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Abstract

A statistical manifoldMm consists of positive functions f such that f dm defines a probability measure. In order to define an atlas on the

manifold, it is viewed as an affine space associated with a subspace of the Orlicz space LF. This leads to a functional equation whose

solution, after imposing the linearity constrain in line with the vector space assumption, gives rise to a general form of mappings between

the affine probability manifold and the vector (Orlicz) space. These results generalize the exponential statistical manifold and clarify some

foundational issues in non-parametric information geometry.

r 2005 Published by Elsevier Inc.
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1. Introduction

Information geometry investigates the differential geo-
metric structure of the manifold of probability density
functions with continuous support (or probability distribu-
tions with discrete support). Treating a family of parametric
probability density functions as a smooth manifold with their
parameters as its coordinates originated from Rao (1945),
who identified Fisher information to be the Riemannian
metric on this manifold. Later Amari (1982), motivated by
(Efron, 1975; David, 1975), and also independently Čencov
(1972/1982), established a family of affine connections with
dualistic properties on the manifold of parametric density
functions. A manifold endowed with a Fisher metric and
dualistic (conjugate) affine connections is abstracted as a
statistical manifold (Lauritzen, 1987). Built upon these
foundational work, parametric information geometry has
found many applications in theoretical statistics, information
e front matter r 2005 Published by Elsevier Inc.
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theory, stochastic process, neural computation, machine
learning, Bayesian statistics, and other related fields (Amari,
1985; Amari & Nagaoka, 1993/2000). Recently, an interest in
the geometry associated with non-parametric probability
densities has arisen (Pistone & Sempi, 1995; Giblisco &
Pistone, 1998; Pistone & Rogantin, 1999; Grasselli, 2005).
Non-parametric statistical models are important in a wider
range of areas including psychological measurement and
perception (Townsend, Solomon, & Smith, 2001) and model
selection and testing (Karabatsos, in press). Unlike in the
parametric case where the manifold of probability density
functions inherits a Euclidean topology from the space of its
natural parameters, a major challenge for the non-parametric
case is to define a suitable topology and develop a
corresponding notion of convergence. Fortunately, this
obstacle was overcome by the introduction of an exponential
statistical manifold by Pistone and Sempi (1995). These
authors, among other things, gave an explicit formula for a
chart of the manifold formed by all density functions
absolutely continuous with respect to a given one. The
topology on this infinite-dimensional manifold is induced via
this chart; it is metric and can be defined based on a notion
of exponential convergence of sequences (Pistone & Sempi,
1995; Pistone, 2001).
In this paper we address some foundational issues of

non-parametric information geometry, with the goal of

www.elsevier.com/locate/jmp
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extending the Pistone–Sempi formula that maps the
manifold of probability density functions to a subset in
an Orlicz space LF (a special Banach space, see Appendix
A). The Banach-space valued map is the infinite-dimension
extension of the coordinate functions which take values in
Rn. Recall that Rn has both a topological structure, in
terms of its canonical topology, an algebraic structure as a
vector space, and a geometric or affine structure as a set of
points. Our approach is to exploit this affine structure and
view the statistical manifold as an affine space associated
with the vector space LF.

An affine space is a homogeneous set of points such that
no point stands out in particular. Affine spaces differ from
vector spaces in that no origin has been selected. So affine
space is fundamentally a geometric structure—an example
being the plane. The structure of an affine space is given by
an operation �:A�U ! A which associates to a point a

in the affine space A and a vector u in the vector space U

another point a� u in A. We think of this as a translation
of a point a in its space A by a vector u. Notice that it
makes no sense to add two points of A in this setting.

One advantage of modelling a statistical manifold as a
generalized affine space is to address the issue of
representation of probability measures, i.e., through the
use of an extended vector space U as opposed to the
probability simplex A. If the operation � exists and is
continuous and differentiable, a global mapping is
established between U and A. This allows the setting up
of a global atlas at any given point of A (recall that the
usual differentiable manifold only assumes the existence of
an atlas locally).

The structure of the rest of this paper is as follows: In the
next section we review the Pistone–Sempi framework, and
consider an obvious generalization of their original
formulation. In Section 3 we introduce the affine structure
on the probability manifold and derive a corresponding
functional equation. We then solve this equation and
derive a general expression for the � operation. This
generalizes the exponential model in a natural way.
Discussion of possible applications of these results is given
in Section 4, followed by conclusions in Section 5. The
reader who needs some refreshing of their Orlicz space
theory can start by consulting Appendix A.
2. The Pistone–Sempi framework revisited

Pistone and Sempi (1995) introduced a non-parametric
exponential statistical manifold consisting of all densities
that are absolutely continuous with respect to a given one.
In this section we review the parts of that article most
relevant to our considerations.

