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From a smooth, strictly convex function 8: Rn ! R, a parametric family
of divergence function D.®/

8 may be introduced:

D.®/
8 .x; y/ D

4
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³
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8.x/ C
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¡ 8
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´´

for x; y 2 int dom.8/ ½ Rn, and for ® 2 R, with D.§1/
8 de�ned through

taking the limit of ®. Each member is shown to induce an ®-independent
Riemannian metric, as well as a pair of dual ®-connections, which are
generally non�at, except for ® D §1. In the latter case, D.§1/

8 reduces to
the (nonparametric) Bregman divergence, which is representable using
8 and its convex conjugate 8¤ and becomes the canonical divergence
for dually �at spaces (Amari, 1982, 1985; Amari & Nagaoka, 2000). This
formulation based on convex analysis naturally extends the information-
geometric interpretation of divergence functions (Eguchi, 1983) to allow
the distinction between two different kinds of duality: referential dual-
ity (® $ ¡®) and representational duality (8 $ 8¤). When applied to
(not necessarily normalized) probability densities, the concept of conju-
gated representations of densities is introduced, so that §®-connections
de�ned on probability densities embody both referential and represen-
tational duality and are hence themselves bidual. When restricted to a
�nite-dimensional af�ne submanifold, the natural parameters of a cer-
tain representation of densities and the expectation parameters under
its conjugate representation form biorthogonal coordinates. The alpha
representation (indexed by ¯ now, ¯ 2 [¡1; 1]) is shown to be the only
measure-invariant representation. The resulting two-parameter family of
divergence functionals D.®;¯/, .®; ¯/ 2 [¡1; 1] £ [¡1; 1] induces identical
Fisher information but bidual alpha-connection pairs; it reduces in form
to Amari’s alpha-divergence family when ® D §1 or when ¯ D 1, but to
the family of Jensen difference (Rao, 1987) when ¯ D ¡1.
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1 Introduction

Divergence functions play an important role in many areas of neural com-
putation like learning, optimization, estimation, and inference. Roughly,
they measure the directed (asymmetric) difference of two probability den-
sity functions in the in�nite-dimensional functional space, or two points
in a �nite-dimensional vector space that de�nes parameters of a statistical
model. An example is the Kullback-Leibler (KL) divergence (cross-entropy)
between two probability densities p and q, here expressed in its extended
form (i.e., without requiring p; q to be normalized),

K.p; q/ D
Z ³

q ¡ p ¡ p log
q
p

´
d¹ D K¤.q; p/; (1.1)

which reaches the unique, global minimum value of zero on the diagonal of
the product manifold (i.e., p D q). Many learning algorithms and/or proof
for their convergence rely on properties of the KL divergence; the common
ones are Boltzmann machine (Ackley, Hinton, & Sejnowski, 1985; Amari,
1991; Amari, Kurata, & Nagaoka 1992), the em algorithm and its compari-
son with EM algorithm (Amari, 1995), and the wake-sleep algorithm of the
Helmholtz machine (Ikeda, Amari, & Nakahara, 1999).

Another class of divergence functions widely used in optimization and
convex programming literature is the so-called Bregman divergence (see
below). It plays an essential role in unifying the class of projection and al-
ternating minimization algorithms (Lafferty, Della Pietra, & Della Pietra,
1997; Della Pietra, Della Pietra, & Lafferty, 2002; Bauschke & Combettes,
2002; Bauschke, Borwein, & Combettes, 2002). Parametric families of Breg-
man divergence were used in blind source separation (Mihoko & Eguchi,
2002) and for boosting machines (Lebanon & Lafferty, 2002; Eguchi, 2002).

Divergence function or functional1 is an essential subject in information
geometry, the differential geometric study of the manifold of (parametric or
nonparametric) probability distributions (Amari, 1982, 1985; Eguchi, 1983,
1992; Amari & Nagaoka, 2000). As �rst demonstrated by Eguchi (1983),
a well-de�ned divergence function (also called a contrast function) with
vanishing �rst order (in the vicinity of p D q) term will induce a Rieman-
nian metric g by its second-order properties and a pair of dual (also called
conjugate) connections .0; 0¤/ by its third-order properties, where the dual
connections jointly preserve the metric under parallel transport. A manifold

1 Strictly speaking, when the underlying space is a �nite-dimensional vector space, for
example, that of parameters for a statistical or neuralnetwork model, then the term function
is appropriate. However, if the underlying space is an in�nite-dimensional function space,
for example, that of nonparametric probability densities, then the term functional ought
to be used. The latter implicitly de�nes a divergence function (through pullback) if the
probability densities are embedded into a �nite-dimensional space as a statistical model.
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endowed with fg; 0; 0¤g is known as a statistical manifold; conditions for
its af�ne realization through its embedding into a higher-dimension space
have been clari�ed (Kurose, 1994; Matsuzoe, 1998, 1999; Uohashi, Ohara, &
Fujii, 2000).

1.1 Alpha-, Bregman, and Csiszar’s f-Divergence and Their relations.
Amari (1982, 1985) introduced and investigated an important parametric
family of divergence functionals, called ®-divergence2

A.®/.p; q/ D
4

1 ¡ ®2

Z ³
1 ¡ ®

2
pC

1 C ®

2
q ¡ p

1¡®
2 q

1C®
2

´
d¹; ® 2 R: (1.2)

The ®-divergence, which specializes to K.p; q/ for ® D ¡1 and K¤.p; q/ for
® D 1 (by taking the limit of ®), induces on the statistical manifold the
family of ®-connections (Chentsov, 1982; Amari, 1982). The duality between
® $ ¡® is re�ected in that §®-connections form a pair of dual connections
that jointly preserve the metric and that an ®-connection is �at if and only
.¡®/-connection is �at (Amari, 1985; Lauritzen, 1987). As a special case, the
exponential family (® D 1) and the mixture family (® D ¡1) of densities
generate dually �at statistical manifolds.

Alpha divergence is a special case of the measure-invariant f -divergence
introduced by Csiszár (1967), which is associated with any convex function
fc: RC ! RC satisfying fc.1/ D 0; f 0

c.1/ D 0:

Ffc .p; q/ D
Z

p fc

³
q
p

´
d¹; (1.3)

where RC ´ RC [ f0g. This can be seen by fc taking the following family of
convex functions3 indexed by a parameter ®,

f .®/.t/ D
4

1 ¡ ®2

³
1 ¡ ®

2
C

1 C ®

2
t ¡ t

1C®
2

´
; ® 2 R: (1.4)

2 This form of ®-divergence �rst appeared in Zhu and Rohwer (1995, 1997), where
it was called the ±-divergence, ± D .1 ¡ ®/=2. The term 1¡®

2 p C 1C®
2 q in equation 1.2

after integration, is simply 1 for normalized densities; this was how Amari (1982, 1985)
introduced ®-connection as a speci�c family of Csiszár’s f -divergence. See note 3.

3 Note that this form differs slightly with the function given in Amari (1985) and
Amari and Nagaoka (2000) by the additional term 1¡®

2 C 1C®
2 t. This term is needed for

the form of ®-divergence expressed in equation 1.2, which is “extended” from the original
de�nition given in Amari (1982, 1985) to allow denormalized densities, in much the same
way that extended Kullback-Leibler divergence (see equation 1.1) differs from its original
form (without the p ¡ q or q ¡ p term). This additional term in f .®/ allows the condition
f .®/.1/ D 0 to be satis�ed. It also provides a uni�ed treatment for the ® D §1 case, since
lim®!1 f .®/.t/ D 1 ¡ t C t log t; lim®!¡1 f .®/.t/ D t ¡ 1 ¡ log t.
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Eguchi (1983) showed that any f -divergence induced a statistical manifold
with a metric proportional to Fisher information with the constant of pro-
portionality f 00

c .1/ and an equivalent ®-connection,

® D 3 C 2 f 000
c .1/=f 00

c .1/: (1.5)

We note in passing that for a general, smooth, and strictly convex function
f : R ! R, we can always induce a measure-invariant divergence by using
fc.t/ D g.t/ in equation 1.3, where

g.t/ ´ f .t/ ¡ f .1/ ¡ f 0.1/.t ¡ 1/: (1.6)

That the right-hand side of the above is nonnegative can be easily proved
by showing that t D 1 is a global minimum with g.1/ D g0.1/ D 0.

Another kind of divergence function, called Bregman divergence, is de-
�ned for any two points x D [x1; : : : ; xn], y D [y1; : : : ; yn] in an n-dimension-
al vector space Rn (Bregman, 1967). It is induced by a smooth and strictly
convex function 8: Rn ! R:

B8.x; y/ D 8.y/ ¡ 8.x/ ¡ hy ¡ x; r8.x/i; (1.7)

where r is the gradient (or, more strictly, subdifferential @8 if differen-
tiability condition is removed) operator and h¢; ¢i denotes the standard in-
ner product of two vectors. It is also called (actually proportional to) geo-
metric divergence (Kurose, 1994), proposed in the context of af�ne realiza-
tion of a statistical manifold. Bregman divergence B8.x; y/ specializes to
the KL divergence upon setting 8.x/ D

P
i exi

, introducing new variables
xi D log pi; yi D log qi, and changing

R
d¹ into

P
i. More generally, as ob-

served by Eguchi (2002), Csiszár ’s f -divergence (see equation 1.3) is natu-
rally related (but not identical) to Bregman divergence (see equation 1.7),
having taken 8.x/ D

P
i f .xi/ with yi D qi=pi and xi D 1. In this case (with

a slight abuse of notation),

F f .p; q/ D
X

i
pi Bf

³
qi

pi ; 1
´

:

It is now known (Kass & Vos, 1997) that Bregman divergence is essentially
the canonical divergence (Amari & Nagaoka, 2000) on a dually �at manifold
equipped with a pair of biorthogonal coordinates induced from a pair of
“potential functions” under the Legendre transform (Amari, 1982, 1985). It is
a distance-like measure on a �nite-dimensional Riemannian manifold that is
essentially �at and is very different from the ®-divergence (see equation 1.2)
that is de�ned over the space of positively valued, in�nite-dimensional
functions on sample space (i.e., positive measures) and is generally non-
�at. However, if the positive measures p and q can be af�nely embedded
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into some �nite-dimensional submanifold, the Legendre potentials for ®-
divergence could exist. Technically, this corresponds to the so-called ®-af�ne
manifold, where the embedded ®-representation of the densities (® 2 R),

l.®/.p/ D
»

log p ® D 1
2

1¡®
p.1¡®/=2 else,

(1.8)

can be expressed as a linear combination of a countable set of basis functions
of the in�nite-dimensional functional space (the de�nition of ®-af�nity). If
and only if such embedding is possible for a certain value of ®, a potential
function (and its dual) can be found so that equation 1.2 becomes 1.7. In
general, Bregman divergence and ®-divergence are very different in terms
of both the dimensionality and the �atness of the underlying manifold that
they are de�ned on, though both may induce dual connections.

