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a b s t r a c t

According to the selection-by-consequence characterization of operant learning, individual ani-
mals/species increase or decrease their future probability of action choices based on the consequence
(i.e., reward or punishment) of the currently selected action (the so-called ‘‘Law of Effect’’). Under
Bayesianism, on the other hand, evidence is evaluated based on likelihood functions so that action prob-
ability is modified from a priori to a posteriori according to the Bayes formula. Viewed as hypothesis test-
ing, a selectionist framework attributes evidence exclusively to the selected, focal hypothesis, whereas
a Bayesian framework distributes across all hypotheses the support from a piece of evidence. Here, an
intimate connection between the two theoretical frameworks is revealed. Specifically, it is proven that
when individuals modify their action choices based on the selectionist’s Law of Effect, the learning popu-
lation, on the ensemble level, evolves according to a Bayesian-like dynamics. The learning equation of the
linear operator model [Bush, R. R., & Mosteller, F. (1955). Stochastic models for learning, New York: John
Wiley and Sons], under ensemble averaging, yields the class of predictive reinforcement learning models
(e.g., [Busemeyer, J. R., & Myung, I. J. (1992). An adaptive approach to human decision making: Learn-
ing theory, decision theory, and human performance. Journal of Experimental Psychology: General, 121,
177–194; Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine
systems based on predictive Hebbian learning. Journal of Neuroscience, 16, 1936–1947]).

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Selectionism, as originally used in the Darwinian theory of
biological evolution, refers to the mechanism of natural selection
throughwhich animal traits are either preserved or become extinct
according to their relative fitness. At the level of animal species,
the population of organisms carrying a certain trait would increase
or decrease depending on their reproductive success which is
linked to the fitness of any trait transmitted by their genes. This
adaptive process bears resemblancewith another dynamic process
whereby an animal organism acquires and modifies action skills
through operant (also called instrumental) conditioning — the
frequency (or tendency) of occurrence of a behavior is modified
by the consequences of such behavior performed in the past. The
formal parallelism between natural selection during the evolution
of species and the process of selection by consequences that
characterizes operant learning appeared to be noted by Skinner
(1953) first informally in his 1953 book ‘‘Science and Human
Behavior’’ and then more seriously (Skinner, 1981, 1984), and
was followed up by many others since (see a recent treatment
by Hull, Langman, and Glenn (2001), and the references therein).

E-mail address: junz@umich.edu.

Also noteworthy is another biological system that is now known to
employ a similar selectionmechanism as that of Darwinian natural
selection — the immune system in its reaction to antigens, which
operates at the time-scale of an organism’s life-span.
Bayesianism, on the other hand, deals with the concept of

probability as representing a degree of subjective belief in certain
propositions (‘‘hypotheses’’) about the environment, and with
the method of modifying the probability that a hypothesis is
true in light of new evidence received from the environment.
At the core of the Bayesian framework is the rule (‘‘Bayes
formula’’) to update the degree of belief through an assessment
of the likelihood values of such evidence. Though the publication
of Thomas Bayes dated back as early as 1763, this approach
became enthusiastically embraced by the mainstream statistical
community over a decade ago (cf. Barnardo and Smith (1994))
when technical difficulties in its implementation were overcome.
By imposing a consistency requirement on belief update, Bayesian
analysis enables optimal decision making despite uncertainty
about a stochastic environment.
On the surface, the selectionist and the Bayesian frameworks

represent two radically different perspectives on how agents
(whether an individual organism or animal species) interact with
their environment, with the former providing a kind of descriptive,
adaptive strategy and the latter prescribing a kind of normative,
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rational analysis. To see how the two may be potentially related,
we elaborate each perspective below for the case of action
modification by an agent interacting with an environment (that is
assumed to be stationary for the purpose of simplicity).

1.1. Operant selection revisited

In a target article published by Behavioral and Brain Sciences,
Hull et al. (2001) defined selection as ‘‘repeated cycles of replica-
tion, variation, and environmental interaction so structured that
environmental interaction causes replications to be differential.’’
These authors, after synthesizing considerable amount of litera-
ture, proposed a general account of selection that accommodates
the gene-based biological evolution, the reaction of the immune
system to antigens, andoperant learning as exemplifying processes
of selectionism. This general account includes three fundamental
elements in a selection system, namely, replication, variation, and
environmental interaction, along with the stipulation that ‘‘repli-
cation must alternate with environmental interaction so that any
changes that occur in replication are passed on differentially be-
cause of environmental interaction’’ (Hull et al., 2001, p. 511).
Though not without fierce debate, learning of operant behav-

ior was treated by Hull et al. as a kind of selection-by-consequence
process operating on the time-scale of an animal organism’s life-
span, in parallel with, per Skinner (1981, 1984), cultural evo-
lution and biological evolution which operate on much longer
time-scales. An operant behavior can be defined as an action that
affects the environment and that changes over time (in its formand
organization) depending on its consequences; changes in operant
behavior of a particular individual is called operant learning. ‘‘Vari-
ation’’, in the selectionist account of operant learning, involves an
operant repertoire made up of interrelated behavioral lineages,
with operant lineages originating fromwhat Skinner (1984) called
‘‘uncommitted behavior’’, i.e., behaviors that are inherited and not
well organized with respect to the environment. ‘‘Environmental
interaction’’ refers to the relationship between the responses and
their ensuing consequences — for certain relationships, frequency
of responses is increased, called ‘‘reinforcement’’, while for others,
their frequency is decreased, called either ‘‘extinction’’ or ‘‘punish-
ment’’. Finally, ‘‘replication’’ is based on modification of neurobi-
ological structures that code for behavior, which is passed along
to affect future recurrence of these behaviors. Roughly, the prob-
ability of emitting an action in operant selection is mapped to the
relative proportion of an animal population carrying a certain trait
in natural selection, and the reward/punishment for an action is
mapped to the reproductive success in natural selection.
At the core of operant selection is Thorndike’s (1898) Law of Ef-

