kl = ε θij (eik ejl − p
(n)
kl ) k = 1, 2, . . . ,N; l = 1, 2, . . . ,M, (5)

where θij is the reward for the selected composite action Ai-
and-Bj|i.
On the other hand, we can also write out the change of action

probability at each individual level of the hierarchy. Let pk =
Prob (Ak) denote the action probability associated with A, with∑
k pk = 1. Let pl|k = Prob (Bl|k) denote the conditional action

probability associated with Bk, with
∑
l pl|k = 1. According

to the single-trial operant rule (1), the change of those action
probabilities after the animal emits action Ai and then Bj|i at
discrete time n is:

δp(n)k = ai (eik − p
(n)
k ), (6a)

δp(n)l|k = bij eik(ejl − p
(n)
l|k ), (6b)

where the reward values ai and bij associated withA andBk are to
yet be determined. Since pkl = pk · pl|k,

δp(n)kl = p
(n+1)
kl − p(n)kl = p

(n+1)
k δp(n)l|k + p

(n)
l|k δp

(n)
k . (7)

A comparison of (7) with (5) yields
ai = ε θij, (8a)

bij = ε θij/p
(n+1)
i . (8b)

This is to say, the reward for Ai is simply θij delivered stochastically
for any fixed i (since it depends on the action Bj|i selected at
the second stage), while the reward for Bj|i is θij/p

(n+1)
i ; here

the denominator p(n+1)i is a factor to equalize the opportunity of
learning (i.e., rescaling the learning rate ε) since all branches are
not reached on every trial. The essence of this learning scheme is
that the same terminal reward has been used to reinforce action
tendencies along all levels of the hierarchy (i.e., terminal and non-
terminal stages), and that the updating of action probabilities in
the hierarchy proceeds from top-down (i.e., from the beginning
component to the terminal one). This kind of reward scheme,
which was developed by Thathachar and Ramakrishnan (1981),
naturally leads to an absolutely expedient learning algorithm.
Alternative algorithms, which adopts non-standard single-trial
rules, have been introduced that would considerably speed up
learning (Thathachar & Sastry, 1985) or converge to solutions
that are optimal under more general definitions of optimality in

the hierarchy of learning automata (Thathachar & Sastry, 1987).
However, this reward structure (8b) requires action probability to
proceed strictly from the beginning or non-terminal component to
terminal component; it is not obvious how such off-line, batch-
mode learning can be applied to on-line, stage-by-stage learning
when the agent transits in a stochastic environment.

2.3. Ensemble-level equations from the two views

The reward rule (8b) for the automata hierarchywas developed
based on the formal ‘‘equivalence’’ of two sets of single-trial
equations, (5) and (6b), that respectively represent the unitary,
composite action approach and the component-based action
sequence approach. Now, we investigate the formal equivalence
of these two approaches at the level of ensemble-level equations.
When the two-stage action sequence Ai-and-Bj|i is considered as a
single, composite action, the ensemble-level equation associated
with single-trial rule (5) is

dpij(t)
dt
= pij(t) (θij −Θ(t)), (9)

with total average reward

Θ(t) =
∑
i,j

pij(t) θij. (10)

Next, instead of taking the two-component action sequence
as a unitary (composite) action being performed and reinforced,
we treat the action sequence as being performed sequentially, Ai-
and-Bj|i. The second (terminal) B-stage obviously carries the
reward structure (for a fixed i) {θi1, θi2, . . . , θiM}. So the ensemble-
level equation is

dpj|i(t)
dt

= pj|i(t)

(
θij −

∑
j

pj|i(t) θij

)
.

Define

θi(t) ≡
∑
j

pj|i(t) θij (11)

as the average reward for a fixed i, we have

dpj|i(t)
dt

= pj|i(t) (θij − θi(t)). (12)

As for the first (non-terminal) A-stage, observe from (12) that
each action Ai is associated with a unique value θi that represents
the expected value of primary reward once the action Ai has been
executed,we cannaturally use the set of quantities θi, i = 1, . . . ,N
as the effective reinforcement, at time t , for the action ensembleA.
Therefore, the ensemble-level equation for modifying pi(t) is

dpi(t)
dt
= pi(t)

(
θi(t)−

∑
i

pi(t) θi(t)

)
.