Let X be a set and m a s-finite probability measure on X,
in other words mðX Þ ¼ 1. We will consider the set

Mm:¼fp 2 L1ðX ;mÞ: p40 a.e., kpkL1ðX ;mÞ ¼ 1g.
This set will be endowed with a structure of a differentiable
manifold. Since X and m will be fixed, we abbreviate L1 ¼

L1ðX ;mÞ and L1ðpÞ ¼ L1ðX ; pmÞ, and similarly for other
function spaces. The expectation operator Epðf Þ over a
function f on X is defined as

Epðf Þ ¼

Z
X

fp dm ¼ kf kL1ðpÞ.

Recall that a differentiable manifold M of a set of
functions is defined as follows: there exists a system of
charts fOi;figi2N, collectively called an atlas, such that
(i)
 each Oi is an open set on M and the union [i2NOi

covers M;

(ii)
 the associated mappings fi:Oi ! B are all home-

omorphisms (here B is some Banach space) and have
the properties that fiðOiÞ is open in B and that
whenever Oi and Oj have non-empty intersection then
the mapping fj � f

�1
i : fiðOi \ OjÞ ! fjðOi \ OjÞ is

differentiable up to certain order.
The functions fi themselves are called coordinate func-
tions. In the finite-dimensional case, the coordinate
functions are valued in (subsets of) Rn. However, in the
construction of Pistone and Sempi, the coordinate func-
tions fi are valued on subsets of an ‘‘exponential Orlicz
space’’ (which is a Banach space) defined by the Young
function FðtÞ ¼ expðjtjÞ � 1; we denote this Orlicz space by
exp LðpÞ ¼ exp LðX ; pmÞ.
A major achievement of Pistone and Sempi (1995) is to

provide an atlas fp centered at a point p 2Mm and
mapping its neighborhood to exp L0ðpÞ:

fpðqÞ ¼ log
q

p
� Ep log

q

p

� �
, (1)

where exp L0ðpÞ is a sub-space of expLðpÞ consisting of the
functions with zero mean:

exp L0ðpÞ ¼ fu 2 exp LðpÞ : EpðuÞ ¼ 0g.

In other words, the space exp L0ðpÞ contains all random
variables with zero expectation value. Pistone and Sempi
(1995) showed that in an open neighborhood surrounding
p, the Epf�g term in (1) is always finite and hence fp is a
well-defined chart for any reference point p 2Mm, with
fpðpÞ ¼ 0. (Note that the chart is not global because, in the
infinite-dimension setting, the second term in (1) may be
unbounded for certain q 2Mm.) The inverse of the
coordinate mapping f�1p , which maps (a subset of)
exp L0ðpÞ !Mm, gives the exponential family of density
functions

f�1p ðuÞ ¼
peu

EpðeuÞ
. (2)

Again this formula is well-defined only when Epðe
uÞ is

finite. For this reason, Pistone and Sempi require that u lies
in the closed unit ball BexpðpÞ of exp LðpÞ. Under
this condition, the coordinate transformation fp2

� f�1p1
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between two atlases centered at different points p1; p2 of
Mm is simply

u 7! uþ log
p1

p2

� Ep2 uþ log
p1

p2

� �
.

The construction of the mapping (1) from Mm to the
space of zero-mean random variables can be understood in
the following way. Suppose we start from the entire Orlicz
space exp LðpÞ, as opposed to exp L0ðpÞ, and restrict the
coordinate function u 2 exp LðpÞ to lie in the closed unit
ball Bexp, i.e., kukexp LðpÞp1. By the definition of the norm
and the monotonicity of the Young function, this implies
thatZ

X

expðjujÞ p dmp
Z

X

expðjuj=kukexp LðpÞÞ p dm ¼ 1,

i.e., exp juj is in L1ðpÞ. Thus exp u is also in L1ðpÞ sinceZ
X

expðuÞp dmp
Z

X

expðjujÞp dm.