fect, which states that responses that produce a satisfying (or dis-
satisfying) effect in a particular situation become more (or less)
likely to occur again in that situation. Such an adaptive learning
rule has been extensively investigated in animal learning litera-
ture, which historically led to the class of linear operator mod-
els (Bush & Mosteller, 1955; Norman, 1972) in the mathematical
psychology community and subsequently the theory of stochas-
tic learning automata (Narendra & Thathachar, 1974, 1989) in the
machine learning community. The key feature of such models is
that, for any single behavioral trial, probability for an action will
be increased (or decreased) as long as the action selected on that
trial brings about a reward (or penalty). Even though not neces-
sarily the best or worst among all possible actions in the action
repertoire, the selected action will absorb the consequence of ei-
ther reinforcement or punishment. Stated alternatively, the feed-
back from the environment directly affects the selected action and
only indirectly, through normalization of action probability, affects
other non-selected actions.
Conceptually, an operant consists of an observable actionRi (i =

1, . . . ,N) that (a) is drawn with a certain probability pi from a set
R = {R1, . . . , RN}, called ‘‘action repertoire,’’ and is emitted under

a given context S, called ‘‘discriminative stimulus;’’ and (b) results
in a reinforcer ri being delivered to the animal. The sequence of
events S–R–r in this order represents a basic operant unit. Note that
the reinforcer ri is delivered after an action Ri, while the stimulus S
precedes and accompanies that action. The discriminative stimulus
S merely sets the occasion for operant learning, though after
learning, it acts as if in control of the occurrence of a particular
action. Since actions are ultimately emitted out of the animal’s
action repertoire R, action probability pi is the proper variable to
study.
Operant conditioning embodies a wide range of reinforcement

learning situations in which the animal’s response tendency
is modified by experience. This probabilistic nature of operant
responses is in contrast with the instinctual, reflexive responses in
classical (i.e., Pavlovian) conditioning that can always be ‘‘elicited’’
by the unconditioned stimulus. The linear operator model, though
overly simplistic, characterizes operant learning as

pnewi = poldi + ϑ(1− p
old
i ) (0 < ϑ < 1), (1)

where ϑ is a quantity in proportional to the reward value
obtained by the learning agent, and i is the selected action.
Linear operator models formed the basis of much sophisticated
analyses, the so-called theory of stochastic learning automata.
Modern approaches in machine learning (i.e., temporal-difference
based methods) often treat operant conditioning and Pavlovian
condition in a unified fashion, resulting in the form of predictive
reinforcement learning models and the actor–critic architecture
with concurrent learning of both action probability and reward
prediction (reviewed in Sutton and Barto (1998)). However, such
treatment, by making reinforcement contingent upon reward
comparison, seems to have deviated from a strict interpretation of
selectionism (Thorndike’s Law of Effect, claiming to amplify any
selected action so long as it is rewarded).

1.2. Bayesian belief update revisited

If we view action selection in learning an operant behavior
as an act of hypothesis testing, the set of allowable actions in
the action repertoire as the set of hypotheses, and the reward
or penalty following the performance of an action as evidence
obtained from the environment, then the Bayesian framework
also provides a formula to update choice (or action) probability
according to evidence gathered on individual trials. This is done
through the use of likelihood functions, which evaluate evidence
from the perspectives of different hypotheses—the likelihood
value associated with each hypothesis accounts for the same
evidence but with differential strength. Belief about a hypothesis
prior to receiving evidence (‘‘prior probability’’) is modified
by the likelihood functions and becomes updated (‘‘posterior
probability’’) upon the receipt of evidence by the learning agent.
Since beliefs about all competing hypotheses are being updated
at the same time, a single piece of evidence will modify the
entire probability distribution—feedback as a consequence of
interaction with environment is to be distributed across all
possible hypotheses to achieve adaptivity in action selection.
Formally, let the set of hypotheses be denoted as a discrete set

{1, 2, . . . ,N}, where the ith hypothesis states that action Ri is the
best action to perform, and the degree of belief of it being true as
pi, (i = 1, . . . ,N). After receiving evidence e, and given likelihood
functions li(e) which describe how e might be generated in the
environment, Bayesian analysis prescribes an update of belief to
be

pnewi =
poldi li(e)∑
i
poldi li(e)