Given the fundamental importance of ®-connections in information ge-
ometry, it is natural to ask whether the parameter ® may arise other than
from the context of ®-embedding of density functions. How is the ® $ ¡®

duality related to the pair of biorthogonal coordinates and the canonical
divergence they de�ne? Does there exist an even more general expression
of divergence functions that would include the ®-divergence, the Bregman
divergence, and the f -divergence as special cases yet would still induce the
dual §®-connections? The existence of a divergence function on a statistical
manifold given the Riemannian metric and a pair of dual, torsion-free con-
nections was answered positively by Matumoto (1993). Here, the interest is
to �nd explicit forms for such general divergence functions, in particular,
measure-invariant ones.

The goal of this article is to introduce a unifying perspective for the ®-,
Bregman, and Csiszar ’s f -divergence as arising from certain fundamental
convex inequalities and to clarify two different senses of duality embodied
by divergence function and functionals and the statistical manifolds they
de�ne: referential duality and representational duality.

Starting from the de�nition of a smooth, strictly convex function 8: Rn !
R, a parametric family of divergence D.®/

8 .x; y/, ® 2 R; over points x; y 2
S D int dom.8/ can be introduced that will be shown to induce a single
Riemannian metric with a parametric family of af�ne connections indexed
by ®, the convex mixture parameter. These ®-connections are non�at unless
® D §1, when D.§1/

8 turns out to be the Bregman divergence, which can be
cast into the canonical form using a pair of convex conjugate functions 8

and 8¤ (Amari’s potential functions) that obey Legendre-Fenchel duality.
The biorthogonal coordinates x and u, originally introduced for a dually
�at manifold, can now be extended to de�ne the divergence function on
any non�at manifold (® 6D §1) as well. A distinction is drawn between
two kinds of duality (“biduality”) of statistical manifolds, in the sense of
mutual references x $ y, as re�ected by ® $ ¡® duality, and in the sense
of conjugate representations u D r8.x/ $ x D .r8¤/.u/ D .r8/¡1.u/,
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as re�ected by 8 $ 8¤ duality. In the in�nite-dimensional case, represen-
tational duality is achieved through conjugate representations of any (not
necessarily normalized) density function; here, conjugacy is with respect
to a strictly convex function de�ned on the real line f : R ! R. Our no-
tion of conjugate representations of density functions, which generalizes
the notion of alpha representation (see equation 1.8), proves to be useful
in characterizing the af�ne embedding of a density function into a �nite-
dimensional submanifold; the natural and expectation parameters become
the pair of biorthogonal coordinates, and this case completely reduces to
the one discussed earlier.

Of particular practical importance is that our analysis provides a two-
parameter family of measure-invariant divergence function(al) D.®;¯/.p; q/

under the alpha representation l.¯/.p/ of densities (indexed by ¯ now, ¯ 2
[¡1; 1], with ® reserved to index convex mixture), which induce identi-
cal Fisher information metric and a family of alpha connections where
the product ®¯ serves as the “alpha” parameter. The two indices them-
selves, .®; ¯/ 2 [¡1; 1] £ [¡1; 1], precisely express referential duality and
representational duality, respectively. Interestingly, at the level of diver-
gence functional, D.®;¯/ turns out to be the family of alpha divergence for
® D §1 or for ¯ D 1, and the family of “Jensen difference” (Rao, 1987)
for ¯ D ¡1. Thus, Kullback-Leibler divergence, the one-parameter family
of ®-divergence and of Jensen difference, and the two-parameter family
of .®; ¯/-divergence form nested families of measure-invariant divergence
function(al) associated with the same statistical manifold studied in classical
information geometry.

2 Divergence on Finite-Dimensional Parameter Space

In this section, we consider the �nite-dimensional vector space Rn, or a con-
vex subset thereof, that de�nes the parameter of a probabilistic (e.g., neural
network) model. The goal is to introduce, with the help of an arbitrary
strictly convex function 8: Rn ! R, a family of asymmetric, nonnegative
measures between two points in such space, called divergence functions (see
proposition 1) and, through which to induce a well-de�ned statistical man-
ifold with a Riemannian metric and a pair of dual connections (see propo-
sition 2). The procedure used for linking a divergence function(al) to the
underlying statistical manifold is due to Eguchi (1983); our notion of refer-
ential duality is re�ected in the construction of dual connections. The notion
of representational duality is introduced through equation 2.15 and proposi-
tion 5, based on the convex conjugacy operation (see remark 2.3.1). Biduality
is thus shown to be the fundamental property of a statistical manifold in-
duced by the family of divergence functions based on a convex function 8.

2.1 Convexity and Divergence Functions. Consider the n-dimensional
vector space (e.g., the parameter space in the case of parametric probability
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density functions or neural network models). A set S µ Rn is called convex
if for any two points x D [x1; : : : ; xn] 2 S, y D [y1; : : : ; yn] 2 S and any real
number ® 2 [¡1; 1], the convex mixture

1 ¡ ®

2
x C

1 C ®

2
y 2 S;

that is, the line segment connecting any two points x and y, belongs to the set
S. A strictly convex function of several variables 8.x/ is a function de�ned
on a nonempty convex set S D int dom.8/ µ Rn such that for any two
points x 2 S, y 2 S and any real number ® 2 .¡1; 1/, the following,

8

³
1 ¡ ®

2
x C

1 C ®

2
y
´

·
1 ¡ ®

2
8.x/ C

1 C ®

2
8.y/; (2.1)

is valid, with equality holding only when x D y. Equation 2.1 will sometimes
be referred to as the fundamental convex inequality below. Intuitively, the
difference between the left-hand side and the right-hand side of (equation
2.1) depends on some kind of proximity between the two points x and y
in question, as well as on the degree of convexity (loosely speaking) of the
function 8. For convenience, 8 is assumed to be differentiable up to third
order, though this condition can be slightly relaxed to the class of so-called
essentially smooth and essentially strictly convex functions or the convex
function of the Legendre type (Rockafellar, 1970) without affecting much of
the subsequent analysis. Note that for ® D §1, the equality in equation 2.1
holds uniformly for all x; y; for ® 6D §1, the equality will not hold uniformly
unless 8.x/ is the linear function ha; xi C b with a a constant vector and b a
scalar.

Proposition 1. For any smooth, strictly convex function 8: Rn ! R; x 7!
8.x/ and ® 2 R, the function

D.®/
8 .x; y/ D

4
1 ¡ ®2

³
1 ¡ ®

2
8.x/ C

1 C ®

2
8.y/

¡8

³
1 ¡ ®

2
x C 1 C ®

2
y
´´

(2.2)

with

D.§1/
8 .x; y/ D lim

®!§1
D.®/

8 .x; y/ (2.3)

is a parametric family of nonnegative functions of x; y that equal zero if and only
if x D y. Here, the points x; y, and z D 1¡®

2 x C 1C®
2 y are all assumed to belong to

S D int dom.8/.
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Proof. Clearly, for any ® 2 .¡1; 1/, 1 ¡ ®2 > 0, so from equation 2.1, the
functions D.®/

8 .x; y/ ¸ 0 for all x; y 2 S, with equality holding if and only if
x D y. When ® > 1, we rewrite y D 2

®C1 z C ®¡1
®C1 x as a convex mixture of z

and x (i.e., 2
®C1 D 1¡®0

2 , ®¡1
®C1 D 1C®0

2 with ®0 2 .¡1; 1/). Strict convexity of 8

guarantees

2
® C 1

8.z/ C ® ¡ 1
® C 1

8.x/ ¸ 8.y/

or explicitly

2
1 C ®

³
1 ¡ ®

2
8.x/ C

1 C ®

2
8.y/ ¡ 8

³
1 ¡ ®

2
x C

1 C ®

2
y
´´

· 0:

This, along with 1 ¡ ®2 < 0, proves the nonnegativity of D.®/
8 .x; y/ ¸ 0 for

® > 1, with equality holding if and only if z D x, that is, x D y. The case of
® < ¡1 is similarly proved by applying equation 2.1 to the three points y; z,
and their convex mixture x D 2

1¡®
zC ¡1¡®

1¡®
x. Finally, continuity of D.®/

8 .x; y/

with respect to ® guarantees that the above claim is also valid in the case of
® D §1. ¦

Remark 2.1.1. These functions are asymmetric, D.®/
8 .x; y/ 6D D.®/

8 .y; x/ in
general, but satisfy the dual relation

D.®/
8 .x; y/ D D.¡®/

8 .y; x/: (2.4)

Therefore, D.®/
8 as parameterized by ® 2 R, for a �xed 8, properly form a

family of divergence functions (also known as deviations or contrast func-
tions) in the sense of Eguchi (1983, 1992), Amari (1982, 1985), Kaas & Vos
(1997), and Amari & Nagaoka (2000).

Example 2.1.2. Take the negative of the entropyfunction 8.x/ D
P

i xi log xi,
which is easily seen to be convex. Then equation 2.2 becomes

4
1 ¡ ®2

X

i

Á
1 ¡ ®

2
xi log

xi

1¡®
2 xi C 1C®

2 yi

C
1 C ®

2
yi log

yi

1¡®
2 xi C 1C®

2 yi

!
´ E.®/.x; y/; (2.5)

a family of divergence measure called Jensen difference (Rao, 1987), apart
from the 4

1¡®2 factor. The Kullback-Leibler divergence, equation 1.1, is re-
covered by letting ® ! §1 in E.®/.x; y/.



