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a b s t r a c t

Event-related potentials (ERPs) are evoked activities of the brain related to specific events. They can be
estimated by averaging across many trials aligned to a specific event onset time point, such as the stimulus,
the response, or other behaviorally significant markers. If a single trial includes more than one such event
(marker), as in all reaction-time tasks, the cross-contamination of components related to different events
may mislead the explanation of ERPs. In order to recover event-related components, Zhang [Zhang J.
Decomposing stimulus and response component waveforms in ERP. Journal of Neuroscience Methods
1998;80:49–63] provided a method for decomposing of ERPs according to two markers (stimulus and
the behavioral response). Here we extend this formulation to deal with three or more markers in a single
trial, and recover individual ERP components that are time-locked to those markers. As an application, we
analyzed a cuing experiment with three events: cue, stimulus and response. The elapse between cue and
stimulus was varied from trial to trial by the experimenter, and the time between stimulus and response
was determined by the subjects (reaction-time variation). Our decomposition results show that the cue-
dependent component waveform turns out to flatten out 500 ms after cue-onset, a finding consistent
with our experimental paradigm.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

ERPs are evoked activities of the brain that are averaged over
many trials to remove trial-by-trial noise and to increase signal-
to-noise ratio. When the individual trials are aligned with respect
to the stimulus onset, the ensemble average is called stimulus-
aligned ERP, with waveforms demonstrating, e.g., P300 (Squires
et al., 1975; Hillyard and Picton, 1987) and N400 (Kutas and
Hillyard, 1980). When the ensemble averaging is performed by
aligning individual trials to behavioral response onset, the so-called
response-aligned ERP results, with waveforms demonstrating, e.g.,
error-related negativity (ERN) (Gehring et al., 1993; Falkenstein
et al., 1995) or (after subtraction) lateralized readiness potential
(LRP). In experimental paradigms where both a stimulus is pre-
sented and a behavioral response is required, stimulus-aligned
ERP average and response-aligned ERP average may yield differ-
ent waveforms since the subject does not respond with uniform
reaction time across the ensemble of the trials. How to inter-
pret these ensemble averages is thus a non-trivial problem, since
either stimulus-aligned or response-aligned ERP average may con-
tain both components related to the processing of stimulus (and
hence better time-locked to the stimulus onset event) and com-

∗ Corresponding author. Tel.: +1 734 763 6161; fax: +1 734 763 7480.
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ponents related to the processing of response (and hence more
tightly coupled with the moment of behavioral response onset).
The overlapping event-related components in the ERP averaged
waveform can cause difficulty and confusions in the interpreta-
tion of underlying neural mechanisms for ERP. For example, in the
study of response inhibition by Go/Nogo paradigm, a question arises
whether the N2/P3 differences between Go and Nogo trials in the
overall ERP mainly comes from the accompanying motor response
in the Go trial (Simson et al., 1977; Kok, 1986; Kopp et al., 1996).
How to remove cross-contamination of ERP component waveforms
in their ensemble averages was tackled and solved by Zhang (1998),
who provided a method to uniquely recover a stimulus-locked com-
ponent waveform and a response-locked component waveform
from the stimulus-aligned ERP average and response-aligned ERP
average (plus information about reaction time distribution that is
behaviorally obtained).

Many psychological experiments involve more than two behav-
ioral events in a single trial. For example, in the study of visual
spatial attention where a peripheral or central cue is utilized, a
single trial will involve three event-related components related to
cue presentation, stimulus presentation and behavioral response,
respectively. A similar situation occurs in the study of ERN when
EMG measurement is introduced (Gehring and Fencsik, 1999)—in
that case, the onset of EMG, along with the stimulus onset and
response onset, constitute three independent behavioral events
with variable separation between the onset times. This provides an

0165-0270/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
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opportunity to understand underlying mechanisms of ERN, but also
presents a challenge to unconfounding the ERP component wave-
forms time-locked to those events individually. So a more general
formulation to decompose three or more components is needed to
get different event-related components properly.