. (2)
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We take (1) and (2) to be representatives of the distinct
styles of adaptive computation afforded by selectionist and
Bayesian formulations, respectively, though undoubtedly they are
grossly simplified versions. Their sharp difference, nevertheless,
on how action probability (or belief) is to be modified based on
environmental feedback is striking: the selectionist formulation
(linear operator model) attributes reward exclusively to the
selected action (focal hypothesis), whereas Bayesian formulation
distributes evidence across all hypotheses. Given such a difference,
one wonders whether there can be any formal connection
between these two styles of adaptive computation? Are there
any circumstances under which the selectionist computation can
be viewed as normative and rationally based? We intend to
provide answers to these questions by demonstrating an intimate
connection between the operant reinforcement learning dynamics
and the Bayesian learning dynamics.
Specifically, it will be shown that when individuals modify

their action probabilities based on the selectionist rule, i.e., the
Law of Effect as exemplified by (1), the learning population,
on the ensemble level, will evolve according to a Bayesian
dynamics as exemplified by (2). Since ensemble averaging, in
the limit of infinitesimal learning rate, is equivalent to time
averaging, this means that selectionism, despite its seemingly
arbitrariness in trial-by-trial action selection and exclusiveness in
causal attribution, nevertheless is optimal in the Bayesian sense
when incremental modification occurs at small steps. The Law
of Effect, we argue, actually implements (albeit inefficiently and
approximately) the Bayesian inference scheme so long as there
is an ensemble of learning agents each faithfully carrying out the
trial-and-error type instrumental learning — the accuracy of such
approximation depends solely on the learning rate.
The remaining of the paper is organized as follows. Section 2.1

recalls a simple version of the linear operator model describing
how the action probability of a learning agent changes due to
differential reinforcement. Section 2.2 then analyzes an ensem-
ble of such learning agents, and shows how linear operator model
turns into a predictive reinforcement learning model involving re-
ward comparison. Section 2.3 studies the continuous limit of the
ensemble-level dynamics by solving a first-order ordinary differ-
ential equation. Section 2.4 compares the solution of the ensemble-
level equation to the Bayes formula, and identifies the likelihood
function in terms of reward. Section 2.5 further investigates the
formal equivalence between the selectionist and Bayesian formu-
lation by elaborating the meaning of ensemble-level analysis. A
computer simulation is reported that demonstrates the difference
between the two formulations, and the condition under which
they become identical. Section 3 closes with a discussion of the
implications of this work in relation to an experiment on adap-
tive learning. In the sequel (Zhang, 2009), we will show how this
equivalence, when applied to the acquisition of an action sequence
(‘‘operant chain’’), naturally leads to the notion of an internally
generated conditional (or secondary) reinforcement signal that
serves to predict terminal (or primary) reward, the cornerstone for
solving sequential credit-assignment problem.

2. Mathematical analysis

In this section, we revisit the learning of a basic operant unit. In
this case, the stimulus factor S, which sets the context for operant
learning, is completely hidden from the learning dynamics. It is the
probability distribution of the set of all allowable actions under S
that is under consideration, and it is the competitive reinforcement
among them that governs their modification. Reformulating the
linear operator model (Bush & Mosteller, 1955) and examining
the ‘‘average’’ learning trajectory of an ensemble of such animal
organisms allows us to propose a Bayesian interpretation of
the ensemble dynamics. The effects of different environmental
contexts (different S’s) will be studied in Zhang (2009) under the
context of acquisition of an operant sequence.

2.1. Single-trial modification of action probability

Suppose that under environmental context S, an animal
randomly executes an action Ri out of its action repertoire R =
{R1, R2, . . . , RN}. The conditional probability is denoted pi =
Prob(Ri|S). After the action Ri, the animal receives a reward θi in
return (assuming, for simplicity, that all θi ≥ 0 and that they are
not identical). This, according to Lawof Effect, results in an increase
in pi, the probability or tendency of the animal’s executing the
same action again. We follow the standard model in mathematical
learning theory (see Atkinson, Bower, and Crothers (1965), Bush
andMosteller (1955), Estes (1950), andNorman (1972)) to describe
this change δp(n)i at discrete time step n of the learning process:

δp(n)i = εθi(1− p
(n)
i ),

or equivalently

p(n+1)i = (1− εθi)p
(n)
i + εθi = p

(n)
i + εθi(1− p

(n)
i ).

Here, the small constant ε > 0 reflects the learning rate, and is
explicitly written out for convenience. Note that the reward values
θi can also be stochastic, and we assume that εθi < 1. On the other
hand, because of normalization of probability∑
k

p(n+1)k =

∑
k

p(n)k = 1,

the increase of pi due to reinforcing (with θi) the animal’s
spontaneous execution of Ri results in an effective decrease of the
probability of the same animal executing other actions Rj (j 6= i):

δp(n)j = −εθip
(n)
j (j 6= i),

or equivalently

p(n+1)j = p(n+1)j − εθip
(n)
j .

Compactly written, in terms of components of the action
probability vector p(n) = (p(n)1 , . . . , p

(n)
N ), the animal’s executing

action Ri at step n gives rise to

δp(n)k = εθi(eik − p
(n)
k ) k = 1, . . . ,N (3)

with the Kronecker delta

eik =
{
1 if k = i
0 other k.

Collectively for all components of action probability, (3) can be
written as

δp(n)i = εθi(ei − p(n)i )

where

δp(n)i = (δp
(n)
1 , . . . , δp

(n)
i , . . . , δp

(n)
N )

is the change of action probability p(n) after action Ri is performed.
The single-trial learning rule (3) reflects a Markov transition of
action probability values, from p(n) to p(n+1), with absorbing states
at the corners ei (i.e., the unit vector with the kth component eik)
of the simplex S of all allowable action probability

S =

{
p : pk ≥ 0;

∑
k

pk = 1

}
.

