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When an oriented bar or grating is drifted across the receptive field of a cortical neuron at various orientations,
the tuning function reflects both, and thus confounds the orientation (ORI) and the direction-of-motion (DIR)
selectivity of the cell. Since ORI (or DIR), by definition, has a period of 180�or 360� deg/cycle, a popular method
for separating these two components, due to Wörgötter and Eysel [Biol. Cybern. 57, 349 (1987)], is to Fourier
decompose the neuron’s response along the angular direction and then identify the first and the second har-
monic with DIR and ORI, respectively (the SDO method). Zhang [Biol. Cybern. 63, 135 (1990)] pointed out that
this interpretation is misconceived—all odd harmonics (not just the first harmonic) reflect the DIR component,
whereas all even harmonics (including the second harmonic) contain contributions from both DIR and ORI.
Here, a simplified procedure is proposed to accomplish the goal of unconfounding ORI and DIR. We first con-
struct the sum of all odd harmonics of the overall tuning curve, denoted ODDSUM, by calculating the differ-
ence in the neuronal response to opposite drifting directions. Then we construct ODDSUM+ �ODDSUM� and
identify it with DIR (here � · � denotes the absolute value). Subtracting DIR, that is ODDSUM+ �ODDSUM�, from
the overall tuning curve gives ORI. Our method ensures that (i) the reconstructed DIR contains only one, posi-
tive peak at the preferred direction and can have power in all harmonics, and (ii) the reconstructed ORI has
two peaks separated by 180° and has zero power for all odd harmonics. Using this procedure, we have uncon-
founded orientation and direction components for a considerable sample of macaque striate cortical cells, and
compared the results with those obtained using Wörgötter and Eysel’s SDO method. We found that whereas
the estimate of the peak angle of ORI remains largely unaffected, Wörgötter and Eysel’s method considerably
overestimated the relative strength of ORI. To conclude, a simple method is provided for appropriately sepa-
rating the orientation and directional tuning in a neuron’s response that is confounded as a result of the use of
drifting oriented stimuli. © 2005 Optical Society of America

OCIS codes: 330.4270, 330.4060.

1. INTRODUCTION
When oriented stimuli, such as bars or gratings, are
drifted across a neuron’s receptive field at various angles
to probe the neuron’s response property, the tuning curve
obtained will reflect both the orientation selectivity and
direction-of-motion selectivity of the neuron. Since these
two properties arise from very different underlying pro-
cesses, it would be desirable to separate (“unconfound”)
these selectivities in the neuron’s response. However, un-
less one makes a priori assumptions about the functional
form of the orientational and directional tuning, it is dif-
ficult to decompose the overall tuning curve into one rep-
resenting orientation and another representing direction.

A. SDO Analysis
A method that has become increasing popular among neu-
rophysiologists is SDO analysis proposed by Wörgötter
and Eysel based on the technique of Fourier analysis.1

Observing that the orientation component and the direc-
tion component, by definition, have periods of 180 and
360 deg/cycle, respectively, these authors suggested quite
originally to Fourier analyze the overall tuning curve us-
ing the fundamental period of 360° �2��, and then to iden-
tify the first harmonic to be the directional component
and the second harmonic to be the orientation component.
They dubbed this method SDO analysis, where S refers to

the zeroth harmonic (DC component) in the Fourier de-
composition, D refers to the first harmonic identified as
the directional tuning because of its 360° periodicity, and
O refers to the second harmonic identified as the orienta-
tional tuning because of its 180° periodicity. Let R��� de-
note a cell’s overall (i.e., orientational plus directional)
tuning curve. It represents the cell’s response, in terms of
spike rate, to the polar angle � of a drifting bar or grating
that might activate the cell through either an orientation
or a direction mechanism, or both. The decomposition
used in the SDO analysis can be formally written as

R��� = S + D��� + O���.

Performing Fourier transform of R��� along the angular
dimension, the coefficients of the first two harmonics are
given by �l=1,2�

�l =
1

�
�

k

R��k�cos�l�k�, �l =
1

�
�

k

R��k�sin�l�k�.

