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How perceptual organization occurs was the central question of Gestalt psy-
chology, and the i b ical articulation of the Gestalt principles
remains a century-old challenge. Chen (in the target paper), in summarizing two
decades of pioneering research in the *opological approach to visual p pti
has presented a large body of empirical evidence (using both traditional Gestalt-
style experiments and modern neural imaging technology), and persuades us to
think again about the psychological and computational processes underlying
object perception. Chen's work has been much influenced and inspired by
Gibson (1979), who advocated the importance of environment-based visual
invariants and direct perception. However, Chen has gone beyond the Gibsonian
proposition by bringing in formal h ical stat to and
express fundamental geometric invariants for early visual perception. The
experiments in Chen (1982, 1985) supplied tlie empirical evidence that the
topology of a stimulus configuration plays an important role in visual percep-
tion. To formalize his intuition about topological visual perception, Chen {fol-
lowing Zeeman, 1962) defined a tolerance relation on a discrete point set, and
suggested the use of tolerance space topology to characterize global topological
invariants in a visual configuration. To complete his theory, Chen (1983) pro- ¢
posed an information processing hierarchy for the perception of a visual figure,
which involves the extraction of (in progressive order) topological invariants,
projective invariants, affine invariants, and finally Euclidean invariants. This
sequence coincides with Felix Klein's Erlangen program for the mathematical
characterization of g ries as transformation groups acting on a space.
Identifying and mapping these geometric invariants onto a perceptual hierarchy,
with the perception of topological invariants at the forefront, elegantly fulfils the
Gibsonian promise of a geometric theory underlying perceptual organization.
At the core of Chen’s thesis is the primacy of figure—ground segregation for
visual perception. To transform an image-baszd representation, which occurs at
the retina, to an object-based representation, where figures and their background
are all separated, requires the “‘binding” of peints/locations into djstinct meonm
(**chunks’) each with a certain topology. The “‘glue’’ that enables this binding
is what motivates Chen’s topological appmach. Starting from a point set
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representing the visual input on the retina, Chen asks how to properly partition
the visual space into regions/chunks solely based on large-scale topological
properties.

wnnn__ that topology on a point set deals with issues such as continuity,

ighbourhood, sur , etc., and involves notions like
n_om_.._.n interior, vo:bg etc. Insofar as o_u._oqﬁ occupy space separately from
. “one another and from their surrounds, distinct topological relationships arise
whi there are ¢ relationships among the objects and/or between an
object and its wanrﬂo:_._n_ Take the favourite stimulus of Chen’s: an object with
a hole. The importance of such a stimulus is that, depending on whether the
boundary of the hole belongs (or is perceived as belonging) to the exterior as
opposed to the interior part of the ““hole™’, one’s percept switches from that of a
doughnut (with a hollow centre that unveils its background) to that of a solid
disk (in front of a continuous background). This type of ownership of boundary/
border is, in set-theoretic language, a question of whether or not a set is defined
to include its boundary 9, i.e. whether the set is closed or open. This is clearly a
distinction at the _aqn_ of go_oa

Chen's topolog; d a global-to-local order of processing,
EEEEEowEoE&mSﬂo_eﬁgggﬂga
over identifying an object’s features—that is to say, the establishment of object
as a whole, or object *‘oneness™”, precedes the identification of specific features
belonging to an object. Chen's proposal is provocative, yet carefully reasoned.
His information processing hierarchy placed the extraction of topological (and
Euclidean) invariants as the first (and last) step. Though it might appear coun-
terintuitive since one would expect the Euclidean properties of a visual image to
be recorded right at the outset, Chen argued that Euclidean invariants, such as
rigidity (invariant under mental translation and rotation), really are tag-on
properties of an already-segregated visual object and are therefore computed
after a stimulus is treated as a topological whole. This view challenges tradi-
tional computer vision algorithms, where object segregation is based on the
identification and binding of features.