This iswell-known from the theory of stochastic learning automata
(see Narendra and Thathachar (1974)). The learning rule (3)
correspond to their S-model with linear reward-inaction (LR−I )
scheme.
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2.2. Ensemble-level modification of action probability

The operant learning rule describes, on a single-trial basis,
the change of action probability δp(n)i when a given action Ri is
executed at time n. During operant conditioning, any actions in
the action repertoire is possible. Since the probability of action Ri
being executed at time n is p(n)i , the average change of p

(n), (average
in the sense of an ensemble of such learning systems), should be
calculated after applying this weighting factor. Component-wise,
it is1

∆p(n)k =
∑
i

p(n)i δp
(n)
k =

∑
i

p(n)i εθi(eik − p
(n)
k )

= εp(n)k θk − εp
(n)
k

∑
i

p(n)i θi.

Introducing the expected reward (averaged under action probabil-
ity p(n)) at step n

Θ(n)
=

∑
k

p(n)k θk, (4)

we obtain the equation governing time evolution of p(n) (on the
ensemble level)

∆p(n)k = εp
(n)
k (θk −Θ

(n)), k = 1, 2, . . . ,N. (5)

Note that in the above calculation of ∆p(n)k , two sources of
contribution to a change in p(n)k have been taken into account:

(1) an active increase, in the amount εp(n)k θk(1 − p
(n)
k ), due to

reinforcement when action Rk is executed;
(2) passive decreases, in the amount −ε

∑
j6=k p

(n)
j θjp

(n)
k , due to

probability normalization when actions Rj (j 6= k) are
executed.

These two contributions sum to exactly give the expression in
Eq. (5). The overall dynamics of learning, according to (5), is
easily understood: at each learning step n, those actions Rk that
yield above-average rewards will increase their probability of
emission, whereas those actions that yield below-average rewards
will decrease their probability of emission:

∆p(n)k > 0 if θk > Θ(n),

∆p(n)k < 0 if θk < Θ(n).

The consequence of such learning is to promote those actions
with higher rewards and to weed out those with lower rewards,
where the expected (average) reward is used as a standard to be
compared to. The expected rewardΘ itself would increase because
action probability will be redistributed in favor of better-rewarded
actions. Formally,

∆Θ(n)
=

∑
k

∆p(n)k θk =
∑
k

εp(n)k (θk −Θ
(n))θk

= ε

(∑
k

p(n)k (θk −Θ
(n))2

)
= εσ (n) > 0,

where

σ (n) =
∑
k

p(n)k (θk −Θ
(n))2 (6)

is thep(n)-weighted (i.e., ensemble averaged) reward variance. This
shows that as learning proceeds (i.e., as n increases), the average
reward Θ increases monotonically. The size of its increase ∆Θ(n)

is proportional to the variance of reward distribution σ (n) at step
n. Thus, the learning equation (5)effectively achieves a stochastic

1 Becauseweare calculating average change of p(n)k , wemay replace the stochastic
reward variables θk by their means θ̂k in the equations. For simplicity, we retain the
notation θk here and below to represent the mean reinforcement value associated
with action Rk .

ascend of the average reward Θ . In the language of stochastic
processes (see e.g., Karlin and Taylor (1975)), the stochastic
variableΘ(n) can be described as a ‘‘sub-martingale’’ process with
respect to the stochastic action selection and modification as
learning progresses.
The ensemble-level learning equation (5) can be cast as

∆pk = pk

(
(1− pk)θk −

∑
i6=k

piθi

)
= pk(1− pk)(θk − θ ′k), (7)

where

θ ′k =

∑
i6=k
piθi

1− pk
=

∑
i6=k
piθi∑

i6=k
pi

(8)

is the average reward excluding action Rk (i.e., when Rk is no longer
an option). Therefore, ∆pk > 0 (or < 0) if and only if performing
action Rk yields more (or less) reward than not performing action
Rk.
A learning algorithm that ensures ∆Θ(n) > 0 for each step

of learning is said to be ‘‘absolutely expedient’’ (Narendra &
Thathachar, 1989). Absolute expediency is a property of general
associative reinforcement learning algorithms (Williams, 1992).
In the current case, even when the learning rate is non-constant
ε = ε(p), the algorithm (3) is absolutely expedient (Narendra &
Thathachar, 1989). Nevertheless, it should be kept in mind that an
individual learning automaton (agent)may sometimes converge to
non-optimal solutions, though the probability of such errors can
be made arbitrarily small when the learning rate approaches zero
(called ‘‘ε-optimality’’). This distinction between single-trial and
ensemble-level dynamics will be discussed further in Section 2.5.
In short, operant learning (on the ensemble level) is charac-

terized by the simultaneous modification of (a) action probabil-
ity and (b) average reward (see Fig. 1). On the one hand, action
probability increases or decreases depending on whether the re-
ward received is above or below the average reward; on the other
hand, average reward increases as a result of applying such rules
of modifying action probabilities. The repeated application of such
learning scheme leads to gradual improvement of the fitness
(adaptiveness) of animal behavior on a population level: ac-
tion probabilities will be redistributed more and more towards
better-rewarded actions while average reward increases steadily.
Therefore, the operant learning principle, when operating at the
ensemble level, augments certain action tendencies while dimin-
ishing others (according to their consequences), even though at
the single-trial level, it appears that any chosen action results in
an augmentation due to the positivity of a reward. The ensemble-
level equation (5) resembles an entirely different class of learn-
ing models based on reinforcement prediction and comparison,
such as the adaptive decisionmodel for human choice performance
(Busemeyer & Myung, 1992), and the predictive Hebbian learning
for modeling choice behavior of insects (Montague, Dayan, Person,
& Sejnowski, 1995) and primates (Montague, Dayan, & Sejnowski,
1996)— all thesemodels have in common a process of trial-by-trial
reward estimation and prediction, a procedure of comparing the
actual reward received with the predicted reward value, and using
their discrepancy as the reinforcement signal to drive learning.