According to Wörgötter and Eysel,1 the first harmonic
��1 ,�1� is identified with the direction component D���
and the second harmonic ��2 ,�2� with the orientation
component O���. For the former, the peak angle �d and the
strength rd are given by
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�d = arctan��1/�1�, rd = r1 = ���1�2 + ��1�2, �1�

whereas for the latter, the peak angle �o and the strength
ro are calculated as

�o = arctan��2/�2�, ro = r2 = ���2�2 + ��2�2. �2�

The SDO analysis has been applied to several data sets
by the original authors,2–4 and has since become quite
popular.5–19 Two main advantages of the SDO method are
that (i) it does not appear to make any a priori assump-
tions about the shapes of the direction and the orientation
tuning curves (which we will show below not to be the
case), and (ii) it is relatively easy and straightforward to
implement. Many researchers used this method to deter-
mine, in particular, the contribution of the orientation
component to a neuron’s overall response. For example,
Weliky and Katz9 reported that orientation selectivity in
primary visual cortex (V1) of ferrets was substantially
weakened, as determined by extracellular single-unit re-
cording, by chronic electric stimulation of the optic nerve
during their early, postnatal visual development. Their
claim was based on an assessment of orientation tuning of
V1 neurons in both the artificially stimulated and the un-
stimulated control animals using high-contrast bars that
drifted at various orientations across the receptive fields
of recorded neurons. Central to Weliky and Katz’s data
analysis was the use of an orientation selectivity index
(OSI), given as the amplitude of the second harmonic di-
vided by the average firing value (zeroth harmonic or DC
term), for quantifying the degree of orientation selectivity
(see Figs. 2 and 3 of Ref. 9).

The SDO method is equivalent to the vector sum
method used by other researchers for analyzing a circular
distribution of neuronal responses.20–24 There, the pre-
ferred direction �d is calculated as the vectorial sum of
R��� at each angle � with the preferred orientation �o as
the vectorial sum of R��� but with its angles being
doubled because of its 180° periodicity. In complex num-
ber notation

exp�i�d� � �
k

R��k�exp�i�k�

= �
k

�R��k�cos��k� + iR��k�sin��k�� � �1 + i�1,

exp�i2�o� � �
k

R��k�exp�i2�k�

= �
k

�R��k�cos�2�k� + iR��k�sin�2�k�� � �2 + i�2.

Therefore, the SDO method can also be seen as a formal
description of the vector sum method, a descendant of
“circular analysis” (see, e.g., Ref. 25).

B. Critique of SDO Analysis
Despite its popularity, there is a severe defect in SDO
analysis, as first pointed out by Zhang.26 Specifically, the
identification of the first harmonic of the Fourier series
with the direction component (to be abbreviated as DIR
below) and its second harmonic with the orientation com-
ponent (to be abbreviated as ORI below) was mathemati-

cally unwarranted. In the Fourier decomposition of the
overall tuning curve R���, there are more than just the
first two harmonics (in addition to the zeroth harmonic or
DC component which we absorb into ORI). It turns out
that ORI, having a period of 180 deg/cycle, contributes to
all even harmonics (not just the second harmonic),
whereas DIR, having a period of 360 deg/cycle, contrib-
utes to both even and odd harmonics (not just the first
harmonic).27 In other words, all the odd harmonics reflect
the DIR component, whereas all the even harmonics con-
tain contributions not just from ORI but also from DIR. In
that regard, the problem with SDO analysis is twofold: (1)
it ignores the contribution of DIR to the second harmonic,
and (2) it ignores all higher-order ��2� harmonics28 in the
Fourier decomposition of R���. Even if the latter (i.e., ig-
noring higher harmonics) may be justified as simply ob-
taining a first approximation to solving the unconfound-
ing problem, the former (i.e., ignoring the contribution of
DIR to the second harmonic) will even affect, unavoidably,
such first approximation to ORI.

The deficiency of the SDO method becomes apparent if
one is reminded of the following mathematical fact: Any
periodic function is made up of a series of Fourier harmon-
ics, not just the first (fundamental) harmonic; the only
function that does not carry harmonics of order �2 in its
Fourier decomposition is the sinusoidal function (sine or
cosine). In other words, the only situation when the SDO
analysis would work (that is, successfully decompose the
tuning curve into an ORI and a DIR component) is when
the cell’s tuning curve has the form29:

R��� = r0 + �
l=1

2

��l cos�l�� + �l sin�l���.