In this paper, the algorithm of ERP decomposition developed by
Zhang (1998) is extended from the situation of two components
(related to stimulus and response, respectively) to the situation of
three or more events in a single trial. Though the general ideas fol-
low those in Zhang (1998), implementation details are discussed in
length. After having tested our new extended algorithm on simu-
lated single-trial data, we applied it to separate ERP components in
a Go/Nogo experiment with variable pre-cue, a paradigm involving
three behavioral events in a trial.

2. Method

2.1. ERP decomposition for two components (S-R decomposition):
a revisit to Zhang (1998)

Suppose we have the following experimental data: (a) the
stimulus-aligned ERP average waveform denoted Fs(t), (b) the
response-aligned ERP average waveform Fr(t), and (c) the dis-
tribution of reaction times g(t). The problem is how to recover
the stimulus-locked component (“S-component”) fs(t) and the
response-locked component (“R-component”) fr(t). By reflecting on
how Fs(t), Fr(t) are constructed and how fs(t), fr(t) are defined, the
following two mathematical equations were derived (Zhang, 1998)

Fs(t) = fs(t) +
∫

fr(t − �)g(�) d� (1)

Fr(t) = fr(t) +
∫

fs(t + �)g(�) d� (2)

In convolution notation, they are

Fs(t) = fs(t) + fr(t) ∗ g(t) (3)

Fr(t) = fr(t) + fs(t) ∗ g(−t) (4)

Performing Fourier transform (those with tilde sign indicate the
Fourier domain representation)

F̃s(k) = f̃s(k) + f̃r(k) · g̃(k) (5)

F̃r(k) = f̃r(k) + f̃s(k) · g̃(−k) (6)

and solving for the frequency components F̃s(k), F̃r(k), Zhang (1998)
finally obtained

fs(t) = 1
2�

∫
F̃s(k) − F̃r(k) · g̃(k)

1 − |g̃(k)|2 eikt dk (7)

fr(t) = 1
2�

∫
F̃r(k) − F̃s(k) · g̃(−k)

1 − |g̃(k)|2 eikt dk (8)

where ∼ represents the frequency spectrum of the recorded ERP
averages and the RT distribution.

For convenience, we write out the above equations in matrix
form. Here we adopt the periodic boundary condition (see Zhang,

1998). The Eqs. (3) and (4) in temporal domain can be cast as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fs(1)

Fs(2)

.

.

.

Fs(n)

Fr (1)

Fr (2)

.

.

.

Fr (n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 g(1) g(2) · · · g(n)

0 1 . . .
.
.
. g(n) g(1) · · · g(n − 1)

.

.

. · · ·
. . . 0

.

.

.
.
.
.

.

.

.
.
.
.

0 · · · 0 1 g(2) g(3) · · · g(1)
g(1) g(n) · · · g(2) 1 0 · · · 0

g(2) g(1) · · · g(3) 0 1 · · ·
.
.
.

.

.

.
.
.
. · · ·

.

.

.
.
.
. · · ·

. . . 0
g(n) g(n − 1) · · · g(1) 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fs(1)

fs(2)

.

.

.

fs(n)

fr (1)

fr (2)

.

.

.

fr (n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

or in shorthand notation[
Fs

Fr

]
=
[

I B
BT I

][
fs
fr

]
(10)

where I denotes the identity matrix (with 1’s in diagonal positions
and 0’s elsewhere), and T denotes matrix transpose, and

B =

⎡
⎢⎢⎣

g(1) g(2) · · · g(n)
g(n) g(1) · · · g(n − 1)

...
...

...
...

g(2) g(3) · · · g(1)

⎤
⎥⎥⎦ ,

The frequency domain Eqs. (5) and (6) become[
F̃s(k)
F̃r(k)

]
=
[

1 g̃(k)
g̃(−k) 1

][
f̃s(k)
f̃r(k)

]
(11)

Note that here, as well as in the following, we choose n to be
large enough so that both the stimulus-aligned ERP average and the
response-aligned ERP average are mostly overlapped. This requires
segmenting individual trials (with length n) in such a way that the
periodic condition is imposed (see Zhang, 1998). See Section 5 for
more details.