2.3. Ensemble-level dynamics: Continuous limit

The ensemble-level dynamics introduced in the last subsection
describes the (average) change of action probability when the
‘‘sampling’’ of actions is governed by the action probability itself.
The ensemble averaging operation applied to the linear operator
model has the following two interpretations. First, the population
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Fig. 1. Schematic illustration of interaction between action probability and average
reward, for an action repertoire with N = 6. (a). Action probabilities p(n)k are
indicated by the height of the bar. The arrows indicate whether the average change
1p(n)k is greater or smaller than0. (b). The reward values θk associatedwith actionRk ,
which remain fixed throughout learning, are indicated by the height of the bar. The
dotted line represents the value ofΘ(n) , the reward average at step n. Depending on
whether θk > Θ(n) or θk < Θ(n) , action probabilities p(n)k will increase or decrease
(arrows in (a)). As a result,1Θ(n) > 0.

of learning agents is assumed to be homogeneous, with each agent
starting with the same initial action probability and undergoing
action modification according to the linear operator model — the
only difference between agents is that different actions may be
selected which is probabilistically prescribed by the then-current
action probability value itself. Second, we imagine that any single
agent samples its various actions using this action probability (such
that someactions are carried out bymore agents than others)while
modifying the value of action probability every time any action is
carried out.2 When the learning rate ε is small, then the ensemble
averaging operation can be approximated by the time averaging
operation, such that ensemble dynamics is to be described by some
continuous dynamics. Making the identification t = n ε and dt =
ε δn = ε for δn = 1, the trajectory of single-trial evolution of
action probability can be described by the Ito stochastic differential
equation

dpk = pk

(
θk −

∑
i

piθi

)
dt + o (εdW)

where W is the Wiener noise (diffusion) process (see Gardiner
(1985)). The corresponding Langevin equation has been used
to study the convergence properties of single-trial trajectories
(Phansalkar & Thathachar, 1995; Thathachar & Sastry, 1985). In the
limit ε → 0, the diffusion term may be discarded to result in an
ordinary differential equation which is the continuous equivalent

2 This describes the scenario called ‘‘on-policy control’’ in reinforcement learning
(Sutton & Barto, 1998), i.e., when the policy being modified is also the policy being
implemented for action selection in learning.

of the discrete version (5)3:

dpk
dt
= pk

(
θk −

∑
i

piθi

)
. (9)

The right-hand side of (9) defines a flow field in the probability
simplex S, with fixed points at p = el, the unit vector (with the kth
component elk) at one of its corners. It is interesting to note that
the system of Eq. (9) is also known as the ‘‘replica dynamics’’ in
population biology (see, e.g., Hofbauer and Sigmund (1998)).
Following the derivation of (7), Eq. (9) may be re-written as

d
dt

(
log

pk
1− pk

)
= θk − θ

′

k,

where θ ′k is given by (8). The log-odds formulation has the clear
interpretation that action probability is to be reinforced if and
only if it yields more reward when performed than when not
performed.
We now remove the assumption that the average reinforce-

ment value θk associated with action Rk is stationary, and allow it
to be a function of time t . Under this less restrictive assumption
about the environment, θk = θk(t), we can prove

Proposition 1. Given reward functions θk(t), k = 1, . . . ,N, the
solution for (9) is:

pk(t) =
pk(0)eφk(t)∑
i
pi(0)eφi(t)

(10)

where pk(0) is the action probability prior to learning, i.e., the initial
bias for action selection, and

φk(t) =
∫ t

0
θk(τ )dτ

with φk(0) = 0. For stationary rewards θk(t) = θk, the solution
becomes:

pk(t) =
pk(0)eθkt∑
i
pi(0)eθit

. (11)

Proof. First, Eq. (9) can be cast into the following form:

d log pk
dt

− θk(t) = −
∑
i

pi(t)θi(t) (12)

where the right-hand side is a function of t independent of index
k. As a first-order ODE, the homogeneous equation corresponding
to (12) is

d log p̃k
dt

− θk(t) = 0,

whose solution is immediately found to be

p̃k(t) = p̃k(0)eφk(t).

Note that, for the non-homogeneous Eq. (12), the right-hand side
is a function of t irrespective of subscript k. This prompts us to try
the following closed-form solution:

pk(t) =
p̃k(t)
Z(t)

=
1
Z(t)

pk(0)eφk(t) (13)

3 In the generic absolutely expedient models where ε = ε(p), the learning-rate
factor cannot be simply absorbed into t . However, the direction of such flow is still
given by the following equation.
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with the function Z(t) yet to be determined subject to Z(0) = 1.
Since
d log pk
dt

=
d
dt
(log pk(0)+ φk(t)− log Z(t)) = θk(t)−

d log Z(t)
dt

,

we have, from (9),

d log Z(t)
dt

=

∑
i

pi(t)θi(t) =
∑
i

1
Z(t)

pi(0)eφi(t)θi(t)

where (13) is substituted in the last step. Therefore,

dZ
dt
=

∑
i

pi(0)eφi(t)θi(t).

Integrating both sides from 0 to t:

Z(t)− Z(0) =
∑
i

pi(0)(eφi(t) − 1) =
∑
i

pi(0)eφi(t) − 1,

we obtain

Z(t) =
∑
i

pi(0)eφi(t).