Divergence Function, Duality, and Convex Analysis 167

Example 2.1.3. Take 8.x/ D
P

i exi
while denoting pi D log xi; qi D log yi.

Then D.®/
8 .x; y/ becomes the ®-divergence A.®/.p; q/ in its discrete version.

2.2 Statistical Manifold Induced by D.®/
8 . The divergence function

D.®/
8 .x; y/ provides a quantitative measure of the asymmetric (directed) dis-

tance between a comparisonpointy as measured froma �xed reference point
x. Although this function is globally de�ned for x; y at large, information
geometry provides a standard technique, due to Eguchi (1983), to investi-
gate the differential geometric structure induced on S from any divergence
function, through taking limx!x0 ; y!x0 D.®/

8 .x; y/. The most important geo-
metric objects on a differential manifold are the Riemannian metric g and
the af�ne connection 0. The metric tensor �xes the inner product opera-
tion on the manifold, whereas the af�ne connection establishes the af�ne
correspondence among neighboring tangent spaces and de�nes covariant
differentiation.

Proposition 2. The statistical manifold fS; g; 0.®/; 0¤.®/g associated with D.®/
8

is given (in component forms) by

gij D 8ij (2.6)

and

0
.®/

ij;k D
1 ¡ ®

2
8ijk; 0

¤.®/

ij;k D
1 C ®

2
8ijk: (2.7)

Here, 8ij, 8ijk denote, respectively, second and third partial derivatives of 8.x/:

8ij D @28.x/

@xi@x j ; 8ijk D @38.x/

@xi@x j@xk
:

Proof. Assuming Fréchet differentiability of 8, we calculate the Taylor
expansion of D.®/

8 .x; y/ around the reference point x0 in the direction » for
the �rst variable (i.e., x D x0 C » ) and in the direction of ´ for the second
variable (i.e., y D x0 C ´), while renaming x0 as x for clarity:4

D.®/
8 .x C »; x C ´/ ’ 1

2

X

i;j

8ij .» i ¡ ´i/ .» j ¡ ´ j/

4 We try to follow the conventions of tensor algebra for upper and lower indices, but
do not invoke Einstein summation convention since many of the equalities are not in
coordinate-invariant or tensorial form.
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C
1
6

X

i;j;k

8ijk

³
3 ¡ ®

2
» i» j» k C

3 C ®

2
´i´ j´k

¡
3 C 3®

2
´i´ j» k ¡

3 ¡ 3®

2
» i» j´k

´
C o.» m´l/;

where higher orders in the expansion (i.e., mCl ¸ 4) have been collected into
o.¢/. Following Eguchi (1983), the metric tensor of the Riemannian geometry
induced by D.®/

8 is

gij.x/ D ¡ @2

@» i@´ j
D.®/

8 .x C »; x C ´/

­­­́
D»D0

; (2.8)

whereas the pair of dual af�ne connections 0 and 0¤ is

0ij;k.x/ D ¡ @3

@» i@» j@´k
D.®/

8 .x C »; x C ´/

­­­́
D»D0

; (2.9)

0¤
ij;k.x/ D ¡ @3

@´i@´ j@» k
D.®/

8 .x C »; x C ´/

­­­́
D»D0

: (2.10)

Carrying out differentiation yields equations 2.6 and 2.7. ¦

Remark 2.2.1. Clearly, the metric tensor gij, which is symmetric and pos-
itive semide�nite due to the strict convexity of 8, is actually independent
of ®, whereas the ®-dependent af�ne connections are torsion free (since
0

.®/

ij;k D 0
.®/

ji;k ) and satisfy the duality

0
¤.®/
ij;k D 0

.¡®/
ij;k ;

in accordance with equation 2.4, the duality in the selection of reference ver-
sus comparison point in D.®/

8 . Dual ®-connections in the form of equation 2.7
were formally introduced and investigated in Lauritzen (1987). Here, the
family of D.®/

8 -divergence is shown to induce these ®-connections. Clearly,
when ® D 0, the connection 0.0/ D 0¤.0/ ´ 0LC is the self-dual, metric
(Levi-Civita) connection, as through direct veri�cation it satis�es

0LC
ij;k D 1

2

³
@gik.x/

@x j
C

@gkj.x/

@xi
¡

@gij.x/

@xk

´
:

The Levi-Civita connection and other members in the ®-connection family
are related through

0LC
ij;k D

1
2

±
0

.®/

ij;k C 0
¤.®/

ij;k

²
:
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Note the covariant form of the af�ne connection, 0ij;k, is related to its con-
travariant form 0k

ij through gij:

X
gkl0

k
ij D 0ij;l

(actually, 0k
ij is the more primitivequantity since it does not involve the met-

ric). The curvature or �atness of a connection is described by the Riemann-
Christoffel curvature tensor,

Ri
j¹º.x/ D

@0i
ºj.x/

@x¹
¡

@0i
¹j.x/

@xº
C

X

k

0i
¹k.x/0k

ºj.x/ ¡
X

k

0i
ºk.x/0k

¹j.x/;

or equivalently by

Rij¹º D
X

l

gil Rl
j¹º :

It is antisymmetric when i $ j or when ¹ $ º and symmetric when
.i; j/ $ .¹; º/. Since the curvature R¤

ij¹º
of the dual connection 0¤ equals

Rij¹º (Lauritzen, 1987),

R.®/
ij¹º

D R.¡®/
ij¹º

D R¤.®/
ij¹º :

Proposition 3. The Riemann-Christoffel curvature tensor for the ®-connection
0

.®/
ij;k induced by D.®/

8 is

R.®/
ij¹º

D 1 ¡ ®2

4

X

l;k

.8ilº8jk¹ ¡ 8il¹8jkº/8lk; (2.11)

where 8ij D gij is the matrix inverse of 8ij.

Proof. First, from its de�nition, Rij¹º can be recast into

Rij¹º D
@0ºj;i

@x¹
¡

@0¹j;i

@xº
C

X

k

³
0k

ºj

³
0¹k;i¡

@gik

@x¹

´
¡0k

¹j

³
0ºk;i ¡

@gik

@xº

´́
: (2.12)

Substituting in the expression of ®-connections (equation 2.7), the �rst
two terms cancel and the terms under

P
k give rise to equation 2.11. ¦
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Remark 2.2.2. The metric (see equation 2.6), dual ®-connections (see equa-
tion 2.7), and the curvature (see equation 2.11) in such forms �rst appeared
in Amari (1985) where 8.x/ is the cumulant generating function of an expo-
nential family. Here, the statistical manifold

©
S; g; 0.®/; 0¤.®/

ª
is induced by

a divergence function via the Eguchi relation, and 8.x/ can be any (smooth
and strictly) convex function. The purpose of this proposition is to remind
readers that for any convex 8 in general, the curvature is determined by
both an ®-dependent factor 4

1¡®2 and a 8-related component, the latter de-
pending on 8ij plus its derivatives and inverse. This leads to the following
conformal property:

Corollary 1. If two smooth, strictly convex functions 8.x/ and O8.x/ are con-
formally related, that is, if there exists some positive function ¾.x/ > 0 such that
O8ij D ¾8ij, then the curvatures of their respective ®-connection satisfy

OR.®/
ij¹º

D ¾R.®/
ij¹º : (2.13)

Proof. Observe that

O8ilº D ¾8ilº C ¾i8lº ;

where ¾i denotes @¾=@xi. Permutating the index set .i; l; º/ to .i; l; ¹/, to
.j; k; ¹/, and to .j; k; º/ yield three other similar identities. Noting O8ij D
.¾ /¡18ij, direct substitution of these relations into the expression of R.®/

ij¹º
in

equation 2.11 yields equation 2.13. ¦

2.3 Dually Flat Statistical Manifold (® D §1). When ® D §1, all com-
ponents of the curvature tensor vanish, that is, R.§1/

ij¹º
D 0. In this case, there

exists a coordinate system under which either 0
¤.¡1/
ij;k D 0 or 0

.1/
ij;k D 0. This is

the well-studied dually �at statistical manifold (Amari, 1982, 1985; Amari
& Nagaoka, 2000), under which a pair of global biorthogonal coordinates,
related to each other through the Legendre transform with respect to 8,
can be found to cast the divergence function into its canonical form. The
Riemannian manifold with metric tensor given by equation 2.6, along with
the dually �at 0.1/ and 0¤.¡1/, is known as the Hessian manifold (Shima,
1978; Shima & Yagi, 1997).

Proposition 4. When ® ! §1, D.®/
8 reduces to the Bregman divergence (see

equation 1.7)

D.¡1/
8 .x; y/ D D.1/

8 .y; x/ D B8.x; y/;

D.1/
8 .x; y/ D D.¡1/

8 .y; x/ D B8.y; x/:
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Proof. Assuming that the Gâteaux derivative of 8,

lim
¸!0

8.x C ¸»/ ¡ 8.x/

¸
;

exists and equals h»; r8.x/i, where r is the gradient (subdifferential) oper-
ator and h¢; ¢i denotes the standard inner product. Similarly,

lim
¸!1

8.y C .1 ¡ ¸/´/ ¡ 8.y/

1 ¡ ¸
D h´; r8.y/i:

Taking » D y ¡ x, ´ D x ¡ y, and ¸ D 1§®
2 , and substituting these into

equation 2.3 immediately yields the results. ¦

Remark 2.3.1. Introducing the convexconjugate of8 through the Legendre-
Fenchel transform (see, e.g., Rockafellar, 1970),

8¤.u/ D hu; .r8/¡1.u/i ¡ 8..r8/¡1.u//; (2.14)

it can be shown that the function 8¤ is also convex (on a convex region
S0 3 u where u D r8.x/) and has 8 as its conjugate,

.8¤/¤ D 8:

Since r8 and r8¤ are inverse functions of each other, as veri�ed by dif-
ferentiating equation 2.14, it is convenient to denote this one-to-one corre-
spondence between x 2 S and u 2 S0 by

x D r8¤.u/ D .r8/¡1.u/; u D r8.x/ D .r8¤/¡1.x/: (2.15)

With these, it can be shown that the Bregman divergence D.§1/
8 is actually

the canonical divergence (Amari & Nagaoka, 2000) in disguise.