Equivalently, the above expression can be cast as [using
Eqs. (1) and (2)]

R��� = r0 + rd cos�� − �d� + ro cos�2�� − �o��,

where both the DIR component (second term, with
strength rd) and the ORI component (third term, with
strength ro) must be sinusoidally tuned, not merely with
respective periods of 360 and 180 deg/cycle. Therefore, to
the extent that directional tuning is not sinusoidal, the
Fourier decomposition of the DIR component by itself will
contain first-, second-, and all higher-order harmonics.
That neurons in V1 have much narrower direction tuning
than would be accounted for by a sinusoidal function has
been well established (see, e.g., Ref. 30).

The proper procedures of applying Fourier analysis to
unconfound orientational and directional contributions
were discussed in detail in Ref. 26. The highlight of that
mathematical analysis was to show that, assuming addi-
tivity of the ORI and DIR components, all odd harmonics
of the Fourier series are contributed to by DIR, whereas
all even harmonics contain contributions from both DIR
and ORI. DIR may contribute to all harmonics because it
is of the same periodicity as R���, whereas ORI contrib-
utes only to the even harmonics because it has twice the
periodicity of R���. In Ref. 26, Zhang proposed first to use
odd harmonics individually to estimate both the peak and
the bandwidth of DIR, and then to subtract out DIR’s con-
tamination of the even harmonics before finally estimat-
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ing ORI using the “corrected” even harmonics. The only
assumption made there was that ORI and DIR are lin-
early additive (an assumption implicitly made as well by
Wörgötter and Eysel in Ref. 1), the validity of which can
be checked against the data within the framework itself.

C. Improved Method
The procedure outlined in Ref. 26, however, has a draw-
back: Unlike the SDO method, it is difficult to implement
because it involves regression analysis of the peak angle
of a periodic function from all of its individual harmonics.
This practical inconvenience prompted us to look for an
easily implemented method to separate the orientation
and direction tunings while still correcting for the latter’s
contamination in the estimate of the former.

We note that Li et al.31 also realized that SDO analysis
inappropriately truncated the Fourier series to the first
two harmonics, and proposed to identify the sum of all
odd harmonics as DIR and the sum of all even harmonics
as ORI. If this were the case, then DIR need not be as
broadly tuned as a sinusoidal function while still not con-
taminating the even harmonics. However, as we will dem-
onstrate, the proposal in Ref. 31 amounts to assuming
that DIR has the shape of an antisymmetric function with
both a positive peak and a negative peak separated by
180°; this is unrealistic in view of empirical findings
about directional selectivity in V1 cells that seldom mani-
fest the negative inhibitory peak.30

As an improvement over Ref. 31, we now propose to rec-
tify this antisymmetric sum-of-odd-harmonics to get rid of
its negative lobe and retain only the positive one, and to
identify the resulting single-peaked function as the direc-
tional tuning. Specifically, after Fourier decomposing
the overall tuning curve R���, we will form the sum of all
its odd harmonics, denoted below as G��� (also called
ODDSUM). But, instead of identifying G��� as the direc-
tion component, as Ref. 31 did, we define it as32

DIR��� = G��� + �G����, �3�

where � · � denotes the absolute value. Equivalently,

DIR��� = �2G��� if G��� � 0

0 if G��� � 0	 .

So our proposed method differs from the method of Ref. 31
in the presence of the �G���� term in Eq. (3), which causes
DIR��� to have a positive peak only. The contamination of
DIR by the even harmonics, from our current model, is
given by �G����, a function with a period of 180 deg/cycle,
and can be removed easily since G��� is computed
straightforwardly as

G��� =
1

2
�R��� − R�� + ���. �4�

The orientation component ORI���, which is taken to in-
clude the DC value as well, can then be constructed based
on the linearity assumption, namely, that R��� is a linear
sum of DIR and ORI:

ORI��� = R��� − DIR��� = R��� − G��� − �G����. �5�

In a nutshell, our proposed method decomposes R���
into a 360°-periodic directional component DIR��� and a
180°-periodic orientation component ORI��� according to

DIR��� =
1

2
�R��� − R�� + �� + �R��� − R�� + ����, �6�

ORI��� =
1

2
�R��� + R�� + �� − �R��� − R�� + ����. �7�

This method was first presented in an abstract form (Ref.
33) to which R. L. De Valois contributed as a coauthor.