So there is an obvious way to get a function of unit integral
(and hence an element of Mm) using exp u, namely

u 7!
p exp u

Epðexp uÞ
(3)

which is just (2). It is clear that in this case f�1p :Bexp!Mm

as defined above is many-to-one. Specifically, f�1p ðuÞ ¼

f�1p ðvÞ if and only if exp u ¼ c exp v, or expressed
differently, u ¼ vþ log c, for some positive constant c.
Because of this extra degree of freedom, we can define a
foliation of expLðpÞ ¼

S
c exp LcðpÞ where

exp LcðpÞ ¼ fu 2 exp LðpÞ : EpðuÞ ¼ log cg.

We can then require that f�1p ðqÞ be defined on a
particular leaf of this foliation of the Banach space. When
c ¼ 1 this leads to the Pistone–Sempi’s formula of fp, i.e.,
(1).

We now investigate whether this construction can be
extended to an arbitrary Orlicz space LF, using an arbitrary
class of Young function F, instead of from exp L, using the
particular Young function expðj � jÞ � 1. Introduce a strictly
increasing function F : R! ð0;1Þ that is convex on ½0;1Þ
and satisfies Fð�tÞ ¼ ðFðtÞÞ�1 (and Fð0Þ ¼ 1). Now CðtÞ ¼
FðjtjÞ � 1 is a Young function. With an abuse of notation,
we still denote the corresponding Orlicz space as LF rather
than LC. The arguments of the above paragraph, which
was made to FðtÞ ¼ et, can be now made to a general F.
Everything works fine up until (3). When we require, in
general, that f�1p ðuÞ ¼ f�1p ðvÞ if and only if FðuÞ ¼ cFðvÞ,
we run into a problem. Let us define uc ¼ F�1ðcFðuÞÞ, a
function on X. The problem is that we do not know if for a
fixed u 2 BF (the unit ball in LF) there exists a positive
constant c such that

EpðucÞ ¼ 0.

Hence we must look for another foliation procedure.
Since our goal is to turn the multiplicative constant into an
additive one, it is natural to look at the logarithm. We
easily see that

EpðlogðFðucÞÞÞ ¼ logðcÞ þ Epðlog FðuÞÞ. (4)

In order for this formula to make sense, we need to prove
that the integral involved in the right-hand side is
absolutely convergent. It follows from our assumption
log Fð�tÞ ¼ � log FðtÞ that

Epðj log FðuÞjÞ ¼ Epðlog FðjujÞÞ.

An application of Jensen’s inequality yields

Epðlog FðjujÞÞp log EpðFðjujÞÞo1,

where we used also u 2 LF. That Epðj log FðuÞjÞ (and hence
Epðlog FðuÞÞ) is finite allows us to impose, with reference to
(4), the foliation

EpðlogðFðucÞÞÞ ¼ 0.

Therefore the Pistone–Sempi approach will work if we use
any positive function FðtÞ that is strictly increasing and
convex on ½0;1Þ, and satisfies FðtÞFð�tÞ ¼ 1. The corre-
sponding map is

u 7!
pFðuÞ

EpðFðuÞÞ
. (5)

We call this the pseudo-exponential map. This general-
ization of Pistone–Sempi is somewhat straightforward
because it still uses the same kind of normalization for
mapping BF to Mm and follows their same insights into the
representation of probability density functions using Orlicz
space functions. We turn to another approach in the next
section.

3. The affine space model of statistical manifolds

An affine space is a set of points in which each point can
be ‘‘translated’’ to any other point through an associated
vector space. More precisely, the set A is an affine space
associated to the vector space U if there exists an operation
�:A�U ! A, called ‘‘right translation’’ or ‘‘translation’’
for short, through which U acts on A transitively. Writing
out the axioms, this means that
(i)
 ðp� uÞ � u0 ¼ p� ðuþ u0Þ for all p 2 A and u; u0 2 U .

(ii)
 ðp� 0Þ ¼ p for all p 2 A.

(iii)
 The restricted mapping f uðpÞ ¼ p� u is surjective for

every fixed u 2 U .
It can be easily verified that the exponential model
satisfies the above axioms with

p� u ¼
peu

EpðeuÞ
.

The Pistone–Sempi formula (2) can be viewed as defining
the right translation for the exponential family. Of course,
the affine structure of the exponential map, with log-
likelihoods as score functions, is well known, e.g., (Amari,
1985; Murray & Rice, 1993). So one way to generalize the
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exponential model is to see what other representations �
could have.