Corollary 2. The D.§1/
8 -divergence is the canonical divergence of a dually �at

statistical manifold:

D.1/
8 .x; .r8/¡1.v// D A8.x; v/ ´ 8.x/ C 8¤.v/ ¡ hx; vi;

D.¡1/
8 ..r8/¡1.u/; y/ D A8¤ .u; y/ ´ 8.y/ C 8¤.u/ ¡ hu; yi: (2.16)

Proof. Using the convex conjugate 8¤, we have

D.1/
8 .x; y/ D 8.x/ ¡ hx; r8.y/i C 8¤.r8.y//;

D.¡1/
8 .x; y/ D 8.y/ ¡ hy; r8.x/i C 8¤.r8.x//:
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Substituting u D r8.x/; v D r8.y/ yields equation 2.16. So D.1/
8 .x;

.r8/¡1.v//, when viewed as a function of x; v, is the canonical divergence.
So is D.¡1/

8 . ¦

Remark 2.3.2. The canonical divergence A8.x; v/ based on the Legendre-
Fenchel inequality is introduced by Amari (1982, 1985), where the functions
8; 8¤, the cumulant generating functions of an exponential family, were
referred to as dual potential functions. This form, equation 2.16, is “canon-
ical” because it is uniquely speci�ed in a dually �at space where the pair
of canonical coordinates (see equation 2.15) induced by the dual potential
functions is biorthogonal,

@ui

@xj
D gij.x/;

@xi

@uj
D Qgij.u/; (2.17)

where Qgij.u.x// D gij.x/ is the matrix inverse of gij.x/ given by equation 2.6.

Remark 2.3.3. We point out that there are two kinds of duality associated
with the divergence (directed distance) de�ned on a dually �at statistical
manifold: one between D.¡1/

8 $ D.1/
8 and D.¡1/

8¤ $ D.1/
8¤ , the other between

D.¡1/
8 $ D.¡1/

8¤ and D.1/
8 $ D.1/

8¤ . The �rst kind is related to the duality in
the choice of the reference and the comparison status for the two points (x
versus y) for computing the value of the divergence, and hence is called
referential duality. The second kind is related to the duality in the choice of
the representation of the point as a vector in the parameter versus gradient
space (x versus u) in the expression of the divergence function, and hence
is called representational duality. More concretely,

D.¡1/
8 .x; y/ D D.¡1/

8¤ .r8.y/; r8.x//

D D.1/
8¤ .r8.x/; r8.y// D D.1/

8 .y; x/:

The biduality is compactly re�ected in the canonical divergence as

A8.x; v/ D A8¤ .v; x/:

2.4 Biduality of Statistical Manifold for General ®. A natural question
to ask is whether biduality is a general property of the divergence D.®/

8 and
hence a property of any statistical manifold admitting a metric and a pair of
dual (but not necessarily �at) connections. Proposition 5 provides a positive
answer to this question after considering the geometry generated by the pair
of conjugate divergence functions, D.®/

8 and D.®/
8¤ , for each ® 2 R.
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Proposition 5. For the statistical manifold fS0; Qg; Q0.®/; Q0¤.®/g induced by
D.®/

8¤ .u; v/ de�ned on u; v 2 S0, denote the Riemannian metric as Qgmn.u/, the
pair of dual connections as Q0.®/mn;l.u/; Q0¤.®/mn;l.u/, and the Riemann-Christoffel
curvature tensor as QR.®/klmn.u/. They are related to those (in lower scripts and
without the tilde) induced by D.®/

8 .x; y/ via

X

l

gil.x/ Qgln.u/ D ±n
i ;

and

Q0.®/mn;l.u/ D ¡
X

i;j;k

Qgim.u/ Qg jn.u/ Qgkl.u/0
.®/
ij;k .x/;

Q0¤.®/mn;l.u/ D ¡
X

i;j;k

Qgim.u/ Qg jn.u/ Qgkl.u/0
.¡®/

ij;k .x/;

QR.®/klmn.u/ D
X

i;j;¹;º

Qgik.u/ Qg jl.u/ Qg¹m.u/ Qgºn.u/R.®/
ij¹º.x/

where the dual correspondence (see equation 2.15) is invoked.

Proof. Following the proof of proposition2 (i.e., using the Eguchi relation),
the metric and dual connections induced on S0 are simply

Qgmn D .8¤/mn

and

Q0.®/mn;l D 1 ¡ ®

2
.8¤/mnl; Q0¤.®/mn;l D 1 C ®

2
.8¤/mnl;

with the corresponding Riemann-Christoffel curvature of Q0.®/mn;l given as

QR.®/klmn D
1 ¡ ®2

4

X

½;¿

..8¤/k½n.8¤/l¿m ¡ .8¤/k½m.8¤/l¿n/.8¤/½¿ ;

where

.8¤/mn D @28¤.u/

@um@un
; .8¤/mnl D @38¤.u/

@um@un@ul
;

and .8¤/½¿ is the matrix inverse of .8¤/mn. That
P

l gil.x/ Qgln.u.x// D
P

l gil
.x.u// Qgln.u/ D ±n

i is due to equations 2.15 and 2.17. Differentiating this
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identity with respect to xk yields

X

m

@gim.x/

@xk
Qgmn.u/ D ¡

X

m
gim.x/

@ Qgmn.u/

@xk

D ¡
X

m
gim.x/

Á
X

l

@.8¤/mn.u/

@ul

@ul

@xk

!

or

X

m
8imk.x/ Qgmn.u/ D ¡

X

m;l

gim.x/ gkl.x/ .8¤/mnl.u/;

which immediately gives rise to the desired relations between the ®-
connections. Simple substitution yields the relation between QR.®/klmn and
R.®/

ij¹º
. ¦

Remark 2.4.1. The biorthogonal coordinates x and u were originally de-
�ned on the manifold S and its dual S0, respectively. Because of the bijectivity
of the mapping between x and u, we may identify points in S with points in
S0 and simply view x $ u as coordinate transformations on the same under-
lying manifold. The relations between the metric g, dual connections 0.§®/,
or the curvature R.®/ written in superscripts with tilde and those written
in subscripts without tilde are merely expressions of the same geometric
entities using different coordinate systems. The dualistic geometric struc-
ture 0.®/ $ 0¤.®/ under g, which re�ects referential duality, is preserved
under the mapping x $ u, which re�ects representational duality. When
the manifold is dually �at (® D §1), x and u enjoy the additional property
of being geodesic coordinates.

Remark 2.4.2. Matumoto (1993) proved that a divergence function always
exists for a statistical manifold equipped with an arbitrary metric tensor
and a pair of dual connections. Given a convex function 8, along with
its unique conjugate 8¤, are there other families of divergence functions
D.®/

8 .x; y/ and D.®/
8¤ .u; v/ that induce the same bidualistic statistical mani-

folds fS; g; 0.®/; 0¤.®/g? The answer is positive. Consider the family of di-
vergence functions,

D.®/
8 .x; y/ D 1 ¡ ®

2
D.¡1/

8 .x; y/ C 1 C ®

2
D.1/

8 .x; y/;

and their conjugate (replacing 8 with 8¤). Recall from proposition 2 that
the metric tensor induced by D.¡1/

8 .x; y/ and D.1/
8 .x; y/ is the same gij, while

the induced connections satisfy 0
.¡1/

ij;k D 0
¤.1/

ij;k D 8ijk; 0
.1/

ij;k D 0
¤.¡1/

ij;k D 0.
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Since the Eguchi relations, equations 2.8 to 2.10, are linear with respect to
inducing functions, the family of divergence functions D.®/

8 .x; y/, as convex
mixture of D.¡1/

8 .x; y/ and D.1/
8 .x; y/, will necessarily induce the metric

1 ¡ ®

2
gij C

1 C ®

2
gij D gij;

and dual connections

1 ¡ ®

2
0

.¡1/
ij;k C 1 C ®

2
0

.1/
ij;k D 0

.®/
ij;k ;

1 ¡ ®

2
0

¤.¡1/

ij;k C
1 C ®

2
0

¤.1/

ij;k D 0
¤.®/

ij;k :

Similar arguments apply to D.®/
8¤ .u; v/. This is, D.®/

8 .x; y/ and D.®/
8¤ .u; v/ form

another pair of families of divergence functions that induce the same statis-
tical manifold fS; g; 0.®/; 0¤.®/g. The two pairs, .D.®/

8 .x; y/; D.®/
8¤ .u; v// pair,

and .D.®/
8 .x; y/; D.®/

8¤ .u; v// pair, agree on ® D §1, the dually �at case when
there is a single form of canonical divergence. They differ for any other val-
ues of ®, including the self-dual element (® D 0). The two pairs .D.®/

8 ; D.®/
8¤ /

versus .D.®/
8 ; D.®/

8¤ / coincide with each other up to the third order when Tay-
lor expanding .1 § ®/.y ¡ x/. That is why they induce an identical statistical
manifold. They differ on the fourth-order terms in their expansions.

3 Divergence on Probability and Positive Measures

The previous sections have discussed divergence functions de�ned be-
tween points in Rn or in its dual space, or both. In particular, they apply
to probability measures of �nite support, or the �nite-dimensional param-
eter space, which de�nes parametric probability models. Traditionally, di-
vergence functionals are also de�ned with respect to in�nite-dimensional
probability densities (or positive measures in general if normalization con-
straint is removed). To the extent that a probability density function can be
embedded into a �nite-dimensional parameter space, a divergence measure
on density functions will implicitly induce a divergence on the parameter
space (technically, via pullback). In fact, this is the original setup in Amari
(1985), where each ®-divergence (® 2 R) is seen as the canonical divergence
arising from the ®-embedding of the probability density function into an
af�ne submanifold (the condition of ®-af�nity). The approach outlined be-
low avoids such a �atness assumption while still achieving conjugate rep-
resentations (embeddings) of probability densities, and therefore extends
the notion of biduality to the in�nite-dimensional case. It will be proved
(in proposition 9) that if the embedding manifold is �at, then the induced
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®-connections reduce to the ones introduced in the previous section, with
the natural and expectation parameters arising out of these conjugate rep-
resentations forming biorthogonal coordinates just like the ones induced by
dual potential functions in the �nite-dimensional case.