2.2. ERP decomposition for N components (N > 2)

We first consider the three-component case (N = 3). Suppose a
single-trial evoked waveform involves three different components
fc(t), fs(t) and fr(t) each of which is time-locked to three different
events, cue, stimulus and response, respectively. Denote the onset
time as, tc, ts and tr, with tc < ts < tr. Note that fixing any one of
the t’s, the others are “random” variables in the sense they vary
across the trials (though some of these are controlled by the exper-
imenter). Typically, one chooses tc as the reference—in this case the
probability distributions of ts − tc and tr − tc, which are treated as
random variables, are denoted g1(t) and g2(t), respectively. When
choosing ts as the reference, the distribution of tc − ts and tr − ts

can be written as g1(−t) and g3(t), respectively. When choosing
tr as the reference, the distributions of tc and ts relative to tr are
g2(−t) and g3(−t), respectively. It is important to note that only
two of the three distributions g1(t), g2(t), g3(t) are independent, for
instance, g2(t) = g1(t)*g3(t), where * denotes convolution (see dis-
cussion of Zhang, 1998, on the three component case in the context
of a decision-related marker). Denote Fc(t), Fs(t) and Fr(t) are the
ensemble average ERP aligned to tc, ts and tr, respectively. Then the
relationship between the pure event-related components fc(t), fs(t)
and fr(t) and the ensemble average signals Fc(t), Fs(t) and Fr(t) are

Fc(t) = fc(t) + fs(t) ∗ g1(t) + fr(t) ∗ g2(t) (12)

Fs(t) = fs(t) + fc(t) ∗ g1(−t) + fr(t) ∗ g3(t) (13)

Fr(t) = fr(t) + fc(t) ∗ g2(−t) + fs(t) ∗ g3(−t) (14)
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Following Section 2.1, the above equations can be written in
matrix notation:[

Fc

Fs

Fr

]
=
[

I A B
AT I C
BT CT I

][
fc
fs
fr

]
(15)

where

A =

⎡
⎢⎢⎣

g1(1) g1(2) · · · g1(n)
g1(n) g1(1) · · · g1(n − 1)

...
...

...
...

g1(2) g1(3) · · · g1(1)

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

g2(1) g2(2) · · · g2(n)
g2(n) g2(1) · · · g2(n − 1)

...
...

...
...

g2(2) g2(3) · · · g2(1)

⎤
⎥⎥⎦ ,

C =

⎡
⎢⎢⎣

g3(1) g3(2) · · · g3(n)
g3(n) g3(1) · · · g3(n − 1)

...
...

...
...

g3(2) g3(3) · · · g3(1)

⎤
⎥⎥⎦

Note in the above matrix-based equations in the time domain,
we have imposed the periodic condition in constructing the ERP
averages. As a result, g1(t), g2(t) and g3(t) are all periodic when t > n
or t < 0, so only the values of gi(1), . . . gi(n), i = 1, 2, 3 are involved in
the computation.

In frequency domain, the equations are

[
F̃c(k)
F̃s(k)
F̃r(k)

]
=
[

1 g̃1(k) g̃2(k)
g̃1(−k) 1 g̃3(k)
g̃2(−k) g̃3(−k) 1

]⎡
⎣ f̃c(k)

f̃s(k)
f̃r(k)

⎤
⎦ (16)

This formulation from three-component can be easily extended
to N > 3 situations. When there are N components in a single-trial
ERP waveform that are time-locked to the N corresponding behav-
ioral events that are marked by N variables t1, . . ., tN, t1 < . . . < tN,
with N − 1 of them as random variables (in the sense discussed ear-
lier). Let fi(t) (i = 1, . . ., N) denote the N component waveforms, and
Fi(t) (i = 1, . . ., N) denote the N ensemble averages of ERP aligned
with respect to the behavioral events. Denote gi,j(t) (i = 1, . . ., N, j = 1,
. . ., N, i /= j) as onset time distribution of event j aligned to a fixed
event i (see below). They are not all independent; only N − 1 of them
are. We can calculate the time distribution of an arbitrary event
onset time point relative to the other events onset time point. Then
the following equation can be obtained

⎡
⎢⎢⎣

F1
F2
...