Note here, θi(t)’s are functions of time, unlike the stationary θij’s.
Their average is∑
i

pi(t) θi(t) =
∑
i

∑
j

pj|i(t) pi(t) θij =
∑
i,j

pij(t) θij = Θ(t).

Thus
dpi(t)
dt
= pi(t) (θi(t)−Θ(t)). (13)

This is the ensemble-level operant learning equation governing
pi(t), the action probability of the first stage of the A–B operant
sequence.
Eqs. (13) and (12) are in the proper form of ensemble-level

equations, describing the evolution of pi(t), action probability
associated with the first (non-terminal) stage, and pj|i(t), action
probability associated with the second (terminal) stage. Note that
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θi is interpreted both as the average reward associated with all
possible actions in the second B-stage (the specific reward for
action Bj|i is θij) and as the specific reward associated with the
action Ai at the first stage (the average reward for A-stage is Θ).
In comparison, the single-trial learning rule (6b) with (8b) used θij
as the specific reward associated with the A-stage.

2.4. Equivalence and analytic solution

We next show that the two views of the A–B operant sequence,
i.e., treating it as a unitary, composite action and treating it as two
sequentially performed actions Ai-and-Bj|i, are in fact equivalent
at the ensemble-level (their equivalence at the single-trial level
was established in Section 2.2 and was used to derive the reward
structure for A-stage).

Proposition 1. The ensemble-level equations (12) and (13) for
learning the action sequence A–B by treating θij as the reward for
the second, terminal stage and θi(t) for the first, non-terminal stage
is equivalent to the the ensemble-level (5) treating A–B as a unitary,
composite action with θij as the reward.

Proof. We take the time derivative of pj|i(t) pi(t) by invoking the
chain rule, and substitute the relations (12) and (13):

d
dt

(
pj|i(t) pi(t)

)
=
dpj|i(t)
dt

pi(t)+ pj|i(t)
dpi(t)
dt

= pi(t) pj|i(t) (θij − θi(t))+ pj|i(t) pi(t) (θi(t)−Θ(t))
= pij(t) (θij −Θ(t))

=
d
dt
pij(t),

where the last step invokes (5), the ensemble-level equation of
treating A–B as a unitary (composite) action. Hence the relation
pij(t) = pj|i(t) pi(t) holds throughout learning (assuming that it
holds at t = 0). �

The algorithm can be readily shown to be absolutely expedient
(Narendra & Thathachar, 1989) and hence to converge in
probability as the learning rate approaches zero, see also
discussions in Zhang (2009). We first compute the change of the
effective reinforcement θi (which is the average of the primary
reward for the B-stage) during conditioning:
dθi(t)
dt
=

∑
j

dpj|i(t)
dt

θij =
∑
j

pj|i(t) (θij − θi(t))2 > 0.

That θi(t) is monotone increasing but bounded from above by
maxj θij (as easily seen from (11)) guarantees that, as t → ∞, the
conditional probabilities
pj|i(t)→ ejj∗ ,
θi(t)→ θij∗ ≡ θ

∗

i ,

in which e denotes the Kronecker delta symbol (2) and
j∗ = j∗(i) = argmaxj{θij, j = 1, 2, . . . ,M}.
As for the A-stage, the change of average rewardΘ is
dΘ(t)
dt
=

∑
i

(
dpi(t)
dt

θi(t)+ pi(t)
dθi(t)
dt

)

=

∑
i

pi(t)

(
(θi(t)−Θ(t))2 +

∑
j

pj|i(t)(θij − θi(t))2
)
> 0.

In the limit of t →∞,
pi(t)→ eii∗ ,
Θ → θ∗i∗ ,

with
i∗ = argmaxi{θ

∗

i , i = 1, 2, . . . ,N}.