2. METHODS
The cells being analyzed in this report were taken from a
previous study (Ref. 34) intended for a different purpose.
Briefly, in that study, macaque monkeys (Macaca mulatta
and M. fascicularis) were anesthetized and paralyzed fol-
lowing surgery while electrocardiogram, electroencepha-
logram, blood temperature, and expired CO2 were moni-
tored continuously. Single cell recordings were made
within the central 5° visual angle, and action potentials
(spikes) were recorded with a temporal resolution of 1 ms.
Visual stimuli were generated and controlled by a Sun/
TAAC image processor (Sun Microsystems, Mountain
View, Calif.), and presented on an NEC monitor (Nippon
Electric, Tokyo) with a spatial resolution of 1024
	900 pixels, a 66 Hz refresh rate, and a mean luminance
of 70 cd/m2. Drifting sinusoidal gratings were used to de-
termine the cell’s spatial and temporal frequency as well
as orientational/directional tunings. Those cells were sub-
sequently tested with other stimuli for a different purpose
(hereby omitted) as reported in Ref. 34, their response to
drifting sinusoidal gratings, which served as initial char-
acterization of cells in Ref. 34, will be analyzed in detail in
this report.

A. Rationale for Our Procedures
For a given cell, its response (in terms of average spike
rate) to a sinusoidal grating drifting at angle � is denoted
R���. A series of drifting angles, �k�k=1,2,… ,N�, in equal
steps of 360° /N, were used; here we assume N to be an
even natural. For instance, N=12 indicates that the drift-
ing angles are 30° apart. The resulting R���, where �
takes on the sampling values of �k=k /N	360°, will be re-
ferred to as the overall tuning curve; it contains both a di-
rectional (DIR) and an orientational (ORI) component.
Since R��� is 360°-periodic, one can decompose it into the
Fourier series

R��� = �0 + �
l=1

N/2−1

��l cos�l�� + �l sin�l��� + �N/2, �8�

where �l ,�l�l=1,2,… ,N /2−1� are the Fourier coefficients
given by

�l =
1

�
�
k=1

N

R��k�cos�l�k�, �l =
1

�
�
k=1

N

R��k�sin�l�k�,

with
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�0 =
1

�
�
k=1

N

R��k�, �N/2 =
1

�
�
k=1

N

�− 1�kR��k�.

It is Fourier’s theorem that guarantees the existence and
uniqueness of Eq. (8) for any periodic function R���.

Consider the partial sum of all odd harmonics, G���
(also called ODDSUM), defined as

G��� = �
l=1,3,…

��l cos�l�� + �l sin�l���. �9�

It follows from Eq. (8) that G��� can be computed simply
by taking the difference of the values of the overall tuning
curve R�·� at opposite drifting directions � and �+�; see
Eq. (4). Obviously G��+��=−G���, that is, G��� is an an-
tisymmetric function within any 180° subinterval, and
will have both a positive peak/lobe and a negative peak/
lobe in the full period of 360°. Consequently, the function
�G����, which contains (at least) two positive peaks/lobes,
is 180°-periodic, since �G��+���= �G����. In its Fourier de-
composition under the fundamental period of
360 deg/cycle, only even harmonics are present:

�G���� = �
l=2,4,…

�
l cos�l�� + �l sin�l���, �10�

where, for l=2, 4, …


l =
1

�
�
k=1

N

�G��k��cos�l�k�, �l =
1

�
�
k=1

N

�G��k��sin�l�k�.

Our method reconstructs the direction tuning curve
DIR��� according to Eq. (3) and the orientation tuning
curve ORI��� according to Eq. (5). Such construction has
the property that the odd harmonics of DIR��� are those
of G���, while the even harmonics of DIR��� are those
of �G����:

DIR��� = �
l=1,3,…

��l cos�l�� + �l sin�l���

+ �
l=2,4,…

�
l cos�l�� + �l sin�l���. �11�

Such a form not only makes DIR contain only one positive
peak but also ensures that all of its odd harmonics are the
odd harmonics in the Fourier decomposition of R���. It fol-
lows, from Eqs. (5) and (10), that

ORI��� = �0 + �
l=2,4,…

��l� cos�l�� + �l� sin�l���, �12�

where

�l� = �l − 
l, �l� = �l − �l, for l = 2,4,….

That is, ORI��� indeed contains even harmonics only. It is
not difficult to show that Eqs (11) and (12) are equal to
Eqs. (6) and (7), respectively.