Chen’s topological proposal has far-reaching ¢ g for nal
algorithms of object oneness, and thus is worth scrutinizing. The *.o__oﬁ_:m
comments will examine Chen’s specific suggested use of tolerance space
topology on a discrete set, and discuss an alternative approach based on the
topology of continuous spaces, i.e., a topological manifold. Moving from a
discrete to a continuous setting allows one to conveniently impose differenti
bility conditions, thereby turning a topological manifold into a differentiable one
with a fibre bundle structure. The two central concerns from Chen’s topological
visual perception, namely the characterization of object oneness and the char-
acterization of shape-changing transformations, will be shown to admit a natural
interpretation under the fibre bundle/Riemannian manifold model of visual
perception.
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, Tolerance topology on discrete sets
' Chen, following Zeeman’s (1962) influential paper, proposed to use a p

type of discrete topology, called the tolerance space topology, to characterize the
global topological properties of objects. A tolerance on a point set is a binary
relation (i.c., among any two elements/pbints o.*. the set) that is both reflexive

' and symmetric, but not necessarily transitive. The absence of a requirement for

transitivity makes a tolerance relation different from an equivalence relation.
This is an important distinction, because equivalence (reflexive, symmetric, and
transitive) relations are the starting point for many common topics of topology,
such as the quotient operation; in order to obtain nontrivial global topological
properties on discrete sets, one is forced to use _w:u S_n_duno relation (in lieu of
the equivalence relation) to represent perceg distinguishability™".

Despite it being a topology on a discrete set, tolerance topology allows the
definition of paths, connectedness, holes, and dimensionality. The space of
tolerance relations, the tolerance space, is identified as the mathematical char-
acterization of the stimulus configuration. Chen then invokes the algebraic
topological notion of homotopy group, first suggested in the context of visual
perception by Zeeman (1962) and Zeeman and Buneman (1968), to characterize
the tolerance structure among the stimulus points. Specifically, a simplicial
complex (i.e., a complex made of simplexes) can be 1 with its vertex
points being the points in the original point set. Edges connect pairs of points
that are within a given tolerance. For three distinct points, if all pairwise dis-
tances are within the tolerance, they form a triangular face; accordingly, they are
indistinguishable from one another under this tolerance. The same holds for
four, five, ... distinct points, and so on. In this model, distinguishability is
characterized by missing edges, faces, etc., in the higher dimensional simplexes
that make up the complex. When embedded into the Euclidean space, the
dimensionality of the complex increases linearly with the total number of points
in the m:_dc_zm configuration. Though =o.,. a problem in principle, the structure of
this simpli plex, and the g homology group H, may become
extrémely complicated and difficult to SB_ER except for very few dots in the
configuration. It ins a challenge to d ate that, with the criteria for
spatial tolerance becoming either more relaxed or more stringent, a change of
would parallel the change in the resulting percept. In short, Chen's tolerance
topology relies on the fundamental assumption of discreteness of visual stimulus
configuration as input to vision perception. Even though it may appear as a
w:.:v__a:_._w E_.._.:_u:o: the discrete set approach may tumn out to suffer severe

1 disad
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Topological manifold and fibre bundle

An alternative to the tolerance topology idea of Chen (borrowed from Zeeman)
is to introduce a manifold structure on visual space, so that visual perception
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takes place on a topological manifold. A (topological) manifold is formed by
continuously pasting together pieces of Euclidean space. The only requirement
imposed on the point set is HausdorfT separability, namely, for any two distinct
points, there exist disjoint open sets that each point is contained by. This con-
-:E_a_ property about visual inputs allows one to set up Cartesian coordinate
systems (called “‘charts’") at each point on the manifold, so that neighbouring
points can be specified using these coordinates. Different nwﬁ_._u centred on the
same point are related to each other via a di ion. When a
certain oo__oazs._ of charts covers the entire manifold, it is called an “‘atlas™.

Topological manifold cap! the basic architecture of information proces-
usm_uw&n._.ﬁi_ system: Neurons earlier in visual processing stream respond to
inputs from restricted «nw_o_._w of the visual space, and that the entire visual space
is d by the overlag g:& fields ﬁo_.n..u: of the neuronal ensemble.
In order to P s:.u 1 from nearby points, one
needs to provide for a proper calculus on the topological manifold. This is
achieved by supplying additional @.Wmﬁ:zﬁcs wn.:.u.En to make a topological
manifold a differentiable one. One may, on a differentiable manifold, perform
covariant (intrinsic) comparisons of vectors located at neighbouring points,
accomplished through a geometric entity called an affine connection. If the
manifold is further endowed with a metric tensor, then it becomes a Riemannian
manifold, which admits a unique (called Levi-Civita) connection.