FN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

I G1,2 · · · G1,N

G2,1 I · · · G2,N

...
...

...
...

GN,1 GN,2 · · · I

⎤
⎥⎥⎦
⎡
⎢⎢⎣

f1
f2
...

fN

⎤
⎥⎥⎦ (17)

where

Gi,j =

⎡
⎢⎢⎣

gi,j(1) gi,j(2) · · · gi,j(n)
gi,j(n) gi,j(1) · · · gi,j(n − 1)

...
...

...
...

gi,j(2) gi,j(3) · · · gi,j(1)

⎤
⎥⎥⎦ ;

and Gi,j = GT
j,i

.

In frequency domain, the matrix-form equation is⎡
⎢⎢⎣

F̃1(k)
F̃2(k)

...
F̃N(k)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 G̃1,2(k) · · · G̃1,N(k)
G̃1,2(−k) 1 · · · G̃2,N(k)

...
...

...
...

G̃1,N(−k) G̃2,N(−k) · · · 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

f1(k)
f2(k)

...
fN(k)

⎤
⎥⎥⎦ (18)

3. Computer simulation: three-component decomposition

In order to test our method, we perform computer simulation
on artificially generated single-trial ERP data involving three com-
ponents (N = 3), as detailed below.

We generated 100 single trials of ERP data, with each trial
made up of three different elementary “components” time-locked
to three different events. The three event-related components (fc, fs
and fr, named for convenience as cue, stimulus and response com-
ponent, respectively) are generated by Eq. (19) (Yao, 2001) so that
the waveforms resemble those of evoked potential:

fˇ(ti) = exp

(
−
(

2��ˇ

ti − �ˇ

�ˇ

)2
)

cos(2��ˇ(ti − �ˇ) + ˛)

i = 1, . . . , n; ˇ = c, s, r, (19)

where ti = i*0.004s = i*4 ms and n = 500. Here, the parameter val-
ues are �c = 3.4, �s = 2.9, � r = 5.4 and �c = 1.5, �s = 2.0, �r = 2.7. For
each trial, �ˇ(ˇ = c, s, r) is the random variable representing onset
time point for event ˇ. Without loss of generality, we take �c to be
fixed at 200, and �s = 250 ± Rand, �r = 300 ± Rand, where Rand rep-
resent a uniformly distributed random number with mean 0 and
variance 100. The value of ˛ is taken to be fixed between 0 and
2�. ERP waveform on any individual trial is taken to be the sum of
the above three components, plus background noise as described
below.

In order to simulate the background EEG, two autoregressive
(AR) processes (Brockwell and Davis, 1987) and white noise are
added into each trial. The coefficient of the AR2-processes is
the same as used in the paper of Krieger et al. (1995). The first
AR2-process mimics alpha-band activity and the second nonsta-
tionality of the background EEG. The signal-to-noise ratio is taken
as 0.5.

The results of the computer simulation are shown in Fig. 1. In
order to test whether the components in single trial are in accord
with the decomposed waveform by our method, we apply the
Wiener-filter technique of (Krieger et al., 1995) for estimating ERPs,
with results shown in Fig. 2. From these figures, we conclude that
our method faithfully recovers the underlying event related com-
ponent for this artificially generated dataset.