B. Estimate of Peak and Strength of the Tuning function
Our procedures for computing peak tuning and strength
of orientation and direction components can be imple-
mented as follows:

Step 1. Calculate

�1 =
1

�
�
k=1

N

R��k�cos��k�, �1 =
1

�
�
k=1

N

R��k�sin��k�;

�2 =
1

�
�
k=1

N

R��k�cos�2�k�, �2 =
1

�
�
k=1

N

R��k�sin�2�k�.

Step 2. Calculate


2 =
1

2�
�
k=1

N

�R��k� − R��k + ���cos�2�k�,

�2 =
1

2�
�
k=1

N

�R��k� − R��k + ���sin�2�k�.

Step 3. Calculate

�2� = �2 − 
2, �2� = �2 − �2.

Step 4. The peak angle �d and the strength rd of DIR
can be estimated as

�d = arctan��1/�1�, rd = ���1�2 + ��1�2,

which is the same as Eq. (1); and the peak angle �o and
the strength ro of ORI can be estimated as

�o = arctan��2�/�2��, ro = ���2��2 + ��2��2. �13�

The relative strength � of the orientation tuning to direc-
tion tuning of a cell is indexed by

� = ro/rd.

Remark: With reference to Eqs. (1) and (2), the esti-
mate for DIR remains the same, while our current
method
provides a correction term for estimating ORI (both its
peak angle and strength).

3. RESULTS
For illustrative purposes, let us apply our method to a
typical cell with step-by-step explanations (see Fig. 1).
The response of this cell to a grating drifting at a series of
angles is plotted in Fig. 1(a), where the drifting angles are
in increments of 15°. This is the overall tuning curve R���.
Our first step is to calculate the sum of odd harmonics
G��� by using Eq. (4), that is, by shifting the overall tun-
ing curve by 180° and then subtracting it from the origi-
nal tuning curve. The result is shown as Fig. 1(b). By our
construction, G��� (denoted ODDSUM) is antisymmetric,
with both a positive peak and a negative peak. Next, we
take the absolute value �G���� pointwise, that is, at each �
value, and plot �G���� in Fig. 1(c). Note that �G���� (i.e.,
�ODDSUM�) necessarily has a period of 180° Next, we con-
struct DIR��� by adding G��� and �G����, i.e., superimpos-
ing the graph of Fig. 1(b) with the graph of Fig. 1(c). This
gives rise to the graph in Fig. 1(e), namely the direction
component DIR���. For comparison, we also present the
sum of all even harmonics (plus the DC term) as a graph
in Fig. 1(d). This, however, is not the orientation compo-
nent ORI���, because it contains the contamination from
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Fig. 1. Illustration of the method of separating the DIR and ORI components, using a typical cell. (a) Overall tuning curve R��� of the
cell, plotting its spike rate response (in ordinate) as a function of drifting angles � (in abscissa) of a sinusoidal grating stimulus. Drifting
angles are in 15° increments. (b) ODDSUM, denoted G��� in the text, is the sum of all odd Fourier harmonics of R���. It can be easily
calculated by shifting R��� by 180°, then subtracting it from the unshifted R���, and dividing by 2. Note the antisymmetric shape of
ODDSUM, and the presence of both the positive and the negative peak in it. (c) �ODDSUM�, denoted �G���� in the text, is the point-by-
point absolute value of ODDSUM, obtained by flipping all negative values of the curve in (b). (d) The sum of all even Fourier harmonics
of R��� plus the zeroth harmonic (the DC term). (e) Recovered DIR component, by adding the graph in (b) to the graph in (c). (f) Recovered
ORI component, by subtracting DIR [graph in (e)] from R��� [graph in (a)]. Note that the graphs in (b) and (d) sum to the graph in (a);
this is the Fourier decomposition of the cell’s overall tuning curve. Note also that the graphs in (e) and (f) sum to the graph in (a); this
is the decomposition of the cell’s tuning curve into DIR and ORI. These graphs clearly show that ODDSUM�DIR, EVENSUM�ORI,
contrary to the claim of Li et al.31
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the even harmonics of DIR���, modeled here as �G����.
Subtracting the graph of Fig. 1(c) from the graph of Fig.
1(d) yields the graph of Fig. 1(f), which is taken to be the
orientation component ORI��� (including the DC term).
Note that the orientation component is much smaller in
magnitude compared with the sum of all even harmonics
(denoted EVENSUM) in Fig. 1(d), both of period 180°, due
to directional contamination shown as Fig. 1(c).