With Z(t), the solution pk(t) is readily obtained and expressed as
Eq. (10). �

The solution (10) can be interpreted as a normalized exponen-
tial dynamic using cumulative reward functionsφk (or equivalently
θk): the numerator indicates that an action tendency for Rk will
increase exponentially due to continuous, positive reinforcement
θk; the normalizing denominator indicates a competition between
various action tendencies (k = 1, . . . ,N) that are all being con-
currently reinforced but at different rates. The evolution of action
probability pk(t) reflects both a reinforcement effect and a compe-
tition effect. The result of this competitive, reinforcement learning
is determined by the reward structure in terms of θk’s.Wemention
in passing that an affine transformation of the reward structure

θk → aθk + b

does not affect the ensemble-level dynamics. The constant b does
not affect (11), whereas the constant a > 0 provides the scaling
of time for learning (akin to the temperature parameter in a
Gibbs–Boltzmann distribution).
We note that the quantity Z(t) introduced in the proof is

analogous to the thermal-dynamical partition function, and where
the probability pk is said to obey theGibbs–Boltzmanndistribution.
Under stationary reward (i.e., θk’s are constants), Z(t) can also be
view as the moment-generating function of a discrete probability
distribution. The partition (moment-generating) function Z(t) can
be used to calculate a variety of useful quantities, including the
mean expected rewardΘ(t)

Θ(t) =
d log Z(t)
dt

=

∑
i

pi(t)θi,

and the variance σ(t) of pk-distributed reward values

σ(t) =
d2 log Z(t)
dt2

=

∑
i

pi(t)(θi −Θ(t))2.

These two quantities satisfy

dΘ(t)
dt
= σ(t),

which is the continuous-time version of Eq. (6).
The continuous dynamics (9) can be extended from the discrete

response case (where actions and rewards are indexed by k =
1, 2, . . . ,N) to a continuum of actions (where action probability

p(x, t) and reward θ(x, t) are specified by continuous variable x)
in the action repertoire:

∂p(x, t)
∂t

= p(x, t)
(
θ(x, t)−

∫
p(x, t)θ(x, t)dx

)
. (14)

This formulation is useful whenever a continuum of actions is
examined, for instance, during the acquisition of motor skills
where movement parameters (such as force or timing) are being
fine tuned. The average and variance of reward can be analogously
defined:

Θ(t) =
∫
p(x, t)θ(x, t)dx,

σ (t) =
∫
p(x, t)(θ(x, t)−Θ(t))2dx.

The solution of (14) can be expressed using the partition function

Z(t) =
∫
p(x, 0)eφ(x,t)dx,

with

φ(x, t) =
∫ t

0
θ(x, τ )dτ .

2.4. Bayesian interpretation

The evolutionary trajectory of pk(t) given by Eq. (10) has
an interesting Bayesian interpretation. Recall the Bayes formula
(2) which specifies the relationship between the prior and
posterior probabilities (that a hypothesis is true before and
after obtaining evidence) and the likelihood function (that such
evidence is produced under the various hypotheses). Comparing
with (10), we can interpret pk(0) as the prior probability (action
probability before learning), pk(t) as the posterior probability
(action probability after learning), and φk(t) as the log likelihood
function:

log lk = φk(t).

This is to say, the animal can be viewed as actively and constantly
testing and revising its belief about a set of hypotheses, by emitting
actions and modifying action tendencies by treating reward for
actions as evidence.
The probability ratio of any two actions Ri and Rj during learning

is:
pi(t)
pj(t)

=
pi(0)
pj(0)

eφi(t)−φj(t).

When rewards are constant (i.e., a stationary environment)
θ(t) = θk, φk(t) = θkt , the above ratio will, depending
on the relative difference in reward magnitudes, increase or
decrease exponentially as a function of time. Therefore, the
learning algorithmmakes very fine discriminations againstminute
differences of reward values and will eventually acquire the
maximally rewarded action.
The functions φk(t) represent the ‘‘total’’ accumulated rewards

for each action Rk up to time t . Denote

φi(t|s) =
∫ t

s
θi(τ )dτ = φi(t)− φi(s).

Then we have, for all 0 ≤ s ≤ t ,

pk(t) =
pk(s)eφk(t|s)∑
i
pi(s)eφi(t|s)

.

This implies that the functions [φ1(t|s), . . . , φN(t|s)] ‘‘translates’’
the action probability values p(s) = [p1(s), . . . , pN(s)] at time s
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to action probability values p(t) = [p1(t), . . . , pN(t)] at a later
time t .
Since the ensemble-level dynamics is invariant under φk →

φk + b(t), we can define the functions ψk

ψk(t|s) = φk(t|s)−
∑
i

pi(s)φi(t|s)

which have zero-expectation (with respect to p(s)). We have

Corollary 2. For all 0 ≤ s ≤ t and with p(s) fixed, the set of
functions ψk(t|s) and p(t) = [p1(t), . . . , pN(t)] are in one-to-one
correspondence. In particular,

pk(t) =
pk(s)eψk(t|s)∑
i
pi(s)eψi(t|s)

⇐⇒ ψk(t|s) = log
pk(t)
pk(s)

−

∑
i

pi(s) log
pi(t)
pi(s)

.