Hence, learning in this A–B operant sequence will converge to the
optimal action sequence with maximal reward

pij(t)→ eii∗ ejj∗ ,
Θ → θi∗j∗ = θ

∗

i∗

with

i∗j∗ = argmaxij{θij, i,= 1, 2, . . . ,N, j = 1, 2, . . . ,M}.

Following the derivations of solution (4) to the ensemble-
level Eq. (3), the ensemble-level equations for the A–B operant
sequential can be solved analytically. In fact, we have

Corollary 2. Given the initial conditions, pij(0) = pi(0)pj|i(0) with
pi(0) =

∑
j pij(0), the ensemble-level dynamics are given by

pij(t) =
pij(0) eθij t

Z
as the solution to (9), and by

pj|i(t) =
pj|i(0) eθij t

Zi

pi(t) =
pi(0) Zi
Z
=

∑
j
pij(0) eθij t∑

ij
pij(0) eθij t

as the solutions to (12) and (13). Here

Zi(t) =
∑
j

pj|i(0) eθij t .

Z(t) =
∑
i

pi(0)Zi(t) =
∑
ij

pij(0) eθij t .

Proof. By direct verification. �

As can be easily verified, these solutions satisfy pij(t) = pi(t)
pj|i(t) and pi(t) =

∑
j pij(t). Clearly, pij(t), pi(t), pj|i(t) in these

forms have Bayesian interpretations. In treating the A–B operant
sequence as a unitary, composite action, the corresponding
Bayesian model consists of a set of N ×M hypotheses, with θij t as
the log likelihood functions. In treating the A–B operant sequence
as actions sequentially executed in two stages, the corresponding
hierarchical Bayesian model consists of N hypotheses at the
top-level of the hierarchy with log Zi(t) as the log likelihood
function (for hypothesis Ai) and, for each top-level hypothesis, M
hypotheses at the bottom-level of the hierarchywith θij t as the log
likelihood function (for hypothesis Bj|i). Note that

θi(t) =
∑
j

pj|i(t)θij =

∑
j
pj|i(0)eθij t

Zi(t)
=
d log Zi(t)
dt

.

Hence

log Zi(t) =
∫ t

0
θi(τ )dτ ,

demonstrating that θi(t) indeed plays the role of effective
reinforcement for A-stage at the ensemble-level dynamics.

2.5. Effective reinforcement signal and incentive value

The conceptual development in the sequential treatment of the
acquisition of the A–B operant sequence is the introduction of an
effective reinforcement θi(t), i = 1, . . . ,N to modify A1, . . . , AN
in action repertoire A. This quantity θi(t) is associated with Si,
the state-of-the-world arrived by the animal’s performing the first
action component Ai. The value θi(t) is, on the one hand, the
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average primary reinforcement value the animal receives upon
performing, with probability pj|i(t), various possible actions Bj|i
after reaching the state Si and, on the other hand, used as the
reward to reinforce action probabilities pi(t) associated with Ai.
It is this dual nature of θi(t) that makes the sequential learning
possible. For this reason, this effective reinforcement θi(t) is
also called the secondary (conditioned) reinforcement or incentive
value associated with an intermediate (non-terminal) context Si.
Suppose the reward structure is such that θij = αi for all j

(i.e., the terminal reward is independent of the action taken in the
second stage). In this situation,

θi(t) =
∑
j

pj|i(t) αi = αi,

so that the probability pi is modified according to the reward
structure {αi, i = 1, 2, . . . ,N}, yet none of the pj|i’s is modified
since the right-hand side of (12) is zero. Suppose, on the other
hand, that the second stage is not the terminal one, but rather the
successor state in an environment of a Markov Decision Process
(MDP) with finite states; the reward θij includes a primary reward
αj, and an effective future reward θj discountedwith a factorγ (0 ≤
γ ≤ 1). Eq. (11) is thus extended to (we omit the t argument)

θi =
∑
j

pj|i (αj + γ θj). (14)