4. An illustrative example

4.1. Experimental paradigm

Visual stimuli were generated by a personal computer and dis-
played on a monitor with dark background. Subjects were being
seated 50 cm in front of the monitor and instructed to fixate on
a center cross extending 0.50 visual angle (the fixation point). Two
rectangular boxes, each of size 1.50 × 1.00, were horizontally located
at 50 visual angle on either side from the fixation point. As a trial
starts, two boxes located in the left and right of the fixation cross
appeared for a duration of 120 ms, then one of the boxes was
brightened (thickened) for 50 ms, serving as a “cue” for the loca-
tion of the stimulus to appear later. Then, following a random delay
between 100 ms and 300 ms after the disappearance of the thick-
ened perimeter of the box, a stimulus was presented for 200 ms. The
stimulus can be either a short vertical line (0.750 visual angle) or
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Fig. 1. Demonstration of recovery of artificial data with three components decomposition. Each panel plots the artificially generated ERP component (black), the recov-
ered component (red), and the event-aligned ERP average (blue). The top, middle, bottom panels display the three waveforms mentioned above when time-locked (t = 0)
to cue onset, stimulus onset, response onset, respectively. Red curves: recovered cue/stimulus/response-locked components; blue curves: original artificially generated
cue/stimulus/response-aligned average ERPs; black curves: true underlying cue/stimulus/response components. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)

a long vertical line (1.00 visual angle), the stimulus was presented
within either box with equal probability following cue presenta-
tion, leaving the cue “valid” on half of the trials and “invalid” on
the other half. Subjects were instructed to respond to the short
vertical line (“target”) as quickly as possible—they were to press
the key “1” with their left-hand when the short line appeared in
left visual field and press key “4” with their right-hand when the
short line appear on the right visual field, and refrain from respond-
ing to the long vertical line (“non-target”). All subjects performed
10 experimental blocks, with 80 trials in each block. There is a

1000–1200-ms inter-trial interval (ISI) from the subject’s response
and the start of the next trial. The experimental paradigm is shown
in Fig. 3.

EEG was recorded with the 128-channel EGI system at a sam-
pling rate of 250 Hz, and vertex (Cz) was taken as the reference.
Epochs contaminated with excessive eye movements, blinks, mus-
cle artifacts, or amplifier blocking were manually removed prior
to averaging, and recordings of seven in eight subjects were valid
for further processing. The ERP were re-referenced to the average
reference during off-line data processing.

Fig. 2. Comparison of Wiener-filter method and our method on artificially generated single trial data. Left: five single trials randomly selected from 100 trials as described
in the section on Computer Simulation. Here 0 is cue onset time point. Right: estimated based on Wiener-filter (blue curve) and recovered based on our method (red curve).
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Fig. 3. An example of the stimulus display sequences used in this experiment. The
cue is a brightening/thickening of one of the square boxes on either side of the
fixation cross. The target is a short vertical line inside the box. Interval between cue
and stimulus (SOA) varies randomly from trial to trial between 100 and 300 ms.

Eight normal male subjects (mean age 25 years, range 23–31
years) participated in this study. All were right-handed, and none
had a previous history of any neurological or psychiatric disorder.
Due to inadvertent recording error that occurred for one subject,
only seven subjects finished this experiment and their data were
analyzed.

In this paper, data from two experimental conditions were ana-
lyzed, one when the cue is valid (cue is on the left, the target
short-line is also on the left, and the response is a left key-press,
referred to as “cue-valid condition”) and the other when the cue is
invalid (cue is on the right, the target short-line is on the left, and
the response is a left key-press, referred to as “cue-invalid condi-
tion”). Both conditions have the same target location (left) and the
same behavioral response.

4.2. Operation of the decomposition algorithm

To demonstrate the result of our decomposition algorithm, we
use data of all the correct trials from one subject—the cue is located
in the left, the stimulus is a short vertical line (“target”) located
in left, and the subject responded correctly by a left-hand key-
press (cue-valid condition). ERP data was taken at electrode Pz
with a total of 127 trials under analysis. As described in Sec-
tion 2, the cue-aligned, stimulus-aligned and response-aligned ERP
averages (denoted Fc, Fs and Fr) were constructed by aligning the
waveforms on individual trials with respect to cue-, stimulus-
and response-onset respectively and summing over those wave-
forms bin-by-bin (each bin is 1 ms). The event time (cue, stimulus,
response) distributions were simply constructed from these 127
trials whose durations are available around cue-onset, stimulus-
onset and response-onset, respectively. The evoked component
waveform related (i.e., time-locked) to cue, stimulus, and response,
respectively, are denoted fc, fs and fr. They are recovered by the
numerical algorithm based on Eq. (16). Fig. 4 demonstrates the
result of this decomposition.