Let us denote p� u by F ðp; uÞ. Then the first axiom
above can be written as F ðF ðp; uÞ; u0Þ ¼ F ðp; uþ u0Þ. This is
a functional equation known as the ‘‘translation equation’’
(Aczél, 1966, 8.2.2). Below we derive a general form for the
solution of this equation in the infinite dimensional case,
following the finite-dimensional solution in (Aczél, 1966,
8.2.2, Theorem 1). In the next theorem we assume that the
Banach space splits as a direct sum of the type B ¼

V � Ru0 (here the direct sum � is not to be confused with
the right-translation operator above). We use the notation
u ¼ ½v; c� to denote the splitting of individual elements of
the Banach space B accordingly.

Theorem 1. Let P and B be Banach spaces and suppose that

F :P� B! P is a function satisfying

F ðF ðp; uÞ; u0Þ ¼ F ðp; uþ u0Þ (6)

for all p 2 P and u; u0 2 B. Assume that B splits as V � fcu0 :
c 2 Rg for a fixed u0 2 B, and there exists p 2 P so that

Gcð�Þ ¼ F ðp; ½�; c�Þ:V ! P is a bijection for every fixed

c 2 R. Then all continuous solutions of (6) are of the form

F ðp; uÞ ¼ G0ðG
�1
0 ðpÞ þ KðuÞÞ, (7)

where K :B! V is linear.

Proof. First, it is clear from (6) along with the bijectivity
assumption that F ðp; 0Þ � p. Fix p 2 P so that Gcð�Þ ¼

F ðp; ½�; c�Þ:V ! P is a bijection for every fixed c 2 R. For
v 2 V , G0ðvÞ ¼ F ðp; ½v; 0�Þ so that G0ð0Þ ¼ p with inverse
G�10 ðpÞ ¼ 0.

We next set p ¼ p, u ¼ ½v; c� and u0 ¼ ½v0;�c� in (6):

F ðF ðp; ½v; c�Þ; ½v0;�c�Þ ¼ F ðp; ½vþ v0; 0�Þ

¼ G0ðvþ v0Þ.

We denote q ¼ F ðp; ½v; c�Þ ¼ GcðvÞ, and note that then
G�1c ðqÞ ¼ v. We have thus derived that

F ðq; ½v0;�c�Þ ¼ G0ðG
�1
c ðqÞ þ v0Þ (8)

for every q 2 P (here we use that Gc is a surjection) and
½v0;�c� 2 B.

We substitute this expression for F in the original
functional equation (with u ¼ ½v; c� and u0 ¼ ½v0; c0�) and get

G0ðG
�1
�c0 ðG0ðG

�1
�cðpÞ þ vÞÞ þ v0Þ

¼ G0ðG
�1
�ðcþc0ÞðpÞ þ vþ v0Þ.

Cancelling the outermost G0 and defining l : R! V by
lðcÞ ¼ G�1�cðpÞ yields

G�1�c0 ðG0ðlðcÞ þ vÞÞ ¼ lðcþ c0Þ þ v. (9)

Setting v ¼ �lðcÞ in (9), rearranging, and recalling G0ð0Þ ¼
p gives

lðc0Þ þ lðcÞ ¼ lðcþ c0Þ.

Due to the assumed continuity of G�1c , l is continuous with
lð0Þ ¼ G�10 ðpÞ ¼ 0, so the above Cauchy equation has only
linear solutions

lðcÞ ¼ kc,

where k is an arbitrary element in V. Finally, setting c ¼ 0
in (9) gives

G�1�c0 ðG0ðvÞÞ ¼ lðc0Þ þ v,

or, after denoting q ¼ G0ðvÞ

G�1�c0 ðqÞ ¼ lðc0Þ þ G�10 ðqÞ.

Substituting into (8) gives

F ðp; uÞ ¼ G0ðG
�1
0 ðpÞ þ KðuÞÞ,

where Kð½v; c�Þ ¼ vþ lðcÞ ¼ vþ ck is a linear transforma-
tion mapping B to V. It is easy to see that every F of this
form is a solution. &