This is essentially the Bellman equation for the infinite-horizon
decision problems, where θi is the value function of the state Si.
Bellman (1957) formulated the stochastic dynamic programming
approach to the solution of the Markov decision problems
in stochastic environment with stationary, action-dependent
transitional probability between states (see Puterman, 1994 for
reference on dynamic programming). The goal for the MDP is to
seek an optimal policy (for action at each decision epoch) that
maximizes the total (discounted or undiscounted) reward. Finite-
horizon discrete MDPs can be solved using backward induction
(dynamic programming) to recursively evaluate expected rewards
at each step. The optimal action in the last decision epoch is
determined first, and the average reward is propagated backward
in order to calculate the expected reward of the next-to-last
decision epoch, and so on.
On-line learning of incentive values θi is intimately asso-

ciated with the process of classical conditioning. Consider the
Rescorla–Wagner model (Rescorla &Wagner, 1972) describing the
acquisition of association strength of a conditioned stimulus (CS)
when it is repeatedly paired with an unconditioned stimulus (US)
or reinforcer in classical conditioning experiments. As summarized
in Mackintosh (1983), this model successfully accounts for a vari-
ety of experimental findings, including the time-course of acqui-
sition and extinction of association strength, the effect of stimu-
lus overshadowing (where the perceptually more salient stimulus
acquires greater association strength compared with another less
salient stimulus when both are presented as a compound CS), the
effect of stimulus blocking (where prior conditioning to a stimu-
lus suppresses the acquisition of association strength for a second
stimulus when both are presented as a compound CS), and effects
related to post-conditioning manipulation of the US value. In the
sequential context, the Rescorla–Wagner rule had been extended
as the temporal difference or TD model (Sutton, 1988; Sutton &
Barto, 1990). The simplest version, called TD(0) algorithm or AHC,
the method of adaptive heuristic critic (Barto, Sutton, & Anderson,
1983), computes the discrepancy in reward estimation over one-
step in time to improve reward prediction:

δθ̃i = η (αj + γ θ̃j − θ̃i). (15)

Here θ̃i with tilde indicates the animal’s estimation of θi associated
with state Si. The subscript j is the successor state of i, which
is contingent upon the animal’s behavior at i, and αj is the

primary reward. The term αj + γ θ̃j is the estimated total reward
upon entering the state j.
Since action selection is stochastic — the animal enters state j

with probability pj|i — the average change of θ̃i is

1θ̃i = η

(∑
j

pj|i(αj + γ θ̃j)− θ̃i

)
.

When pj|i is assumed to be stationary, θ̃i will reach an equilibrium
θ̃i → θi as given by (14) when eventually 1θ̃i = 0. This is to say,
the AHC learning rule (15)will lead to an accurate reward estimate,
θ̃i = θi, provided that action probability pj|i remains stationary.
However, when action probability is allowed to update

simultaneously during learning, the animal’s calculation of the
incentive value associated with a state ought to also take into
account of the status of action learning in that state — actual
average reward will be higher if the state is relatively better
mastered in terms of action selection (i.e., the animal knows what
to do) compared with a state that is relatively unlearned (i.e., the
animal does not know what to do). The modification of action
probability itself will lead to a change in the average reward
associated with that state; therefore the animal’s expectation
of reward, i.e., the incentive value, should have included a
consideration of this experience of action learning and its effect
on reward. Formally, suppose that in state Si the animal performs
an action indexed by j to transit to state Sj and receives reward βj,
with single-trial learning
δpk|i = βj (ejk − pk|i) ∀k. (16)

The change of the value of θ̃i due to change of pk|i can be computed:

δθ̃i =
∑
k

δpk|i (αk + γ θ̃k) = βj
∑
k

(ejk − pk|i) (αk + γ θ̃k)

= βj

(
αj + γ θ̃j −

∑
k

pk|i (αk + γ θ̃k)

)
or, using (14),

δθ̃i = βj

(
αj + γ θ̃j − θ̃i

)
. (17)

This describes how the estimated incentive value θ̃i would
have been affected by the updating of action probabilities pk|i.
Comparing (17) with the AHC rule (15), it can be seen that the
two are formally identical if and only if βj = const — the latter
happens when the reward for each action is non-discriminatory,
i.e., the animal is exploring the environment without improving
its action selection.