To followthe proceduresofsection 2.1 and construct divergence function-
als, a smoothand strictlyconvex function de�ned on the real line f : R ! R is
introduced. Recall that any such f can be written as an integral of a strictly
monotone-increasing function g and vice versa: f .° / D

R °

c g.t/dt C f .c/,
with g0.t/ > 0. The convex conjugate f ¤: R ! R is given by f ¤.±/ DR ±

g.c/ g¡1.t/dt C f ¤.g.c//, with g¡1 also strictly monotonic and °; ± 2 R.
Here, the monotonicity condition replaces the requirement of a positive
semide�nite Hessian in the case of a convex function of several variables.
The Legendre-Fenchel inequality f .° / C f ¤.±/ ¸ ° ± can be rewritten as
Young’s inequality,

Z °

c
g.t/ dt C

Z ±

g.c/
g¡1.t/ dt C cg.c/ ¸ ° ±;

with equality holding if and only if ± D g.° /. The use of a pair of strictly
monotonic functions f 0 D g and . f ¤/0 D g¡1, which we call ½- and ¿ -
representations below, provides a means to de�ne conjugate embeddings
(representations) of density functions and therefore a method to extend the
analysis in the previous sections to the in�nite-dimensional manifold of
positive measures (after integrating over the sample space).

3.1 Divergence Functional Based on Convex Function on the Real Line.
Recall that the fundamental inequality (see equation 2.1) of a strictly convex
function 8, now for f : R ! R, can be used to de�ne a nonnegative quantity
(for any ® 2 R),

4
1 ¡ ®2

³
1 ¡ ®

2
f .° / C 1 C ®

2
f .±/ ¡ f

³
1 ¡ ®

2
° C 1 C ®

2
±

´´
:

Note that here, ° and ± are numbers instead of �nite-dimensional vectors.
In particular, they can be the values of two probability density functions
° D p.³ / and ± D q.³ / where ³ 2 X is a point in the sample space X . The
nonnegativity of the above expression for each value of ³ allows us to de�ne
a global divergence measure, called a divergence functional, over the space
of a (denormalized) probability density function after integrating over the
sample space (with appropriate measure ¹.d³ / D d¹),

d.®/

f .p; q/ D
Z

d.®/

f .p.³ /; q.³ // d¹

D 4
1 ¡ ®2

»
1 ¡ ®

2

³Z
f .p/ d¹

´
C 1 C ®

2

³Z
f .q/ d¹

´

¡
Z

f
³

1 ¡ ®

2
p C

1 C ®

2
q
´

d¹

¼
;
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with

d.¡1/

f .p; q/ D d.1/

f .q; p/ D
Z

. f .q/ ¡ f .p/ ¡ .q ¡ p/ f 0.p// d¹ (3.1)

D
Z

. f .q/ C f ¤. f 0.p// ¡ qf 0.p//d¹ ´ Af .q; f 0.p// (3.2)

where f ¤: R ! R, de�ned by

f ¤.t/ D t . f 0/¡1.t/ ¡ f .. f 0/¡1.t//;

is the convex conjugate to f , with . f ¤/¤ D f and . f ¤/0 D . f 0/¡1.
In this way, d.®/

f .p; q/ over the in�nite-dimensional functional space is de-

�ned in much the same way as D.®/
8 .x; y/ de�ned on the �nite-dimensional

vector space. The integration
R

f .p/d¹ D
R

f .p.³ //d¹, which is a nonlinear
functional of p, assumes the role of 8 of the �nite-dimensional case dis-
cussed in section 2; this is most transparent if we consider, for the latter,
the special class of “separable” convex functions 8.x/ D

Pn
iD1 f .xi/; x 2 Rn

such that r8.x/ is simply [ f 0.x1/; : : : ; f 0.xn/]. With
P

i $
R

d¹, the expres-
sions of the divergence function and the divergence functional look similar.
However, one should not conclude that divergence functions are special
cases of divergence functionals or vice versa. There is a subtle but impor-
tant difference: in the former, the inducing function 8.x/ is strictly convex
in x; in the latter, f .p/ is strictly convex in p, but its pullback on X , f .p.³ //

is not assumed to be convex at all. So even when the sample space may be
�nite, . f ± p/.³ / is generally not a convex function of ³ .

Example 3.1.1. Take f .t/ D t log t ¡ t .t > 0/, with conjugate function
f ¤.u/ D eu. The divergence

Af .p; u/ D
Z ¡

.p log p ¡ p/ C eu ¡ p u
¢

d¹

D
Z ±

p log
p
eu

¡ p C eu
²

d¹

is the Kullback-Leibler divergence K.p; eu/ between p.³ / and q.³ / D eu.³ /.

Example 3.1.2. Take f .t/ D tr
r .t > 0/ with the conjugate function f ¤.t/ D

tr0

r0 , where the pair of conjugated real exponents r > 1; r0 > 1 satis�es

1
r

C
1
r0 D 1:
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The divergence Af is a nonnegative expression based on Hölder’s inequality
for two functions u.³ /; v.³ /,

Af .u; v/ D
Z Á

ur

r
C vr0

r0 ¡ u v

!
d¹ ¸ 0;

with equality holding if and only if ur.³ / D vr0
.³ / for all ³ 2 X . Denote

r D 2
1¡®

and r0 D 2
1C®

, with ® 2 .¡1; 1/. The above divergence is just

A®.p; q/ between p.³ / D .u.³ //
2

1¡® and q.³ / D .v.³ //
2

1C® , apart from a factor
4

1¡®2 .

3.2 Conjugate Representations and Induced Statistical Manifold. We
introduce the notion of ½-representation of a (not necessarily normalized)
probability density by de�ning a mapping ½: RC ! R; p 7! ½.p/ where ½

is a strictly monotone increasing function. This is a generalization of the ®-
representation (Amari, 1985; Amari & Nagaoka, 2000) where ½.p/ D l.®/.p/,
as given by equation 1.8. For a smooth and strictly convex function f : R !
R, the ¿ -representation of the density function p 7! ¿ .p/ is said to be conju-
gate to the ½-representation with respect to f if

¿ .p/ D f 0.½.p// D .. f ¤/0/¡1.½.p// Ã!
½.p/ D . f 0/¡1.¿ .p// D . f ¤/0.¿ .p//: (3.3)

Just like the construction in section 3.1 of divergence functionals for
two densities p; q, one may construct divergence functionals for two den-
sities under ½-representations D.®/

f;½ .p; q/ ´ d.®/

f .½.p/; ½.q// or under ¿ -

representations D.®/

f ¤;¿
.p; q/ ´ d.®/

f ¤ .¿ .p/; ¿.q//.

Proposition 6. For ® 2 R, D.®/

f;½ .p; q/, D.®/

f;¿ .p; q/, D.®/

f ¤;½
.p; q/, and D.®/

f ¤;¿
.p; q/,

each forms a one-parameter family of divergence functionals, with the .§1/-diver-
gence functional,

D.1/

f;½ .p; q/ D D.¡1/

f;½ .q; p/ D D.1/

f ¤;¿
.q; p/ D D.¡1/

f ¤;¿
.p; q/

D Af .½.p/; ¿ .q//;

D.1/

f ¤;½
.p; q/ D D.¡1/

f ¤;½
.q; p/ D D.1/

f;¿ .q; p/ D D.¡1/

f;¿ .p; q/

D Af ¤ .½.p/; ¿ .q// ;

taking the following canonical form,

Af .½.p/; ¿.q// ´
Z ¡

f .½.p// C f ¤.¿ .q// ¡ ½.p/ ¿ .q/
¢

d¹

D Af ¤ .¿ .q/; ½.p// : (3.4)
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Proof. The proof for nonnegativity of these functionals for all ® 2 R fol-
lows that in proposition2. Taking lim®!§1 D.®/

f;½ .p; q/ and noting equation 3.3
immediately leads to the expressions of .§1/-divergence functional. ¦

Example 3.2.1. Amari’s ®-embedding where ½.p/ D l.®/.p/; ¿.p/ D l.¡®/.p/

corresponds to (assuming ® 6D §1)

f .t/ D
2

1 C ®

³
1 ¡ ®

2
t
´ 2

1¡®

; f ¤.t/ D
2

1 ¡ ®

³
1 C ®

2
t
´ 2

1C®

:

Writing out Af .½.p/; ¿ .q// explicitly yields the ®-divergence in the form of
equation 1.2. For ® D §1, see example 3.1.1.

Now we restrict attention to a �nite-dimensional submanifold of prob-
ability densities whose ½-representations are parameterized using µ D [µ 1;

: : : ; µn] 2 Mµ . Under such a statistical model, the divergence functional of
any two densities p and q, assumed to be speci�ed by µp and µq, respectively,
becomes an implicit function of µp; µq 2 Rn. In other words, through in-
troducing parametric models (i.e., a �nite-dimensional submanifold) of the
in�nite-dimensional manifold of probability densities, we again arrive at
divergence functions over the vector space. We denote the ½-representation
of a parameterized probability density as ½.p.³ I µ//, or sometimes simply
½.µp/, while suppressing the sample space variable ³ , and denote the corre-
sponding divergence function by

D.®/
f;½ .µp; µq/ D 4

1 ¡ ®2 E¹

»
1 ¡ ®

2
f .½.µp// C 1 C ®

2
f .½.µq//

¡ f
³

1 ¡ ®

2
½.µp/ C 1 C ®

2
½.µq/

´¼
; (3.5)

where E¹f¢g denotes
R

f¢g d¹. We will also use Epf¢g to denote
R

f¢g p d¹ later.
Similarly, the parametrically embedded probability density under ¿ -
representation is denoted ¿ .p.³ I µ // or simply ¿ .µp/.