Note that in the calculation of convolution operation, truncation
of the convolution kernel will introduce distortion. So we adopted
a temporal window (value of n) large enough to cover the entire
region of interest, i.e. extending to a time-mark considerably before
the first event onset and considerably after the last event onset. We
also applied periodic condition in constructing the event-aligned
ERP averages.

It should also be pointed out that the event related component
waveforms are recoverable only in the sense that the trial-by-trial
waveform is a superposition of the component waveforms sep-
arated by the event time distributions; when the event-aligned
ensemble average is constructed, the resultant ERPs will be as given
by the experimental data. Though theoretically the component
waveforms are always uniquely recoverable from the event-aligned

Fig. 4. Recovery of cue-, stimulus- and response-locked component waveforms at
electrode Pz, denoted as fc , fs and fr , respectively, the cue-, stimulus- and response-
aligned ERP average denoted as Fc , Fs and Fr respectively. (a) Event time distribution is
given with respect to stimulus onset, where stimulus onset time is at 0 ms. (b) Recov-
ered cue-locked component waveform and cue-aligned ERP waveform, with cue
onset time labeled as 0 ms. (c) Recovered stimulus-locked component waveform and
stimulus-aligned ERP waveform, with stimulus onset time labeled as 0 ms. (d) Recov-
ered response-locked component waveform and response-aligned ERP waveform,
with response onset time as 0 ms.

ensemble averages, the result will be influenced by the signal-to-
noise level as well as whether enough trials are collected to yield
larger event-time distributions variance. See discussions in Zhang
(1998).

4.3. Results

We applied the above-described method to decompose the cue-
, stimulus-, and response-locked component waveforms in the
ensemble averaged ERP (averaged across all seven subjects) as well
as to the ERP averages of individual subjects. ERP data were from
electrode Pz.

Fig. 5 shows the result of this decomposition of the cue-,
stimulus-, and response-locked component waveforms for, respec-
tively, the cue-valid and cue-invalid conditions from an analysis of
ERP ensemble (grand) averages across seven subjects, under dif-
ferent alignment (reflected in top, middle, and bottom panels of
these two figures) across individual trials. The top panels (of Fig. 5)
show that the reconstructed cue-locked component waveform fc
is consistent with the cue-aligned ERP average Fc during the first
300 ms after cue onset, but mostly tends to flatten 500–1100 ms
after cue-onset; this is contrasted with the amplitude of the cue-
aligned ERP average Fc, which is still largely non-zero during this
period. This is a reasonable finding, since we expect cue process-
ing to have been completed by 500 ms when the brain will shift
towards the processing of the stimulus and then of the response.
The large, non-zero amplitude in Fc between the time segment
500–1100 ms reflects a cross-contamination from the stimulus-
related and response-related neural processes that have not been
“averaged out” in cue-aligned averaging. The middle panels of
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Fig. 5. Recovered cue-locked (top panel), stimulus-locked (middle panel), and response-locked (bottom panel) component waveforms (fc , fs and fr) from ERP ensemble
averages (aligned to cue, stimulus, and response (Fc , Fs and Fr), respectively for top, middle, and bottom panels) across all seven subjects. Thick lines: recovered cue-, stimulus-
, response-locked component waveforms, and thin lines: cue-, stimulus-, response-aligned ERP ensemble averaged (across all seven subjects). (a) Cue-valid condition and (b)
cue-invalid condition.

Fig. 5 plot the stimulus-aligned ERP average Fs and the recovered
stimulus-locked component waveform fs. They mainly differ in the
range of 300–800 ms after stimulus onset, where the amplitude
of fs is much smaller than Fs, since the latter contains cross-
contamination from the response-locked component. Similarly, the
bottom panels of Fig. 5 plot the response-aligned ERP average Fr and
the response-locked component fr, where Fr is obviously larger in
amplitude than that of fr in the period 0–200 ms after behavioral
onset. This, again, is presumably due to the cross-contamination of
stimulus-locked component in Fr.