2.6. Simultaneous learning of the actor and the critic

In the now popular ‘‘actor–critic’’ architecture (Barto et al.,
1983), both the incentive value and action probability undergo
modification at each learning step. This kind of learning archi-
tecture can be viewed as the integration of the classical condi-
tioning principle (the learning of the ‘‘critic’’) with the operant
conditioning principle (the learning of the ‘‘actor’’); it provides
a potential framework for unifying animal learning theories.
Here, we explore the consequences of combining action learning
with incentive value learning on a step-by-step basis in such an
architecture. Define the inconsistency of estimate of incentive
values
ρi ≡ θ̃i −

∑
k

pk|i (αk + γ θ̃k).

At a given learning step (when the animal is in state Si),
modification of action probability δpk|i is according to (16), and
modification of incentive value δθ̃i is according to (17). Note that
δθ̃j = 0 for j 6= i, since only reward estimate at i is modified when
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i is visited. After the simultaneous action and incentive learning
(for index i), the change of ρi resulting from a change in pk|i and a
change in θ̃i is

δρi = δθ̃i −
∑
k

δpk|i (αk + γ θ̃k).

Substituting (16) and (17), it is easy to show that

δρi = −βj ρi,

or

δ(ρi)
2
= −2βj (ρi)2 < 0. (18)

Eq. (18) says that, when the actor and the critic learn simultane-
ously according to (16) and (17) respectively, the discrepancy in
reward estimate will decrease.
There can be two ways (18) may be satisfied:

(1) When βj = η independent of j, incentive learning follows the
AHC rule (15), while action learning uses a non-discriminatory
reward (independent of action chosen):{
δpk|i = η (ejk − pk|i),
δθ̃i = η (αj + γ θ̃j − θ̃i);

(2) When βj = ε (αj + γ θ̃j) as a function of θ̃j, action learning
is guided by the learned incentive values, while incentive
learning adopts a rule slightly different from the vanilla AHC
rule:{
δpk|i = ε (αj + γ θ̃j) (ejk − pk|i),
δθ̃i = ε (αj + γ θ̃j) (αj + γ θ̃j − θ̃i).

In the first case, the action probability vector for each state will
fluctuate and diffuse away from whatever the starting value,
though the average change or drift is zero — the agent is exploring
the environment without being committed to a direction of
change. In the second case, action probabilities will improve
according to the estimated total reward (primary reward plus
the incentive value) — the agent is making use of the learned
(or partially learned) incentive values to adjust its future action
tendency. As for the concurrent incentive learning, our proposed
modification here is to take into account of the effect of action
modification on reward estimation.When the learning of the actor
and of the learning of the critic are coordinated in such fashion, the
inconsistency in reward estimates resulting from the uncertainty
of the environment (that the animal does not have control of) and
that resulting from the randomness of action selection (that the
animal has control of) will be separated. Of course, though (ρi)2
will decrease whenever state Si is visited, it may increasewhen the
animal visits any other state that is one-step reachable from Si. A
more rigorous analysis is needed to prove the online convergence
of such simultaneous learning scheme.

2.7. An example: Spatial navigation task

We simulate a typical sequential decision task, the spatial
navigation task, where the animal seeks a primary (terminal)
reward in its environment in the presence of barriers. This route-
finding task is adapted from Barto et al. (1990) and Dayan
(1992)where themethods of TD learningwere used to solve for the
shortest path to terminal reward. A 12×8 grid represents a region
of space, with each intersection of the grid lines representing a
spatial location. In addition to a goal location, the region contains
a C-shaped barrier that the navigating agent (animal) cannot cross
over. The animal is allowed to move from a location to one of its
neighbors and, if the goal is reached, rewarded (whereby a trial

a

b

c

Fig. 2. Pattern of action probabilities (in (a) and (b)) and conditioned reinforcement
value or reward prediction (in c) in a spatial navigation task. The navigating agent
is positioned at an intersection of an 8 × 12 grid (indicated by the dotted lines),
and may move to a neighboring intersection except as prohibited by the C-shaped
barrier. When standing at any grid location and facing towards one of its neighbors,
the probability of taking that action is indicated by the thickness of a filled line
drawn to the right of the dotted grid line. The C-shaped barrier is, therefore,
represented by the absence of such filled lines connecting respective locations. The
starting location and the goal location are indicated by a filled circle. (a) Before
learning starts. (b) After 500 trials of learning. (c) The conditioned reinforcement
values are represented by the height of the landscape after 500 trials.