Proposition 7. The family of divergence functions D.®/
f;½ .µp; µq/ induces a dually

af�ne Riemannian manifold fMµ ; g; 0.®/; 0¤.®/g for each ® 2 R, with the metric
tensor

gij.µ/ D E¹

»
f 00.½.µ//

@½

@µ i

@½

@µ j

¼
(3.6)

and the dual af�ne connections

0
.®/

ij;k .µ/ D E¹

»
1 ¡ ®

2
f 000.½/ Aijk C f 00.½/ Bijk

¼
; (3.7)
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0
¤.®/

ij;k .µ/ D E¹

»
1 C ®

2
f 000.½/ Aijk C f 00.½/ Bijk

¼
: (3.8)

Here, ½ and all its partial derivatives (with respect to µ ) are functions of µ and ³ ,
while Aijk, Bijk denote

Aijk.³ I µ / D @½

@µ i

@½

@µ j

@½

@µk
; Bijk.³ I µ / D @2½

@µ i@µ j

@½

@µk
:

Proof. We follow the same technique of section 2.2 to expand the value
of divergence measure D.®/

f;½ .µp; µq/ around µp D µ C »; µq D µ C ´ for small

»; ´ 2 Rn. Considering the order of expansion o.» m´l/ with nonnegative
integers m; l, the terms with m C l · 1 vanish uniformly. The terms with
m C l D 2 are

E¹

8
<

:
1
2

X

i;j

f 00.½/
@½

@µ i

@½

@µ j .» i ¡ ´i/ .» j ¡ ´ j/

9
=

; ;

which is ®-independent. The terms with m C l D 3 are (after lengthy calcu-
lation)

E¹

8
<

:
1
6

X

i;j;k

f 000.½/ Aijk

³
3 ¡ ®

2
» i» j» k C

3 C ®

2
´i´ j´k

¡
3 ¡ 3®

2
» i» j´k ¡

3 C 3®

2
´i´ j» k

´

C
1
2

X

i;j;k

f 00.½/ Bijk .» i» j ¡ ´i´ j/ .» k ¡ ´k/

9
=

; :

Applying Eguchi relations 2.8 to 2.10 and carrying out differentiation yields
the desired results. ¦

Remark 3.2.2. Strict convexity of f requires that f 00 > 0; thereby, the pos-
itive semide�niteness of gij is guaranteed. Clearly, the ®-connections form
dual pairs 0

¤.®/

ijk D 0
.¡®/

ijk . The induced statistical manifold will be shown
to demonstrate biduality just as in section 2. It is important to realize that
while f is strictly convex in p, f .p.µ// is not at all convex in µ . Therefore,
propositions 2 and 7 do not imply one another necessarily!

Example 3.2.3. For f .t/ D et, and ½.p/ D log p, that is, ¿ .p/ D p, the iden-
tity function, the above expressions reduce to the Fisher information and
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®-connections of the exponential family. When ½.p/ D l.¯/.p/ is the paramet-
ric alpha representation, then gij.µ / reduces to

R
.@½.¯/=@µ i/ .@½ .¡¯/=@µ j/d¹

as given in Amari (1985) and Amari and Nagaoka (2000). The formula for
®-connections, however, differs from theirs, since with ½ D l.¯/ parametri-
cally, we will get a two-parameter family of connections with ® and ¯ as
parameters. (See section 3.5.)

3.3 Biduality of Statistical Manifold

Proposition 8. Under conjugate ½- and ¿ -representations, the metric tensor in-
duced by D.®/

f;½ .µp; µq/ can be expressed as

gij.µ/ D E¹

»
@½

@µ i

@¿

@µ j

¼
D E¹

»
@¿

@µ i

@½

@µ j

¼
; (3.9)

while the induced dual connections are

0
.®/

ij;k .µ/ D E¹

»
1 ¡ ®

2
@2¿

@µ i@µ j

@½

@µk
C

1 C ®

2
@2½

@µ i@µ j

@¿

@µ k

¼
; (3.10)

0
¤.®/
ij;k .µ/ D E¹

»
1 C ®

2
@2¿

@µ i@µ j

@½

@µ k
C

1 ¡ ®

2
@2½

@µ i@µ j

@¿

@µk

¼
: (3.11)

Proof. First,

E¹

»
f 00.½/

@½

@µ i

@½

@µ j

¼
D E¹

»
@ f 0.½/

@µ i

@½

@µ j

¼
:

Realizing f 0.½.p// D ¿ .p/ proves equation 3.9. Second, differentiating the
above with respect to µk yields

E¹

»
f 000.½/

@½

@µ i

@½

@µ j

@½

@µk
C f 00.½/

@2½

@µ i@µk

@½

@µ j

¼
D E¹

»
@2 f 0.½/

@µ i@µk

@½

@µ j

¼
:

Rearranging,

E¹f f 000.½/Aijkg D Tikj; (3.12)

where

Tijk ´ E¹

»
@2¿

@µ i@µ j

@½

@µ k
¡ @2½

@µ i@µ j

@¿

@µk

¼

D E¹

»
¡

³
@2½

@µ i@µk

@¿

@µ j
¡ @2¿

@µ i@µk

@½

@µ j

´¼
D Tikj
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is a totally symmetric tensor. Substituting into the expression for 0
.®/

ij;k ,

0
.®/

ij;k D E¹

»
1 ¡ ®

2

³
@2 f 0.½/

@µ i@µ j

@½

@µk
¡ @2½

@µ i@ j

@ f 0.½/

@µk

´
C @2 f 0.½/

@µ i@µ j

@½

@µk

¼

D E¹

»
1 ¡ ®

2
@2 f 0.½/

@µ i@µ j

@½

@µ k
C

1 C ®

2
@2½

@µ i@µ j

@ f 0.½/

@µk

¼
:

This proves equation 3.10, the expression of 0
.®/

ij;k under conjugate ½- and

¿ -representations. The proof concerning 0
¤.®/

ij;k is similar. ¦

Remark 3.3.1. Amari’s alpha representation (index by ¯ here to avoid con-
fusion) corresponds to ½-representation (½.p/ D l.¯/.p/; ¿ .p/ D l.¡¯/.p/)
with ® D 1, or ¿ -representation (½.p/ D l.¡¯/.p/; ¿.p/ D l.¯/.p/) with ® D ¡1.
Note also that ® D 0 corresponds to the metric-compatible Levi-Civita con-
nection 0

.0/

ij;k and that

0
.®/
ij;k D 0

.0/
ij;k ¡ ®

2
Tijk

conforms to the formal de�nition of ®-connection (Lauritzen, 1987).

Corollary 3. The metric Qgij and the dual connections Q0.®/
ij;k ; Q0¤.®/

ij;k of the statistical

manifold induced by the conjugate divergence function D.®/
f ¤;¿

.µp; µq/ are related to

those induced by D.®/

f;½ .µp; µq/ via

Qgij.µ/ D gij.µ/;

with

Q0.®/

ij;k .µ/ D 0
.¡®/

ij;k .µ/; Q0¤.®/

ij;k .µ/ D 0
.®/

ij;k .µ /:

Proof. Observe that ½ D . f ¤/0.¿ /, from proposition 8,

gij.µ/ D E¹

»
@¿

@µ i

@. f ¤/0.¿ /

@µ j

¼
D E¹

»
. f ¤/00.¿ /

@¿

@µ i

@¿

@µ j

¼
;

which is just Qgij. To prove the second part, we follow the steps in the proof
of proposition 8 to show

E¹

»
@2½

@µ i@ j

@ f 0.½/

@µk
¡ @2 f 0.½/

@µ i@ j

@½

@µk

¼
D E¹

»
. f ¤/000.¿ /

@¿

@µ i

@¿

@µ i

@¿

@µ i

¼
;
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which is analogous to equation 3.12, and then show

0
.®/

ij;k D E¹

»
1 C ®

2

³
. f ¤/000.¿ /

@¿

@µ i

@¿

@µ j

@¿

@µk

´
C @2¿

@µ i@ j

@¿

@µ k
. f ¤/00.¿ /

¼

´ Q0.¡®/
ij;k ;

which is, by de�nition, the connection induced by D.¡®/
f ¤;¿

.µp; µq/. ¦

Remark 3.3.2. Note that the statistical manifold associated with D.®/

f ¤;¿
is the

same �nite-dimensional µ-manifold Mµ as induced by D.®/

f;½ . The difference

between D.®/

f;½ .µp; µq/ and D.®/

f ¤;¿
.µp; µq/ is due to the difference in the ½- and ¿ -

representations of densities, which are conjugate to each other. Corollary 3
says that the duality 0 $ 0¤, in addition to re�ecting µp $ µq, re�ects
the conjugacy between ½.p/ and ¿ .p/, that is, the dual representations of
probability density function, so that

0
¤.®/
ij;k D Q0.®/

ij;k :

3.4 Natural and Expectation Parameters of Statistical Manifold. As-
sume now that µ , as appeared in ½.µ/ and ¿ .µ /, is the natural parameter of
a parametric statistical model. For an exponential family, it is well known
that one might as well parameterize density functions by the expectation
parameter ´, which is dual to the natural parameter. We generalize this du-
ality (biorthogonality) between the natural parameter and the expectation
parameter for arbitrary ½- and ¿ -embedding by considering the pullback of
D.®/

f;½ and D.®/

f ¤;¿
in both Mµ and M´.