Figs. 6 and 7 display the recorded cue/stimulus/response-
aligned ERP averages and the recovered cue/stimulus/response-
locked component waveforms for all seven individual subjects. The
three columns show cue-, stimulus-, and response-referenced ERP
averages and component waveforms. Fig. 6 is for the cue-valid con-
dition and Fig. 7 is for the cue-invalid condition, respectively. The
reconstructed cue-locked, stimulus-locked and response-locked
component waveforms are all different from the cue-aligned,
stimulus-aligned and response-aligned ERP waveforms, respec-
tively, due to the cross-contamination when stimulus-onset and
response-onset vary randomly across trials. This difference is more
pronounced between cue-aligned waveform and cue-locked aver-
age across all subjects.

Next, we compare the cue-valid and cue-invalid experimental
conditions in Fig. 8 by plotting the recovered cue-locked component
waveforms (top panel), the recovered stimulus-locked component
waveforms (middle panel), and the recovered response-locked
component waveforms (bottom panel) in the two conditions. In
order to compare the recovered cue-locked, stimulus-locked, and
response-locked component waveforms across the cue-valid and
cue-invalid conditions, we compared the mean amplitude of the
two waveforms during the periods of 100–300 ms after cue onset,
100–300 ms after stimulus onset, 300–500 ms after stimulus onset,
and 0–200 ms after response onset, and applied t-test to the dataset
of seven subjects (see Table 1, Part A). We also compared the wave-
form of the two conditions directly, by calculating the L2 norm
(Euclidian distance) between the two waveforms for the two condi-

tions (see Table 1, Part B). It is clear that the cue-locked waveforms
are virtually identical for the cue-valid and the cue-invalid condi-
tions, since before stimulus onset, the meaning of the cue in terms
of its validity is identical and undifferentiated. At the other end, the
response-locked component waveforms are also identical across
the two conditions of cue-validity, indicating that the response pro-
cessing stage is engaged in the same fashion independent of the
status of the cue. The only stage that a valid cue and an invalid cue
differ is with respect to the processing of the stimulus, where the
two waveforms differ significantly (middle panel). This supports
the idea that the presence of a cue affects stimulus processing due
to priming on the location that a stimulus might appear.

5. Discussions

Traditionally, methods for decomposition of multiple compo-
nents in ERP/EEG and fMRI data include Independent Component
Analysis ICA (Bell and Sejnowski, 1995, 1997; Comon, 1994; Jutten
and Herault, 1991) and Principal Component Analysis, PCA (Jackson,
1991; Jolliffe, 1986). PCA is a now-standard technique in statisti-
cal data analysis, feature extraction, and data reduction, aiming
at decomposing observed signals into a linear combination of
orthogonal principal components, while ICA is a technique of
array processing and data analysis, aiming at recovering unob-
served signals or “sources” from observed mixtures, based on
the assumption of mutual independence between the underly-
ing components. Although PCA and ICA have been widely applied
in ERP/EEG and fMRI dataset analysis for artifact removal, source
imaging, and feature extraction (Makeig et al., 1999; Bugli and
Lambert, 2007; Makeig et al., 1996; Makeig et al., 1997; Kayser
and Tenke, 2006; Niazy et al., 2005; Laeven et al., 2001), these
two methods made strong assumptions which may constrain their
application. For example, ICA assumes that the underlying sources
are statistically independent, whereas for PCA, the underlying
components are assumed to be orthogonal to one another. For
one thing, independence and orthogonality may be too strong
assumptions to be neurobiologically realistic (Mitr and Pesaran,
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Fig. 6. The recovery result for each individual subjects at electrode Pz for the cue-valid. Thin curves are cue/stimulus/response-aligned ERP averages, and thick curves are
recovered cue/stimulus/response-locked component waveforms.