is terminated). As in Dayan (1992), we restrict the animal to have
the same starting location (7, 4) each trial (the lower left corner is
chosen as the origin of the Cartesian coordinate system). The task
is to find the shortest route to the goal location G = (3, 6).
In Fig. 2, we represent action probability associated with each

location of the grid (drawn as dotted lines) by the thickness of a
solid line toward the right of the grid line when the animal is at
a given intersection. Standing at any intersection and facing the
next location that is one-step reachable, the solid line on the right-
hand side graphically represents the probability that the animal
will move to such location (‘‘right-of-way’’). Fig. 2 a gives the initial
action probabilities, which are set to be all equal (unless blocked by
the barrier in the environment). The C-shaped barrier is reflected
as the absence (zero action probability) of solid lines connecting
the locations at the two sides of the barrier.
During training, the animal applies the rules of on-line mod-

ification of action probability and reward prediction. After being
placed in the initial starting position, the sequence of events for
a trial is as follows: (1) When positioned at a location X, the
animal randomly selects an action according to p(Y|X); (2) The
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animal moves to the new position Y, as a consequence of exe-
cuting the chosen action; (3) The reinforcement received, which
can be either θY (the conditioned reinforcement value if Y 6= G)
or rG = 1.0 (the primary reward if Y = G), serves to modify
both the probability of action selection {p(Y′|X) : Y′ one-step
reachable from X} and the value of conditioned reinforcement θ̃X
at the former position X:

δp(Y′|X) = ε θ̃Y (eYY′ − p(Y′|X)),

δθ̃X = ε θ̃Y (γ θ̃Y − θ̃X).

Note that the incentive learning rule used is a modification of
the AHC rule (the proportionality term is, instead of a constant
η, the variable ε θ̃Y). These procedures are repeated for the new
positionY until the animal reaches the goal positionG. The learning
rate parameter is ε = 0.1, with γ = 0.9 for this infinite-
horizon problem. After 500 trials of learning, the optimal path
is demonstrated by the spatial pattern of action probabilities
(Fig. 2b). The spatial map of the incentive values after learning
is given in (Fig. 2c). This simulation is based on a lookup table
representation for incentive values and for action probabilities;
state aggregation methods (e.g. Singh, Jaakkola, & Jordan, 1995)
will be needed to efficiently deal with increasing number of states.

3. Discussion

Operant learning is characterized by the interaction between
the animal and its environment. On the one hand, the behavior
of an organism has operated on the environment and modified
the state-of-the-world; on the other hand, the consequence of
such operation (in the form of reward or punishment) will
modify the organism’s behavior and determine the likelihood
of its being repeated on subsequent occasions. This operant (or
instrumental) conditioning process, which follows Thorndike’s
‘‘Law of Effect’’, should be distinguished from the process of
classical conditioning, in which the presentation of one stimulus
(CS) together or in close proximity with another reinforcing
stimulus (US) results in the former’s acquisition of the meaning
of the latter, according to Pavlov’s ‘‘Principle of Substitution’’.
It was Skinner (1937) who first drew a clear distinction, on
operational grounds, between these two forms of associative
learning, i.e., according to the rules for the experimenter’s delivery
of reinforcers — for classical conditioning, it is the contingency
between CS and a reinforcer (US) regardless of the subject’s
behavior, while for instrumental conditioning, it is the relationship
between the subject’s own behavior and the occurrence of
the reinforcer. Of course, Skinner’s operational definition does
not imply separable learning processes involved, even though
response classes are thought to be somewhat differentiated
across these two types of conditioning (e.g., visceral/glandular
versus skeletal/somatic, without versus with sensory feedback,
involuntary versus voluntary). A variety of so-called ‘‘two-factor’’
theories propose that operant conditioning involves both an
association between the discriminative stimulus and instrumental
response and an association between discriminative stimulus and
reinforcer (Rescorla & Solomon, 1967). There is still considerable
debate as inwhat sense the discriminative stimulus finally became
a classical CS in an instrumental experiment (see Mackintosh,
1983).
Despite the details of underlying psychological mechanisms, it