The argy that visual perception involves a stimulus manifold describable
in terms of a Riemannian Eub_ma_n_ has traditionally appeared in the study of
binocular space and depth perception (for example, Indow, 1982, 1991; Lune-
burg, 1947; Smith, 1959; Yamazaki, 1987). The idea of stimulus comparison in
multidimensional perceptual space using covariant differentiation was also
explored in Levine (2000). However, none were addressing the issue of object
oneness, namely the binding of contiguous locations on the base manifold into a

topological whole. In a radical departure from these traditional approaches,
Zhang and Wu (1990) used Ri i try to ch ize neural pro-
cesses mediating the segregation of mm._.__.?m_.ozna relationships and the topo-
logical layout of the visual space. Based on identifying the tangent space of the
visual manifold as that of motion (directional) selective neuronal responses, and
that object oneness is reflected as the intrinsic constancy (through parallel
transport) of tangent vectors across neighbouring points, the Levi-Civita
connection I" of the visual manifold is established. Solving for the metric tensor
g yields the following expression of the Riemannian metric:

el il 5

ﬂE. x¥ ha.
where f denotes the grey-level intensity function (of a two-dimensional image
denoted by spatial coordinates x,y) and that the subscripts denote respective
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partial derivatives. So any image f induces, through its second derivative
(Hessian), a metric tensor and a resulting Levi-Civita connection. It was proven
(Zhang & Wu, 1990) that the Riemann-Christoffel curvature R of this connec-
tion " is identically zero, so p lations of a vector are path-indepen-
dent—this in turn means that segregation of*image regions (objects) is possible
globally. Specifically, motion-based object segregation, in which image points
“‘glue’ together if they are a part of an object undergoing rigid translation
(i.e., with spatially uniform image velocity), is represented as a region at which
the tangent vectors are intrinsically constant (with vanishing covariant deriva-
tive).

Take the example of a random-dot kinematogram (Braddick, 1974), which

highlights, on the one hand, the remarkable ease at which object oneness is
established by our visual system and, on the other hand, the difficulty with any
computation algorithm of object segregation based on feature analysis, as for-
cefully argued by Chen in the target paper. The image luminance of successive
frames allows the motion system E....H:E_w_ mn_m::.n neurons) to extract local
features in terms of local . b of the aper-
ture problem, the local di and the E_dn:on of the global target dis-
vg.én;ﬁ.mg because the background dots were also
being randomly displaced, motion sensors respond to these regions as well,
resulting in a nonuniform resp map by i (Zhang, 1995). This
nonuniform response map, or tangent vector field ¥, is to be compared and

1 under the Ri ian metric g. Global topological properties are
extracted by covariant differentiation of ¥ (motion response map). The advan-
tage of this Riemannian geometric framework is that the chicken-and-egg pro-
blem of whether to compute features or objects first is avoided—objects defined
by the constancy of their physical features (e.g., velocity) across space neces-
sarily give rise to an intrinsically constant vector field under an affine con-
nection and, therefore, can be immediately segregated using geodesic
coordinates (see Zhang, 1995 for more details). The emergence of a visual figure
(target) is the result of simultaneously solving the aperture problem and the
location-binding problem.

Though constructed in a continuous (rather than discrete) setting, the dif-
ferential manifold (fibre bundle) model of visual perception resonates with
Chen’s basic argument about the primacy of spatial proximity in establishing
object oneness—his idea that proximity takes precedence over similarity. This is
because, in the language of differential manifold, proximity is simply the
(geodesic) distance between points on the base manifold while similarity/dis-
similarity is represented by the covariani difference of vectors (i.e., visual
features) situated on different base points of the stimulus manifold. The former
involves a unique, metric-compatible Levi-Civita connection while the latter
may use any affine connection defined on the appropriate fibre. Chen’s ideas
about proximity taking precedence over similarity precisely expressed the
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distinction between points on the base manifold (related by proximity) and
points in the feature space (related by similarity).