We now introduce the notion of ½-af�nity (a generalization of ®-af�nity).
A family of the (denormalized) probability densities is said to be ½-af�ne
if the ½-representation of these densities can be embedded into a �nite-
dimensional af�ne space, that is, if there exists a set of linearly independent
functions ¸i.³ / over the sample space X 3 ³ such that

½.p.³ // D
X

i
µ i¸i.³ / : (3.13)

Here, µ D [µ1; : : : ; µ n] 2 Mµ is called the natural parameter of this ½-af�ne
family. For any density p.³ /, the projection of its ¿ -representation onto the
functions ¸i.³ /

´i D
Z

¿ .p.³ // ¸i.³ / d¹; (3.14)

forms a vector ´ D [´1; : : : ; ´n] 2 M´; ´ is called the expectation parameter
of p.³ /.
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Proposition 9. For a ½-af�ne family of densities,

i. The functions

8.µ/ D
Z

f .½.µ// d¹; 8¤.´/ D
Z

f ¤.¿ .´// d¹

are a pair of conjugated, strictly convex functions.

ii. The natural parameter µ and the expectation parameter ´ form biorthogonal
coordinates

@8

@µ i
D ´i;

@8¤

@´i
D µ i;

with

@´i

@µ j
D gij.µ/;

@µ i

@ j́
D Qgij.´/;

where the metric gij.µ/ is positive-de�nite with Qgij.´/ as its matrix inverse.

iii. The dual af�ne connections become

0
.®/

ij;k .µ/ D
1 ¡ ®

2
@38

@µ i@µ j@µk
; 0

¤.®/

ij;k .µ/ D
1 C ®

2
@38

@µ i@µ j@µk
:

iv. The divergence functional D.®/
f;½ .p; q/ becomes the divergence function

D.®/
8 .µp; µq/.

v. The canonical divergence functional

Af .½.p/; ¿ .q// D 8.µp/ C 8¤.´q/ ¡
X

i
µ i
p´qi ´ A8.µp; ´q/; (3.15)

where A8.µ; ´/ is the canonical divergence function as given by corollary 2.

Proof. The assumption 3.13 implies that @½
@µ i D ¸i.³ /, so from equation 3.6,

gij D
Z

f 00.½/ ¸i.³ / ¸j.³ / d¹:

That gij is positive de�nite is seen by observing

X

ij

gij»
i» j D

Z
f 00.½/

Á
X

i
¸i.³ /» i

!2

d¹ > 0
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for any » D [» 1; : : : ; »n] 2 Rn, due to linear independence of the ¸i’s and the
strict convexity of f . Now

@8

@µ i
D

Z
@ f .½/

@µ i d¹ D
Z

f 0.½/
@½

@µ i d¹ D
Z

¿ .p.³ // ¸i.³ / d¹ D ´i

by de�nition 3.14. We can verify straightforwardly that

@28

@µ i@µ j
D @´i=@µ j D

Z
f 00.½.³ //

@½

@µj
¸i.³ / d¹ D gij.µ/

is positive de�nite, so 8.µ / must be a strictly convex function. Parts iv and
then iii follow proposition 2 once strict convexity of 8.µ / is established.
Differentiating both sides of equation 3.14 with respect to ´j yields

±
j
i D

Z
@¿

@ j́
¸i.³ / d¹:

Thus,

@8¤

@´i
D

Z
@ f ¤.¿ /

@´i
d¹ D

Z
. f ¤/0.¿ /

@¿

@´i
d¹ D

Z
½.p.³ //

@¿

@´i
d¹

D
Z 0

@
X

j

µ j ¸j.³ /

1

A @¿

@´i
d¹ D

X

j

µ j
³Z

@¿

@´i
¸j .³ / d¹

´

D
X

j

µ j ±
j
i D µ i:

Part ii, namely, biorthogonality of µ and ´, is thus established. Evaluating

X

i
µ i @8

@µ i ¡ 8.µ/ D
Z

¿.p.³ I µ//

Á
X

i
µ i¸i.³ /

!

d¹¡
Z

f .½.p.µ// d¹

D
Z

¿ .p.³ I µ// ½.p.³ I µ // d¹ ¡
Z

f .½.p.³ I µ // d¹

D
Z

f ¤.¿ .p.³ I ´// d¹ D 8¤.´/

establishes the conjugacy between 8 and 8¤, and hence strict convexity of
8¤, as claimed in part i. Finally, substituting these expressions into equa-
tion 3.4 establishes part v. Therefore, we have proved all the relations stated
in this proposition. ¦
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Remark 3.4.1. This is a generalization of the results about ®-af�ne mani-
folds (Amari,1985; Amari& Nagaoka, 2000), where ½- and ¿ -representations
are just ®- and .¡®/-representations, respectively. Proposition 9 says that
when ¸i.³ /’s are used as the basis functions of the sample space, µ is the
natural (contravariant) coordinate to express ½.p/, while ´ is the expectation
(covariant) coordinate to express ¿ .p/. They are biorthogonal

Z
@½

@µ i

@¿

@´j
d¹ D ±

j
i ;

when the ½- (or ¿ )-representation of the density function is embeddable into
the �nite-dimensional af�ne space. The natural and expectation parameters
are related to the ¿ - and to the ½-representation, respectively, via

¿ .p.³ // D f 0

Á
X

i
µ i¸i.³ /

!
; ´i D

Z
f 0.½.p//¸i.³ / d¹:

With the expectation parameter ´, one may express the divergence func-
tional D.®/

f;½ .´p; ´q/ and obtain the corresponding metric and dual connection
pair. The properties of the statistical manifold on M´ are shown by the next
proposition.

Proposition 10. The metric tensor Ogij and the dual connections O0.®/ij;k, O0¤.®/ij;k

induced by D.®/
f;½ .´p; ´q/ are related to those (expressed in lower induces) induced

by D.®/

f;½ .µp; µq/ via

X

l

gil.µ / Oglm.´/ D ±m
i ; (3.16)

and

O0.®/ij;k.´/ D ¡
X

l;m;n

Ogim.´/ Ogjn.´/ Ogkl.´/0
.¡®/
ml;n .µ /; (3.17)

O0¤.®/ij;k.´/ D ¡
X

l;m;n

Ogim.´/ Og jn.´/ Ogkl.´/0
.®/

ml;n.µ /; (3.18)

where ´ and µ are biorthogonal.

Proof. The relation 3.16 follows proposition 9. To prove equation 3.17, we
write out O0.®/ij;k following proposition 8 (note that upper- and lower-case
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here are pro forma):

O0.®/ij;k D E¹

»
1 ¡ ®

2
@2¿

@´i@´j

@½

@´k
C 1 C ®

2
@2½

@´i@ j́

@¿

@´k

¼

D E¹

(
1 ¡ ®

2

Á
X

l

@½

@µ l

@µ l

@´k

! Á
X

m

@µm

@´i

@

@µm

@¿

@ j́

!

C
1 C ®

2

Á
X

l

@¿

@µ l

@µ l

@´k

! Á
X

m

@µm

@´i

@

@µm

@½

@ j́

!)

D
X

l;m

@µ l

@´k

@µ m

@´i
E¹

(
1 ¡ ®

2
@½

@µ l

@

@µ m

Á
X

n

@¿

@µn

@µ n

@´j

!

C
1 C ®

2
@¿

@µ l

@

@µm

Á
X

n

@½

@µn

@µ n

@´j

!)

D
X

l;m;n

@µ l

@´k

@µm

@´i

³
@µn

@ j́
E¹

»
1 ¡ ®

2
@½

@µ l

@2¿

@µm@µ n

C
1 C ®

2
@¿

@µ l

@2½

@µm@µn

¼

C
³

@

@µ m

@µ n

@´j

´
E¹

»
1 ¡ ®

2
@½

@µ l

@¿

@µn C
1 C ®

2
@¿

@µ l

@½

@µ n

¼ ´

D
X

l;m;n

@µ l

@´k

@µm

@´i

³
@µn

@ j́
0

.®/

mn;l C @

@µm

@µn

@ j́
gnl

´
:

Since

X

n

³
@

@µm

@µn

@ j́

´
gnl D

X

n

@g jn

@µm gnl D ¡
X

n

@gnl

@µm g jn

D ¡
X

n
g jn

±
0

.®/

mn;l C 0
.¡®/

ml;n

²
;

where the last step is from

@gnl

@µm
D 0

.®/

mn;l C 0
¤.®/

ml;n D 0
.®/

mn;l C 0
.¡®/

ml;n ;

assertion 3.17 is proved after direct substitution. Observing the duality
O0¤.®/ij;k D O0.¡®/ij;k leads to equation 3.18. ¦

Remark 3.4.2. The relation between g and 0 in their subscript and super-
script forms is analogous to that stated by proposition 5. However, note the
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conjugacy of ® in O0.®/ij;k $ 0
.¡®/

ml;n correspondence, due to the change be-
tween µ- and ´-coordinates, both under the ½-representation. On the other
hand, similar to corollary 3, the metric Ngij and the dual af�ne connection
N0.®/ij;k; N0¤.®/ij;k of the statistical manifold (denoted using bar) induced by
the conjugate divergence functions D.®/

f ¤;¿
.´p; ´q/ are related to those (de-

noted using hat) induced by D.®/

f ¤;½
.´p; ´q/ via

Ngij.´/ D Ogij.´/;

with

N0.®/ij;k.´/ D O0.¡®/ij;k.´/; N0¤.®/ij;k.´/ D O0.®/ij;k.´/:

3.5 Divergence Functional from Generalized Mean. When f is, in ad-
dition to being strictly convex, strictly monotone increasing, we may set
½ D f ¡1, so that the divergence functional becomes

D.®/
½ .p; q/ D

4
1 ¡ ®2

Z ³
1 ¡ ®

2
p C

1 C ®

2
q

¡½¡1
³

1 ¡ ®

2
½.p/ C

1 C ®

2
½.q/

´´
d¹: (3.19)

Note that for ® 2 [¡1; 1],

M.®/
½ .p; q/ ´ ½¡1

³
1 ¡ ®

2
½.p/ C

1 C ®

2
½.q/

´

de�nes a generalized mean (“quasi-linear mean” by Hardy, Littlewood, &
Pólya, 1952) associated with a concave and monotone function ½: RC ! R.
Viewed in this way, the divergence is related to the departure of the linear
(arithmetic) mean from a quasi-linear mean induced by a nonlinear function
with nonzero concavity/convexity.

Example 3.5.1. Take ½.p/ D log p, then M.®/
½ .p; q/ D p

1¡®
2 q

1C®
2 , and D.®/

½ .p; q/

is the ®-divergence (see equation 1.2). For a general concave ½,

D.1/
½ .p; q/ D

Z
.p ¡ q ¡ .½¡1/0.½.q// .½.p/ ¡ ½.q/// d¹ D D.¡1/

½ .q; p/

is an immediate generalization of the extended Kullback-Leibler divergence
in equation 1.1.