Our procedures are applied to 149 cells recorded in the
primary visual cortex of the monkey (see Section 2). Fig-
ure 2 shows the results of 12 sample cells, with the ordi-
nate representing the polar angles of the drifting grating,
and the abscissa the spike rates. In each panel, the cell’s
overall tuning curve R��� is represented by squares con-
nected by solid lines. The recovered direction component
DIR��� is represented by diamonds connected by dotted
lines. The recovered orientation component ORI��� is rep-
resented by circles connected by dashed lines. One can
easily observe that DIR��� is single-peaked with a period
of 360°, whereas ORI��� is double-peaked with a period of
180°. For each panel, the sum of DIR��� and ORI���
equals the overall tuning curve, R���.

The strength rd of the directional tuning can be charac-
terized by the amplitude r1 of the first harmonic in the
Fourier expansion of DIR��� using a fundamental fre-
quency of 360 deg/cycle, given by Eq. (1). Likewise, the
strength ro of the orientational tuning can be character-
ized by the amplitude of the first harmonic in the Fourier
expansion of ORI��� using the fundamental frequency of
180 deg/cycle. However, this does not equal the ampli-
tude r2 of the second harmonic in the Fourier decomposi-
tion of R���, given by Eq. (2); in fact the whole point of this
paper is to correct this misunderstanding arising from
Ref. 1. The strength of the orientation tuning, after the
correction term, should be ro given by Eq. (13). The ratio
�=ro /rd, which measures the relative strength of ORI and
DIR, can be calculated. Figure 3 plots, in the form of a
scatter diagram, Fig. 3(a), and in the form of a histogram,
Fig. 3(b), the distribution of the relative strengths, in log
coordinates, for the population of 149 cells, when the ori-
entation components are calculated using either the
method advanced in this paper (solid bars, “with correc-
tion”) or the SDO method (stitched bar, “without correc-
tion”). The plots clearly show that the strength of ORI is
overestimated by SDO analysis: The second harmonic
(and all even harmonics) indeed tend to be contributed by
DIR as well.

To appreciate why SDO analysis overestimated the ori-
entation tuning, we plot, in Fig. 4(a), the second harmonic
of the recovered direction tuning DIR���. It is clear that
for almost all cells, DIR��� contains significant power in
the second harmonic in addition to the first harmonic.
This reaffirms our claim that DIR contaminates all even
harmonics (including the second harmonic) in the Fourier
decomposition of the cell’s overall tuning curve. In fact
this contamination seems to grow in magnitude as the
strength of its first harmonic grows, which makes sense
for any single-peaked, narrowband tuning function
DIR���. In Fig. 4(b), the strength ro of ORI is plotted (in
the ordinate) against the magnitude r2 of the second har-
monic of the overall tuning curve (in the abscissa). The
latter is, in most cases, larger than the former, indicating

a contribution (contamination) to the second harmonic
from DIR.

We then examine whether our proposed correction to
the even harmonics has a significant impact on the esti-
mate of the orientation peak angle. For each cell, we com-
pare two methods of estimating the peak angle of ORI,
one as arctan ��2 /�2� directly using the SDO method
(“without correction”) versus the other estimated from our
proposed method as arctan ��2� /�2�� (“with correction”). The
scatter diagram of the two estimates for the population of
149 cells is presented as Fig. 5. As shown, for the majority
of the cells, our correction does not appear to affect the es-
timate of the peak angle.

The lack of a systematic difference in estimating the
peak angle, coupled with a clear improvement in estimat-
ing the relative strength, could only mean that for most
cells, the orientation peak and the direction peak co-align
or are perpendicular to each other. In Fig. 6, we examine
the relationship between the peak angles of the direc-
tional tuning and the orientational tuning. Indeed, in
over half the cells, the orientation peak and the direction
peak differ by less than ±30°; here perfect coincidence of
the two peaks �
=0� means that the preferred orientation
and the preferred direction are orthogonal.