Proof. The first equation is a slight modification of (10), while the
second equation is then obtained by direct substitution. �

Therefore, with any fixed reference point p(s), the action
probability pk(t) and the set of ψk(t|s)’s can be mutually inferred.
See Zhang and Hasto (2006) for a more general discussion of this
type of probability representation as used in Bayesian formulation.
Recall the Kullback–Leibler divergence (cross-entropy)

K(p(s), p(t)) =
∑
i

pi(s) log
pi(s)
pi(t)

,

which characterizes the asymmetric distance between p(s) and
p(t). It can be shown, by direct calculation, that the KL measure
in the current case is positive

K > 0,

strictly increasing

dK
dt
= Θ(t)−Θ(s) > 0,

and strictly convex

d2K
dt2
=
dΘ
dt
= σ(t) > 0.

This shows that learning achieves a global ascend on the KL
measure and the dynamics accelerates as time progresses.
To summarize: the ensemble-level operant learning equation,

when cast in the form of (5), presents a clear picture of how the
change of action probability is gauged by the current, average
reward, and how the change of average reward, in turn, is related
to the change of action probability. In the continuous limit (9), the
analytic solution offers additional insight into the dynamics of this
selectionist’s learning and its connection to Bayesianism.

2.5. Relationship between single-trial and ensemble-level learning

It is important to note the difference and connection between
the single-trial operant rule (3) and the ensemble-level equation
(5). In our formulation, the learning agent is conceptualized by
a probability vector that summarizes its action tendency at any
given point, and the ensemble is made up by a multitude of
such agents. Consider an ensemble of agents all with the same
starting action probability vector p(n), at learning step n. Update
of action probability of all such agents is a stochastic process
that splits the initial value p(n) into N possible values p +
δp(n)i (i = 1, 2, . . . ,N) with probabilities p(n)i , depending on the
action chosen by the individual agent. As long as the learning

rate ε is non-diminishing, the evolution of the ensemble (more
accurately, of the probability density function over p) involves
both a first-moment drift process, which describes the mean
(ensemble-average) of action probability change∆p(n) as given by
(5), and a second-moment diffusion process, which is related to the
covariancematrix associatedwith theN vectors δp(n)i .When Eq. (5)
is used in place of (3), the drift factor of action probability update
is captured while the diffusion factor is omitted.
Individual learning agents operating on (3) will eventually

converge (with probability 1) to one of the absorbing states at the
corners of the probability simplex S, though it is also known that
they sometimes converge to non-optimal solutions so long as ε
is non-vanishing (Lakshmivarahan & Thathachar, 1973, 1976). The
upper bound of the probability of such non-optimal performance
has been estimated (Norman, 1968). Since it is the accumulation
of diffusion that may lead the single-trial Markov chain of action
probability to be absorbed by non-optimal states, we now examine
the effects of its omission when we turn to the ensemble-level
description (5) which solely captures the drift process. For any
vector p in the probability simplex S, we can define the converging
(absorbing) probability Γk(p) as the probability that the learning
agent, when starting at the initial value p and being updated
according to (3) step-by-step and repeatedly, will eventually
evolve into ek, the kth vertex of S. The Markov nature of single-
trial updating implies that∑
i

piΓk(p+ δpi) = Γk(p).

It follows that

Γl(p+∆p)− Γl(p) = o(ε2).

Since∆p is on the first order of ε, the number of stepNT needed for
p to drift across some finite distance T isNT ∼ T/ε. The cumulative
change in absorbing probability isNT ·ε2 ∼ ε ·T , which approaches
zero as ε → 0. This is to say, absorbing probability is almost (as
the learning rate approaches 0) conserved when action probability
is updated according to the ensemble-level rule (5) where the
diffusion factor has been omitted from the single-trial rule (3). In
fact, since diffusion is on the order of ε2, the total deviation of
the trajectory of single-trial Markov process from the trajectory of
ensemble-level equation is also ε · T → 0. The above arguments
on the absorbing probability and on the behavior of single-trial
trajectory can be stated more rigorously using the language of
weak convergence introduced into the study of stochastic learning
automata (Phansalkar & Thathachar, 1995; Thathachar & Sastry,
1985): the trajectory of a discrete, stochastic process converges
in probability, at all points of the trajectory, to the trajectory of
a deterministic ordinary differential equation (ODE), so long as ε
is small. In this current setting, the deterministic ensemble-level
dynamics (5) is given by (10).
Here we numerically simulated sample paths of single-trial

operant learning for a three-choice situation (Fig. 2). Each
simulation started with an action probability p = (0.1, 0.3, 0.6).
The stochastic reward associated with each action was normally
distributed, with mean values (θ1, θ2, θ3) = (0.05, 0.03, 0.02),
and standard deviation 0.006. There the maximally rewarded
action R1 had lowest probability initially (p1 = 0.1), and the
learning-rate parameter ε was absorbed into the reward values.
At each step, action was randomly chosen according to p =
(p1, p2, p3); then p was updated based on the reward for that
selected action using (3). Three sample paths were generated, with
the associated curves for average reward Θ plotted as well. After
about 200 learning trials, Θ reached an asymptotic value of 0.05,
which was the value of maximal reward associated with action R1.
It should be noted all simulated trajectories did not end up in

vertex A, the maximally rewarded action. As mentioned earlier,
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Fig. 2. Single-trial learning trajectory of action probability (on the left) and the
growth of average reward Θ (on the right) for N = 3. The action probability p =
(p1, p2, p3) is represented by a point in the triangle representing the probability
simplex S = {p : p1 + p2 + p3 = 1} with corners A = (1, 0, 0), B = (0, 1, 0),
and C = (0, 0, 1). Stochastic reward values are used with means (θ1, θ2, θ3) =
(0.05, 0.03, 0.02). Three separate runs were depicted in (a)–(c). Each run starts
with the same initial position: at t = 0, (p1, p2, p3) = (0.1, 0.3, 0.6), with
Θ = 0.1 · 0.05 + 0.3 · 0.03 + 0.6 · 0.02 = 0.026. Due to the stochastic nature
of the value of the reward and the action actually selected on each trial, the step
changes in the trajectory of pk ’s vary considerably. The average rewardΘ increases
despite trial-by-trial fluctuations.