is nowwell established that acquisition of an operant chain (based
on a terminal reward) is possible as long as the discriminative
stimuli for intermediate stages acquire conditioned reinforcement
values. Our analysis recapitulated such a theme: the dual role
played by such stimulus — reinforcer for the previous component
and instigator for the upcoming component — enables successive
operant components to be ‘‘glued’’ to form a chain. Since the

acquired (conditioned) reinforcement values depend on their
correlation with the primary reinforcement (terminal reward),
their magnitudes are necessarily graded and decrease the farther
away from the terminal component. It is then the second-
(or higher-)order Pavlovian conditioning mechanisms that help
establish a value for the discriminative stimulus, as long as
the primary reward to the conditioned reinforcer is always
maintained. In this connection, we can view operant learning as
animals’ natural intelligence for solving the ‘‘credit-assignment
problem’’ by simple principles such as incrementally adjusting
action probabilities based on the effect of such actions (the Law
of Effect) coupled with incremental establishment of reward-
predicting values of environmental cues (the Principle of Stimulus
Substitution). The interplay between stimulus-reinforcer and
response-reinforcer relationships during operant conditioning has
long been recognized (see Jenkins, 1977). Our view is that, along
with the acquisition of response operant (through reinforcement),
the classical (Pavlovian) conditioning between the stimulus and
the reinforcer develops in parallel in strength over time.
The simultaneous modification of action probability and of

conditioned reinforcement value (incentive value) lies at the heart
of reinforcement learning. In the ‘‘actor–critic’’ architecture (Barto,
1995; Barto et al., 1990), reward prediction and action selection
are conducted separately. The temporal difference methods allow
the agent to improve the accuracy of prediction (with learning
driven by the reduction of prediction error), whether that being
predicted is the value of the states (V function) or action-values
(Q function). In the case of the Q-learning (Watkins, 1989),
acquisition of action-value does not depend on what policy the
agent follows during learning (or even whether the action policy
changes during learning). However, for learning the incentive
values of states, the action policy matters — since the incentive
values of states are defined with respect to a given stationary
policy. Here, we explicitly consider the effect of action learning on
reward prediction (of states). Our proposed rule of learning reward
prediction (which incorporated Rescorla–Wagner rule as a special
case) explicitly takes into account the effect of action probability
modification on the change of conditioned reinforcement value.
The tight coupling between action modification and incentive

acquisition in operant reinforcement learning (which arises
naturally from our formulation) need to be further investigated
in terms of neurophysiological mechanisms in structures like
basal ganglia that is known to play an important role both in
action planning and sequencing (e.g., Aldridge, Berridge, Herman,
& Zimmer, 1993; Graybiel, Aosaki, Flaherty, & Kimura, 1994) and
in mediating reinforcement and reward prediction (e.g. Robbins
& Everitt, 1992; Schultz, 1992). The dopaminergic circuits in
basal‘ganglia has been thought to mediate neural computation
of prediction error (Montague et al., 1996), and the motivational
attribution called incentive salience (Berridge, 2007; Berridge &
Robinson, 1998) that modulates learned reward values (Berridge,
Zhang, & Aldridge, 2008; Tindell, Berridge, Zhang, Pecina, &
Aldridge, 2005) . Future physiological investigation would provide
further details of the interaction in basal ganglia between the
motor generation/selection aspect and reward/incentive aspect of
the operant reinforcement learning.
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