The previous theorem is not directly applicable to our
setting. The problem is that, in F ðp; uÞ, the range in the
second variable u depends on the value of the first variable
p 2Mm, because u is in the unit ball of LFðpÞ. The way to
get around this is to notice that L1 	 LFðpÞ for every
p 2Mm, and, moreover, it is dense. So we consider only
functions F :Mm � L1 !Mm. Since we know all contin-
uous solutions in a dense subset of our space, we obviously
know all continuous solutions in the whole space, as well.
With the understanding that we restrict ourselves to

dense subsets when necessary, we can see immediately how
Theorem 1 relates to the charting of a statistical manifold.
By defining q 7!fpðqÞ 2 V as

fpðqÞ ¼ G�10 ðqÞ � G�10 ðpÞ,

we get a chart mapping a region (centered on the reference
point p) of the manifold Mm to V 	 B. Note that K is an
identity map when restricted to V: KðfpðqÞÞ ¼ fpðqÞ. So for
all p; q

F ðp;fpðqÞÞ ¼ q,

effecting a right-translation from p 2Mm to q 2Mm. In the
above, the coordinate function fpð�Þ is valued in V. In
general, if it is valued in the entire B, then there is an
additional term cðu0 � kÞ in the expression of fpðqÞ, where
the constant c is arbitrary.
Let us next see how the exponential model fits into this

general scheme. Recall that Theorem 1 involves a co-
dimension 1 splitting of the Banach space B in the form
B ¼ V � fcu0 : c 2 Rg. Set u0 ¼ 1, the constant function, so
that the splitting becomes exp L ¼ exp L0 � R, where
exp L0 is (as defined in Section 1) the space of exponen-
tially integrable functions of zero mean, and R denotes the
space of constant functions. Then choose k ¼ 0, which
amounts to requiring F ðp; uÞ ¼ p;8u 2 R, i.e., for all
constant functions u. Consequently, KðuÞ � 0 if and only
if u is a constant function. Choose G�10 ðpÞ ¼ Kðlog pÞ. Then

p� u ¼ expðKnðKðlog pÞ þ KðuÞÞÞ

¼ expðKnðKðlogðpÞ þ uÞÞÞ,
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where Kn denotes the pseudo-inverse of K, i.e., a mapping
such that K � Kn is the identity, which will be specified
next. We know that KnðKðuÞÞ ¼ uþ c for some constant c,
since constants are the only elements in the kernel of K. Let
us define a functional (interpreting the constant function as
a real number) by c½u� ¼ KnðKðuÞÞ � u. Then our previous
equation gives

p� u ¼ expðuþ logðpÞ þ c½uþ log p�Þ

¼ peuec½logðp exp uÞ�.

Thus we get the Pistone–Sempi model if we choose Kn so
that

c½u� ¼ � log

Z
X

exp u dm. (10)

Let us look at some obvious generalizations: we fix a
non-zero u0 2 LF and define L to be a linear transforma-
tion so that KðuÞ ¼ 0 if and only if u ¼ cu0. We define
G�10 ðpÞ ¼ KðF�1ðpÞÞ. We require that G�10 be an injection,
so F�1ðpÞ ¼ F�1ðqÞ þ cu0 if and only if p ¼ q and c ¼ 0.
We find that

p� u ¼ Fðuþ F�1ðpÞ þ c½uþ F�1ðpÞ�Þ,

where the functional c½u� ¼ KnðKðuÞÞ � u is as before. Now
we should choose

c½v� ¼ min t 2 R:

Z
X

Fðvþ tÞ dm ¼ 1

� �
,

in order for p� u to be in the manifold. For FðtÞ ¼ et, the
above reduces to (10).

To conclude this section, we examine whether or not our
previous generalization (5) investigated in Section 2
satisfies the right-translation property. Imposing (6) on
(5) yields

Fðu1ÞFðu2Þ ¼ cFðu1 þ u2Þ,

where c is some constant. So logðc�1FÞ satisfies the Cauchy
equation

logðc�1Fðu1ÞÞ þ logðc�1Fðu2ÞÞ ¼ logðc�1Fðu1 þ u2ÞÞ,

with solution logðc�1FðuÞÞ ¼ bu (where b is another
constant), or FðuÞ ¼ cebu. Therefore the exponential model
studied by Pistone and Sempi (1995) is the only common
element in the two generalized forms of charts for
statistical manifolds, as investigated here.