Characterizing topological deformation of an image

One of the questions raised by Chen’s topological approach to visual perception
is about the characterization of rubber- wm._oa_ :u_na:n,. deformations om oEon.m in
an image—Chen referred to them as ‘*shape-ch fi . Cor-
respondence of an object across different images, e - in apparent motion, may
be established even when the object undergoes considerable deformation. Qur
wvisual @Eu.!:@ﬁggggﬁanﬁ%ogoﬂnﬁﬁmﬁ»g
logical deformation (with limited extent) is o?nn called *‘shape constancy’’.
Though intuitively easy to describe, the | and degree of visual
distortion of an object, however, is hard to quantify mathematically based on
oon:ﬂcg_.on Om grey-level image properties alone. Previously, Leyton (1992)
5Y lly investigated the g_u_.:_w general linear transformation group
and d d how a t of “*stretch’’, “‘shear’”, and *‘rotation’”
operations (which form appropriate subgroups ﬁﬂnﬁnrﬁv on the object’s
symmetric axis would result in different shapes that nevertheless would be

gnized as being produced by the same object. However, none of these
operators were generated by specific images th Ives, and therefore given an
arbitrary image, one does not know which operators to apply and what sym-
metric axes are appropriate at each image location. One needs a set of image
descriptors or curvilinear image coordinates that these shape-changing trans-
formation groups can apply locally.

One such descriptor was provided in Zhang (1994). It was based on com-
puting the second derivative (Hessian) of the image function f. More precisely,
the eigen-vectors of the image Hessian are computed at each image location and,
assuming their smoothness, a flow field can be constructed using either of the
eigen-directions. These two orthogonal flow fields will fill up a patch of the two-
dimensional visual manifold; together they become the curvilinear coordinates
that capture local invariant structure of the image function. An image is allowed
to deform along either coordinate curves (i.e., the value of a pixel may be
dragged by those flows). To avoid the problem of noncommutativity of the two
directional vector fields, Zhang (1994) reparameterized the flow fields to make
them bona-fide (i.e., mutually compatible) coordinate curves; this was done
through forcing their Lie bracket operator to commute, a necessarily condition
for orthogonal flow fields to be orthogonal coordinate curves. The infinitesimal
transformation of a visual contour, embodied as the Lie derivative dragging the
flow field along its path, the so-called *‘orbit’" of a Lie group, quantifies
topological transformations such that the invariance (‘‘psychological con-
stancy”") of a contour under the formation group is refl d as its being
annulled by the action of the Lie derivative (Hoffman, 1966). The only freedom
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remaining, the so-called **gauge freedom™, is with respect to the scaling of these
image-dependent coordinates; this flexibility is important because we want the
amount of deformation to have some arbitrary scales. Examples of selecting
(i.e., fixing) a particular gauge for *‘good”™ or Gestalt images were presented in
that paper—it turns out that the original Cartesian space where the image
function is defined and the curvilinear coordinates where deformation is quan-
tified are related through a conformal transformation. This computational theory
and the associated algorithm for characterizing shape-changing transformation
closely follow the spirit of the Lie Transformation Group (LTG) approach
proposed by Hoffman (1966, 1968, 1970, 1989, 1994). While it is in no sense
complete, hopefully it is a first step Is finding a rep ion of rubber-
sheet deformation (of an image) that is usanu:n_—aawoa by the image itself.

Conclusion

To ize, Chen's h in topological visual 1 forces the
computational vision community. to R_E_:r ,_._.nb_an:_. mﬂav_ﬁ._ of object
oneness. As Chen cited “*Everything is difficult at its very beginning'"; it is
particularly true if this beginning involves m_uoo_QEm a proper topology for
visual _undn—usg. i_»_.n_.n. 5 use the tol P on di sets or

logical (and diffe _..E.:me_.u_ of fibre _E_._&a future research will

n_p_..@ the most suitable topological fr: ork to precisely capture the notion
of object oneness.
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