1999). For both methods, the exact number of recovered com-
ponents is often determined in an ad hoc fashion, by comparing
the amount of variance captured versus the residual variance;
the maximal number of recovered components is further con-
strained by the total number of observed channels for ICA and
PCA. However, from a methodological point of view, both meth-
ods assume each trial is a stationary point process; therefore,
they are not immediately applicable to situations where individ-
ual trials vary in their duration in terms of some key behavioral
events (such as reaction time, the time between stimulus onset and
behavioral response onset). The trial-by-trial variation of behav-
ioral markers causes problem even to align EEG/fMRI recordings on

these trials properly, which is a precursor for ICA/PCA type analy-
sis.

This last constraint is crucial for successful methods of decom-
posing EEG/fMRI components for many psychological experiments
which, typically, involve two or more behavioral events in a sin-
gle trial. This problem is, fortunately, completely solved for N = 2
components (Zhang, 1998). There, stimulus-aligned and response-
aligned ERP averages are being used (along with the reaction-time
distribution) to uniquely recover a stimulus-locked and response-
locked component.

Here, this method is extended to N > 2; we developed a
multi-component ERP decomposition algorithm for isolating ERP

Table 1
Results of comparing the cue-valid) and cue-invalid experimental conditions. Part A presents the result of statistical tests. Part B shows L2-norm of recovered waveforms of
the two experimental conditions.

Recovered component Cue-valid (mean amplitude) Cue-invalid (mean amplitude) p-Value

A
fc (100–300 ms) −1.015 �V −1.026 �V 0.9769 > 0.05
fs (100–300 ms) −1.2556 �V −0.4564 �V 0.0365 < 0.05
fs (300–500 ms) 1.8049 �V 0.8859 �V 0.0059 < 0.05
fr (0–200 ms) 1.7932 �V 1.9545 �V 0.7207 > 0.05

Component L2 norm (Euclidian distance)

B
fc(cue-valid) vs. fc (cue-invalid) 7.25
fs (cue-valid) vs. fs (cue-invalid) 11.26
fr (cue-valid) vs. fr (cue-invalid) 6.22
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Fig. 7. Same as Fig. 6, except that the experimental condition is cue-invalid.

Fig. 8. Comparison of the average recovered cue-locked, stimulus-locked, and response-locked component waveforms of all seven subjects across the cue-valid and cue-invalid
conditions.
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component waveforms time-locked to N-specific behavioral events
during a trial. In contrast to such methods as PCA/ICA, our multi-
component decomposition algorithm solves the non-stationarity
problem of time series (i.e., ERP/fMRI recordings across trails)
where trial-by-trial variation in the passage of time is of behavioral
significance.

Our simulation results demonstrate that our method is effec-
tive and practicable in disentangling the contribution of different
components time-locked to various behavioral events. However, we
also note that the effectiveness of the method relies heavily on the
“proper” shape of event time distribution across the ensemble of
trials. Here “proper” means that the variance of distribution is sig-
nificantly different from zero. Actually, the less variance the event
time distribution has, the less effective the method becomes. Math-
ematically, when the event variance is small (i.e., all trials have
nearly uniform reaction time), its Fourier transform approaches
unity and the recovery error generated by applying Eq. (16) or (18)
becomes large. At the other extreme, when say the reaction time
distribution has too large a variance that exceeds the average reac-
tion time, the event-aligned ERP waveforms will have included late
or early contributions outside the region of interest. Technically, to
get the event-aligned ERPs across individual trials, we need to seg-
ment the raw EEG recording into single trials all with same length
and then impose periodic condition in order to perform the Fourier
transform (see Section 2)—the variance of event distribution need
to be small enough so that the segmented single trial recording still
contains the region of interest.

Notwithstanding such technical constraints, our method actu-
ally addresses and solves a problem when other traditional methods
may fail (i.e., when event time distributions are large), so it is
a completely complementary technique in ERP multi-component
analysis. Though our simulations are based on ERP context, the
basic mathematical technique behind our method can also be easily
adapted to deal with event-related signals in other neuro-imaging
studies (e.g. fMRI), such that trial-by-trial variation in behavioral
reaction time is no longer an obstacle but rather an opportunity
for isolating the underlying neurocognitive processes mediating a
task.
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