4. Potential applications and discussions

An atlas on a manifold provides a systematic way of
representing points on the manifold by coordinate func-
tions. In the case of a statistical manifold Mm where points
are themselves probability density functions (positive
functions in L1), the coordinates are Banach-space valued
functions as well (e.g., valued in LF), with normalization
and positivity constraints removed. Each individual chart
centered at p 2Mm, denoted f�1p ðuÞ in Section 2 and F ðp; uÞ
in Section 3, contains a bijective mapping from an open
subset of LF to an open subset of Mm that includes the
point p.
Let us give an example for the use of the differential

geometric notion of chart/atlas for computations. Our
generalized expression (5) based on the normalization
approach has a natural interpretation as the Bayes formula

q ¼
pl

EpðlÞ
,

where p is the prior distribution and l ¼ cFðuÞ is the
likelihood function. In other words, the Orlicz-space
functions u ¼ F�1ðl=cÞ are just the F�1-transformed like-
lihoods on the support X (here c is a certain constant). The
Pistone–Sempi model (2) is then the Bayes formula using
the log-likelihood function

u ¼ log l � Epðlog lÞ.

Viewed in this way, the meaning of the bijective transfor-
mation between expLðpÞ, or LFðpÞ in general, and Mm as
given by any p-referenced chart is that the posterior
distribution q, with respect to the prior distribution p, is in
one-to-one correspondence to (a subspace of) the Orlicz
space where likelihood functions (after proper transforma-
tion) are defined. So trajectories in Mm can be mapped to
trajectories in exp LðpÞ or in LFðpÞ; aggregation of poster-
ior distributions in Mm can be carried out by concatenating
likelihood functions on a vector space. The upshot is that,
given the prior distribution p, the space of posterior
distributions and the space of likelihood functions are in
one-to-one correspondence as established by the chart fp,
so that computations involve posterior distributions can be
effectively performed using p-centered likelihood functions.
Note that our approaches in extending the exponential

model is not an all inclusive one. Burdet, Combe, and
Nencka (2001) gave the following chart for mapping the
open unit ball of L2ðpÞ to Mm:

p� u ¼ p uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Epðu2Þ

q� �2

with the inverse given (for fixed p) by

fpðqÞ ¼

ffiffiffi
q

p

r
� Ep

ffiffiffi
q

p

r� �
.

Clearly for such �

ðp� uÞ � u0ap� ðuþ u0Þ;

hence this model does not fit into the scheme of Section 3.
As a generalization of the translation equation (6), one
should consider the so-called ‘‘transformation equation’’
(Aczél, 1966, 8.2.1)

ðp� uÞ � u0 ¼ p� ðu � u0Þ

where � is some associative operator

ðu � u0Þ � u00 ¼ u � ðu0 � u00Þ.

The corresponding functional equation is

F ðF ðp; uÞ; vÞ ¼ F ðp;Gðu; vÞÞ,
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where G : B� B! B is associative. This is the subject for
future research.

5. Conclusions

We have proposed two extensions to Pistone–Sempi’s
exponential model (2) as an atlas on the manifold of non-
parametric probability density functions. The first ap-
proach constructs coordinate functions in a general Orlicz
space using a Young function whose logarithm is assumed
to be odd, and yields (5) as a generalized form for
normalization-based models. The second approach views
the statistical manifold as an affine space that obeys a
‘‘right-translation’’ property, and derives (7) as the general
representation of an atlas. Exponential map is shown to be
the only common element from these two approaches,
highlighting its importance in charting statistical mani-
folds.

Appendix A. Orlicz spaces

In this appendix we give a short recap of the theory of
Orlicz spaces. For more details the reader is referred to one
of the many books on the subject, e.g., (Krasnosel’skil̆ &
Rutickil̆, 1961; Rao & Ren, 1991).

Recall that a Young function is a convex increasing
function F: ½0;1Þ ! ½0;1Þ with Fð0Þ ¼ 0. For a Young
function F we define a modular on the set of measurable
functions by

RFðuÞ:¼
Z

X

FðjuðxÞjÞ dmðxÞ.

Using the modular we can define the Luxemburg norm on
the same set by

kukF:¼ infft40: RFðu=tÞp1g.

Using these concept we define the Orlicz space by

LFðX Þ:¼fu: kukFo1g.

The best-known example of an Orlicz space is given by the
Young functions FðtÞ ¼ tp for some real number p greater
than or equal to 1. In this case we have

RFðuÞ:¼
Z

X

juðxÞjp dmðxÞ.

and the norm is just the Lebesgue norm:

kukF :¼ infft40: RFðu=tÞp1g

¼

Z
X

juðxÞjp dmðxÞ
� �1=p

.

Another important case is FðtÞ ¼ expðjtjÞ � 1, and the
corresponding Orlicz space exp L is the space of exponen-
tially integrable functions.
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