4. DISCUSSION
When an oriented stimulus (such as a bar or a grating) is
drifted across the receptive field,35 a cortical cell will un-
avoidably respond to both the directional aspect and the
orientational aspect of the stimulus. Unconfounding the
cell’s direction tuning and orientation tuning is not an
easy task because, in general, the cell’s tuning curve R���
may be a complex function of its component tuning
curves:

R��� = F�ORI���,DIR����.

Here, the functional form F�· , · � specifies how the orien-
tational tuning mechanism and the directional tuning
mechanism interact. The difficulty, and the challenge of
an unconfounding method, is that neither the shapes of
the tuning curves ORI���, DIR��� themselves,36 nor the
functional form of their interaction F�· , · � is known a pri-
ori. Without their being properly specified, the problem is
underconstrained and hence ill-posed; a formal solution
requires at the very least an explicit account of the inter-
action between orientation and direction tunings to give
rise to the overall spike rate of a cell.

The basic premise of SDO analysis, as well as the cur-
rent approach, is that the 360°-periodic direction compo-
nent DIR and a 180°-periodic orientation component ORI
are linearly additive in forming the tuning curve R���

R��� = ORI��� + DIR���. �14�

Because of this, applying Fourier transform (which is a
linear, integral transform) to both sides of Eq. (14) sug-
gests that each Fourier harmonic of R��� is equal to the
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sum of the corresponding harmonic of ORI��� and of
DIR���, which in general have the Fourier decompositions

DIR��� = d0 + d1 cos�� − �d� + d2 cos�2�� − �d�� + ¯

ORI��� = o0 + o1 cos�2�� − �o�� + o2 cos�4�� − �o�� + ¯ .

Here, �d and �o represent, respectively, the peak angle of
the directional and orientational tuning functions, and

Fig. 2. Twelve sample cells, with decomposed DIR and ORI components. The ordinate represents a cell’s response, the abscissa the
drifting angles. The overall tuning curves are plotted as solid lines with solid square symbols representing the data points. The DIR (or
ORI) component is plotted as dotted (or dashed) lines with diamond (or circle) symbols. Note that the DIR and ORI curves sum to the
overall tuning curve for each cell. The alphanumeric string starting with “m” is a cell’s identification number.

2252 J. Opt. Soc. Am. A/Vol. 22, No. 10 /October 2005 J. Zhang



the coefficients d1, d2,… and o1, o2,… depend on their tun-
ing widths and strengths. For simplicity, we make the fol-
lowing operational definitions of the direction and orien-
tation tuning strengths: rd=d1, ro=o1 [but of course d1
=r1= ��1

2+�1
2�1/2 while o1�r2= ��2

2+�2
2�1/2]. Under Eq. (14),

the Fourier decomposition of the experimentally mea-
sured neuronal tuning curve R���, given by Eq. (8), is re-
lated to these coefficients by

�k = dk cos�k�d�, �k = dk sin�k�d�, k = 1,3,5,…,

�k = dk cos�k�d� + ok/2 cos�k�o�,

�k = dk sin�k�d� + ok/2 sin�k�o�, k = 2,4,6,…,

r0 = d0 + o0.

From the above the relationship of the amplitude r2 of the
second harmonic is

Fig. 3. Relative strength of ORI/DIR, when directional contami-
nation of even harmonics has been corrected (the current
method) or uncorrected (the SDO method). (a) The scatter plot of
relative strengths of the population of 149 neurons, before cor-
rection (as abscissa) and after correction (as ordinate) by our
method. Each square represents a cell. Note the overestimation
of the orientation strength by SDO analysis. (b) The histogram of
the distribution of the relative strengths in this population. Note
the leftward shift of the distribution when corrections have been
performed, again demonstrating the overestimation of the
strength of the orientation component by SDO analysis.

Fig. 4. Overestimation of ORI strength as a result of DIR con-
tamination of the second harmonic. (a) Scatter plot of the ampli-
tude of DIR’s second harmonic (ordinate, in logarithmic scale)
versus the amplitude of its first harmonic (abscissa, in logarith-
mic scale). Note the positive correlation between the two ampli-
tudes. (b) Scatter plot of the amplitude of the second harmonic of
the overall tuning curve (before correction, abscissa) versus the
amplitude of the second harmonic of the ORI component (after
correction, ordinate), both in logarithmic scale. Note most data
points fall below the positive diagonal. In both (a) and (b), each
square represents a cell, and the amplitudes are all normalized
by the DC component.
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�r2�2 = �o1�2 + �d2�2 + 2o1d2 cos�2��d − �o��.