there is a non-zero probability of convergence to vertex B or
C. To appreciate such occurrence, we looked at the behavior of
an ensemble of such learning agents (Fig. 3(a)), where each dot
represented a learning agent (animal organism).We assumed their
starting positions (initial states) were randomly distributedwithin
the probability simplex, and took ‘‘snapshots’’ of their positions as
time evolved.While this populationbecame redistributed,with the
center of mass shifted towards vertex A, there were a few animals
that got stuck at and eventually were absorbed by vertex B. It
is also apparent that the population tended to cluster along the
line AB, which corresponded to p3 = 0; this is predicted by the
dynamics of the ensemble-level evolution: action options drop out
one by one, from the least favorable one to the next, and so on (see
Fig. 1). For reader’s information, we also plotted the trajectory of
the ensemble-level dynamics (11) in the current case (Fig. 3(b)).

3. Discussion

Since the first generation of linear operator model (Bush &
Mosteller, 1955), there have been tremendous advances in the
formal characterization of adaptive computation (both Pavlovian
and instrumental conditioning) in animal learning. Modern
theories of reinforcement learning, e.g., Temporal Difference (TD)
learning (Sutton, 1988; Sutton & Barto, 1990), emphasize the
need of prediction and the use of the discrepancy between
predicted and actual reward to drive learning. TD learning is
a natural extension of the Rescola–Wagner rule for learning
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C

(0, 1, 0) B

(0, 0, 1)C A(1, 0, 0)

a

b

Fig. 3. Diagrams of (a) the evolution of a population of agents undergoing operant
conditioning and (b) the associated mean flow field. The same reward values as in
Fig. 2 were used. In (a), initial action probabilities (t = 0) are randomly generated
and evenly distributed on the probability simplex. Gradually, the distribution of the
population density shifts towards vertex A, which corresponds to the maximally
rewarded action. The six panels correspond to t = 0, t = 30, t = 60, t = 90,
t = 120, and t = 150. Each dot represents a learning agent, with a total of 100
dots in the simulation. In (b), the flow field reflects the evolution of the ensemble-
level equation in which arrows indicate the direction of average change of action
probability1p.

incentive values of a conditioned stimulus (Rescorla & Wagner,
1972) — in which the difference between (a) an actually delivered
reward and (b) the internally generated expectancy of reward
governs the adjustments of connectionweights between stimulus-
units and reward-predicting units (summarized in Barto (1995)).
In the actor–critic architecture where there is now abundant
neurophysiological support, TD learning is applied not only to the
acquisition of incentive value of a stimulus (‘‘V-function’’), but
also to the adjustment of action values (‘‘Q-functions’’) needed for
modifying a policy. Our current analysis shows that, when it comes
to modifying action probability, we can, instead of implementing
it as predictive learning, use the selectionist framework (a la
Bush–Mosteller) and still achieve the same dynamics so long as
the learning rate is small. In other words, action probability can
be shaped not necessarily by comparing relative merits against
each other but possibly through the differential magnitude of
reinforcement achieved by each action when emitted. One may
argue that predictive learning is crucial for solving sequential
decision problems (e.g., through Watkins’s (1989) Q-learning). It
will be shown, in the companion paper to follow (Zhang, 2009),
that applying the selectionist framework in the sequential setting
naturally leads to the notion of conditioned reinforcement values
for the intermediate states, and that action sequencing may be
achieved so long as the incentive values of those states are learnt
and used as reinforcers for preceding states and for non-terminal
actions in a chain.
The linear operatormodelwe analyzedhere as exemplifying the

selectionist-style operant learning is obviously overly simplistic.
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Nevertheless, our simulated trajectories (Fig. 2) are in qualitative
agreement with the learning trajectories of human subjects as
reported by Busemeyer and Myung (1992) in their Exp. 1. There,
subjects were given three alternatives to choose from, each
resulting in a stochastic payoff with different means. The learning
trajectories of the subjects were modeled by an adaptive network
based on a reinforcement comparison rule. We have shown here
by simulation, as well as by mathematical analysis, that successive
application of operant reinforcement learning rule (3) will, with a
small enough learning-rate parameter, result in the same effects
as the reinforcement comparison rule (5) used by Busemeyer and
Myung (1992). Since ensemble averaging is equivalent to time
averaging at the limit ε → 0, the ensemble dynamics for operant
learning may also describe the performance of a single learning
agent. So our revelation on the connection between the selectionist
and Bayesian frameworks, if anything, suggests that at behavioral
level, it is rather difficult (theoretically impossible if the learning
rate is infinitesimal) to distinguish the class of linear operator
model from the class of reinforcement comparison rule that lie at
the heart of modern reinforcement learning. On a philosophical
level, selectionism, though widely recognized as an inefficient and
wasteful algorithm, may well be Nature’s way of faithfully and
robustly implementing a rational scheme of adaptive computation
when adjustment is incremental and each step of the iteration
(‘‘replication’’ in Hull et al.’s (2001) characterization for selection)
is of a sufficiently small step size.
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