To further explore the divergence functionals associated with the quasi-
linear mean operator, we impose a homogeneity requirement, such that the
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divergence is invariant after scaling (· 2 RC):

D.®/
½ .·p; ·q/ D ·D.®/

½ .p; q/:

Proposition 11. The only measure-invariant divergence functional associated
with quasi-linear mean operator M.®/

½ is a two-parameter family,

D.®;¯/.p; q/ ´ 4
1 ¡ ®2

2
1 C ¯

Z ³
1 ¡ ®

2
p C 1 C ®

2
q

¡
³

1 ¡ ®

2
p

1¡¯

2 C
1 C ®

2
q

1¡¯

2

´ 2
1¡¯

!

d¹; (3.20)

which results from the alpha-representation (indexed by ¯ here) ½.p/ D l.¯/.p/ as
given by equation 1.8. Here .®; ¯/ 2 [¡1; 1] £ [¡1; 1], and the factor 2=.1 C ¯/

is introduced to make D.®;¯/.p; q/ well de�ned for ¯ D ¡1.

Proof. This homogeneity requirement implies that

½¡1
³

1 ¡ ®

2
½.·p/ C

1 C ®

2
½.·q/

´
D ·½¡1

³
1 ¡ ®

2
½.p/ C

1 C ®

2
½.q/

´
:

By a lemma in Hardy et al. (1952, p. 68), the general solution to the above
functional equation is

½.t/ D
»

a ts C b s 6D 0
a log t C b s D 0;

with corresponding

M.®/
s .p; q/ D

³
1 ¡ ®

2
ps C

1 C ®

2
qs

´ 1
s

; M.®/
0 .p; q/ D p

1¡®
2 q

1C®
2 :

Here a; b; s are all constants. Strict concavity of ½ requires 0 · s · 1 and
a > 0. Since it is easily veri�ed D.®/

½ D D.®/

a½Cb, without loss of generality, we

have ½.p/ D l.¯/.p/; ¯ 2 [¡1; 1] where s D 1¡¯
2 . This gives rise to equation

3.20. ¦

Proposition 12 (corollary to Proposition 7). The two-parameter family of di-
vergence functions D.®;¯/.µp; µq/ induces a statistical manifold with Fisher infor-
mation as its metric and generic alpha-connections as its dual connection pair,

gij D Ep

»
@ log p

@µ i

@ log p
@µ j

¼
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0
.®;¯/

ij;k D Ep

»
@2 log p
@µ i@µ j

@ log p
@µk

C
1 ¡ ®¯

2
@ log p

@µ i

@ log p
@µ j

@ log p
@µk

¼
;

0
¤.®;¯/

ij;k D Ep

»
@2 log p
@µ i@µ j

@ log p
@µk

C
1 C ®¯

2
@ log p

@µ i

@ log p
@µ j

@ log p
@µk

¼
:

Proof. Applying formulas 3.6 to 3.8 to the measure-invariant divergence
functional D.®/

½ .p; q/ with ½.p/ D log p and f D ½¡1 gives rise to the desired
result. ¦

Remark 3.5.2. This two-parameter family of af�ne connections 0
.®;¯/

ij;k , in-
dexed now by the numerical product ®¯ 2 [¡1; 1], is actually in the generic
form of an alpha-connection,

0
.®;¯/

ij;k D 0
.¡®;¡¯/

ij;k ;

with biduality compactly expressed as

0
¤.®;¯/

ij;k D 0
.¡®;¯/

ij;k D 0
.®;¡¯/

ij;k : (3.21)

The parameters ® 2 [¡1; 1] and ¯ 2 [¡1; 1] re�ect referential duality and
representational duality, respectively. Among this two-parameter family,
the Levi-Civita connection results when either ® or ¯ equals 0. When ® D §1
or ¯ D §1, each case reduces to the one-parameter version of the generic
alpha-connection. The family D.®;¯/ is then a generalization of Amari’s
alpha-divergence, equation 1.2, with

lim
®!¡1

D.®;¯/.p; q/ D A.¡¯/.p; q/;

lim
®!1

D.®;¯/.p; q/ D A.¯/.p; q/;

lim
¯!1

D.®;¯/.p; q/ D A.®/.p; q/;

where the last equation is due to lim¯!1 M.®/
s D M.®/

0 D p
1¡®

2 q
1C®

2 . On the
other hand, when ¯ ! ¡1, we have the interesting asymptotic relation,

lim
¯!¡1

D.®;¯/.p; q/ D E.®/.p; q/;

where E.®/ was the Jensen difference, equation 2.5, discussed by Rao (1987).

3.6 Parametric Family of Csiszár’s f -Divergence. The fact (see Propo-
sition 12) that our two-parameter family of divergence functions D.®;¯/

actually induces a one-dimensional family of alpha-connection is by no
means surprising. This is because D.®;¯/ obviously falls within Csiszár’s
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f -divergence (see equation 1.3), the generic form for measure-invariant di-
vergence, where

f .®;¯/.t/ D
8

.1 ¡ ®2/.1 C ¯/

Á
1 ¡ ®

2
C

1 C ®

2
t

¡
³

1 ¡ ®

2
C

1 C ®

2
t

1¡¯

2

´ 2
1¡¯

!

; (3.22)

isnow a two-parameter family with f .®;¯/.1/ D0I . f .®;¯//0.1/ D0I . f .®;¯//00.1/

D 1. That the alpha index is given by the product ®¯ in this case follows ex-
plicitly from calculating . f .®;¯//000.1/ using equation 1.5. What is interesting
in this regard is the distinct roles played by ® (for reference duality) and
by ¯ (for representational duality). The parameters .®; ¯/ 2 [0; 1] £ [0; 1]
form an interesting topological structure of a Moebius band in the space of
divergence functions, all with identical Fisher information and the family
of alpha-connections.

We may generalize Csiszár’s f -divergence to construct a family of mea-
sure-invariant divergence functional in the following way. Given a smooth,
strictly convex function f .t/, construct the family (for ° 2 R)

G.° /

f .t/ D 4
1 ¡ ° 2

³
1 ¡ °

2
f .1/ C 1 C °

2
f .t/ ¡ f

³
1 ¡ °

2
C 1 C °

2
t
´´

;

with G.¡1/
f .t/ D g.t/ as given in equation 1.6. It is easy to verify that for an

arbitrary ° , G.° /

f is a proper Csiszár’s function with G.° /

f .1/ D 0, .G.° /

f /0.1/ D
0, and that

.G.° /

f /00.1/ D f 00.1/; .G.° /

f /000.1/ D ° C 3
2

f 000.1/;

so the statistical manifold generated by G.° /

f has the same metric as that
generated by f but a family of parameterized alpha-connections. If we take
f .t/ D f .®/.t/ as in equation 1.4, then G.° ;®/ will generate a two-parameter
familyof alpha-connections with the effective alpha value 3C.®¡3/.° C3/=2.
We note in passing that repeating this process, by having G.° ;®/ now take
the role of f , may lead to nested (e.g., two-, three- parameter) families of
alpha-connections.

4 General Discussion

This article introduced several families of divergence functions and func-
tionals all based on the fundamental inequality of an arbitrary smooth and
strictly convex function. In the �nite-dimensional case, the convex mixture
parameter, ®, which re�ects reference duality, turns out to correspond to
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the ® parameter in the one-parameter family of ®-connection in the sense of
Lauritzen (1987), which includes the �at connections .® D §1/ induced by
Bregman divergence. The biorthogonal coordinates related to the inducing
convex function and its conjugate (Amari’s dual potentials) re�ect represen-
tational duality. In the in�nite-dimensional cases, with the notion of conju-
gate (i.e., ½- and ¿ -) embeddings of density functions, the form of the con-
structed divergence functionals generalizes the familiar ones (®-divergence
and f -divergence). The resulting ®-connections, equation 3.7, or equiva-
lently, equation 3.10, have the most generalized yet explicit form found in
the literature. When densities are ½-af�ne, they specialize to ®-connections
in the �nite-dimensional vector space mentioned above. When measure-
invariance is imposed, they specialize to the family of alpha-connections
proper, but now with two parameters—one re�ecting reference duality and
the other representational duality. These �ndings will enrich the theory of
information geometry and make it applicable to �nite-dimensional vector
space (not necessarily of parameters of probability densities) as well as to
in�nite-dimensional functional space (notnecessarily of normalized density
functions).

In terms of neural computation, to the extent that alpha-divergence and
alpha-connections generate deep analytic insights (e.g., Amari, Ikeda, &
Shimokawa, 2001; Takeuchi & Amari, submitted), these theoretical results
may help facilitate those analyses by clarifying the meaning of duality in
projection-based algorithms. Previously, alpha-divergence, in its extended
form (see equation 1.2), was shown (Amari & Nagaoka, 2000) to be the
canonical divergence for the ®-af�ne family of densities (densities that, un-
der the ®-representation l.®/, are spanned by an af�ne subspace). Therefore,
for a given ® value, there is only one such family that induces the �at (®-
)connection with all components zero when expressed in suitable coordi-
nates (as special cases, 0.1/ D 0 for the exponential family and 0.¡1/ D 0
for the mixture family). This is slightly different from the view of Zhu and
Rohwer (1995, 1997) who, in their Bayesian inference framework, simply
treated ® as a parameter in the entire class of (®-)divergence (between any
two densities) which yields, through Eguchi relation, �at connections only
when ® D §1. These apparently disparate interpretations, despite being
subtly so, have now been straightened out. The current framework points
out two related but different senses of duality in information geometry:
representational duality and reference duality. Further, it has been clar-
i�ed how the same one-parameter family of dual alpha-connections ac-
tually may embody both kinds of dualities. Future research will illumi-
nate how this notion of biduality in characterizing the asymmetric differ-
ence of two density functions or two parameters may have captured the
very essence of computational algorithms of inference, optimization, and
adaptation.
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