Clearly, the magnitude of r2 depends not only on o1, which
indeed equals ro and characterizes the strength of orien-
tation tuning, but also on d2, which is related to direction
tuning, and on 
= ��d−�o�, which is the separation of the
orientational and direction peak angles. When r2 is used
(instead of o1) as a measure of the strength of orientation
selectivity, for example, the OSI in Ref. 9, the estimate of
the degree of orientation selectivity will not be accurate.

If �d=�o or 
=0, that is, when the preferred direction is
orthogonal to the preferred orientation, the magnitude of
r2 will represent an overestimate of the degree of orienta-
tion selectivity; if �d=�o±90° or 
=90°, that is, when the
preferred direction is aligned with the preferred orienta-
tion, the magnitude of r2 will represent an underestimate.

In this context, the deficiency of Wörgötter and Eysel’s
original analysis can be seen as not properly considering
higher harmonics for DIR beyond the first order when
DIR is not as broadly tuned as a sinusoidal function.
Regardless of how DIR combines with ORI to give rise
to the overall response of a cell, the claim that
“second harmonic↔orientation component” cannot, in
general, be justified. It is not a matter of an individual re-
searcher’s assumptions about the underlying processes
generating orientational and direction selectivities; it is a
sheer mathematical fact. In reality, when elongated bars
were used, higher-order ��3� harmonics were consistently
observed;2,3,26,31 this had presented a considerable prob-
lem for one-to-one correspondence between a functional
component (e.g., DIR or ORI) and a Fourier component
(i.e., first or second harmonics). In fact, the presence of
nonvanishing higher-order Fourier harmonics even led
Wörgötter and Eysel (Ref. 37, p. 655) to postulate an in-
dependent quadruple-lobed tuning mechanism (in addi-
tion to direction and orientation tuning); but even so, it
leaves the third-, fifth-, and other higher-order Fourier
components unexplained (and unexplainable).38

Li et al.,31 in an effort to account for those higher har-
monics, proposed that the sum of all odd harmonics cor-
responds to DIR and the sum of all even harmonics corre-
sponds to ORI. This proposal is equivalent to assuming
that the direction tuning DIR��� takes on the antisym-
metric form of G���, that is, cells are tuned excitatory in
their preferred direction but tuned inhibitory in the
opposite/null direction while maintaining an elevated
level of spike rate for all other directions between: G��
+180° �=−G���. It is unrealistic to assume DIR���=G���
from the observed directional selectivity of V1 cells (see,
e.g., Ref. 30). To avoid this undesirable property, our rem-
edy here is to provide an additional term for DIR���,
namely, that of �G����, so that DIR��� contains only the
positive lobe with the positive peak. As a result, all odd
harmonics of DIR��� come from G��� and all even harmon-
ics come from �G����. This is a specific, but nonparametric
assumption we made about the distribution of even har-
monics (and hence about the tuning curve) of DIR; in all
other aspects, we follow the analysis of Zhang (Ref. 26) in
treating the higher ��1�-order harmonics. We hope our
current method provides a reasonable middle ground in
both standing on sound logic with correct mathematics
and still being simple and feasible in practical implemen-
tation.

To conclude, we have provided a feasible method to ap-
propriately decompose the direction and orientation com-
ponents in a neuron’s response to moving oriented
stimuli. Application of this method to a population of V1
neurons demonstrated that the SDO method significantly
underestimates the strength of the orientation component
while leaving the estimate of the orientation peak angle
largely unaffected. Therefore, any previous conclusions
regarding the strength of orientation tuning derived from

Fig. 5. Comparison of the distributions of peak angles before (as
abscissa) and after (as ordinate) correction for DIR contamina-
tion of the second harmonic. Each square represents a cell. Gen-
erally speaking, there does not appear to be a systematic differ-
ence between the peak angles estimated by the SDO method
(before correction) and by our method (after correction).

Fig. 6. Distribution of the difference between the peak angles of
DIR and ORI components. The absolute value of difference in the
two peak angles, 
, for each cell, is calculated and segregated
into six categories, ranging from almost perpendicular �
=0� to
almost colinear �
=90° �, with a precision of ±15° on both sides.
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the SDO analysis may have to be reexamined after recti-
fying the methodological problem as highlighted here.39
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