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Abstract

The d-permutahedron Pd�1CRd is defined as the convex hull of all d-dimensional permutation vectors, namely, vectors

whose components are distinct values of a d-element set of integers ½d� � f1; 2;y; dg: By construction, Pd�1 is a convex

polytope with d ! vertices, each representing a linear order (ranking) on ½d�; and has dimension dimðPd�1Þ ¼ d � 1: This paper
provides a review of some well-known properties of a permutahedron, applies the geometric-combinatoric insights to the

investigation of the various popular choice paradigms and models by emphasizing their inter-connections, and presents a few new

results along this line.

Permutahedron provides a natural representation of ranking probability; in fact it is shown here to be the space of all

Borda scores on ranking probabilities (also called ‘‘voters profiles’’ in the social choice literature). The following relations

are immediate consequences of this identification. First, as all d ! vertices of Pd�1 are equidistant to its barycenter, Pd�1 is

circumscribed by a sphere Sd�2 in a ðd � 1Þ-dimensional space, with each spherical point representing an equivalent class of vectors
whose components are defined on an interval scale. This property provides a natural expression of the random utility model

of ranking probabilities, including the condition of Block and Marschak. Second, Pd�1 can be realized as the image of an

affine projection from the unit cube Cdðd�1Þ=2 of dimension dðd � 1Þ=2: As the latter is the space of all binary choice vectors

describing probabilities of pairwise comparisons within d objects, Borda scores can be defined on binary choice probabilities

through this projective mapping. The result is the Young’s formula, now applicable to any arbitrary binary choice vector. Third,

Pd�1 can be realized as a ‘‘monotone path polytope’’ as induced from the lift-up of the projection of the cube CdCRd onto the line

segment ½0; d�CR1: As the 2d vertices of the d-cube Cd are in one-to-one correspondence to all subsets of ½d�; a connection between

the subset choice paradigm and ranking probability is established. Specifically, it is shown here that, in the case of approval

voting (AV) with the standard tally procedure (Amer. Pol. Sci. Rev. 72 (1978) 831), under the assumption that the choice of a

subset indicates an approval (with equal probability) of all linear orders consistent with that chosen subset, the Brams–Fishburn

score is then equivalent to the Borda score on the induced profile. Requiring this induced profile (ranking probability) to be also

consistent with the size-independent model of subset choice (J. Math. Psychol. 40 (1996) 15) defines the ‘‘core’’ of the AV Polytope.

Finally, Pd�1 can be realized as a canonical projection from the so-called Birkhoff polytope, the space of rank-position probabilities

arising out of the rank-matching paradigm; thus Borda scores can be defined on rank-position probabilities. To summarize,

the many realizations of a permutahedron afford a unified framework for describing and relating various ranking and choice

paradigms.

r 2004 Elsevier Inc. All rights reserved.
1. Background

In the general context of decision-making through
choice over d distinct objects (political candidates,
consumer products, job options, etc.), denote the master
choice set ½d� :¼ f1; 2;y; dg; with objects conveniently
labelled as natural numbers 1 through d (d42 is
assumed in this paper unless explicitly noted otherwise).
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Common choice paradigms which arise from a wide
variety of political, social–economical and psychological
situations include:

1. Linear ordering/ranking, in which all d objects are
rank-ordered1 according to their levels of desirability,
assuming no ties.
1For simplicity, only linear/total order and sometimes weak order of

objects are considered; no considerations for semi-order or interval

order will be given in this paper.
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2. Binary choice, in which two of the d objects (called a
‘‘binary subset’’) are selected at a time to be
compared against each other for their desirability,
and all such pairwise comparisons of objects in ½d� are
performed.

3. Subset choice, in which only one distinct subset of ½d�
of any number of elements (including the null-set |) is
selected or approved of, while the desirability of all
the selected elements is considered to be ‘‘equal’’ or
comparable (their precise meanings to be clarified
later).

4. Rank assignment, in which each rank-position (1
through d; in ascending order of desirability) is to be
assigned, as a partition of unity, to objects in ½d�:

When there are more than one individuals (‘‘voters’’)
involved in performing such a binary choice, subset
choice, or linear ranking task, or when such choice is
non-deterministic, a probability distribution will be
induced over the set of, respectively, all linear orders
over ½d�; all binary subsets of ½d�; or all subsets of ½d�:
For instance, the probability distribution over the d !
linear orders is termed the ‘‘voters profile’’ in the social
choice literature or ‘‘ranking probability’’ elsewhere, the
probability distribution over the 2d subsets of ½d� is
called ‘‘subset choice probability’’, while the more
common ‘‘binary choice probability’’ refers to a vector
with dðd � 1Þ=2 components, each representing the
probability of choosing one alternative over another in
a two-element subset of ½d�:
There have been attempts in the past to link the

preference structure revealed by these various choice
paradigms using some unifying constructs. One com-
mon approach is to assume the existence of an under-
lying interval-scaled utility associated with each choice
option (a candidate in ½d�). These utilities, represented
by a d-dimensional vector v ¼ ½v1; v2;y; vd �T indeed,
may vary randomly, though often not necessarily
independently. The distribution of such random utility
(RU) values is denoted by a non-negative function
f ðv1; v2;y; vdÞ that satisfiesZ

f ðv1; v2;y; vdÞ dv1 dv2?dvd ¼ 1;

with f yet to be interpreted (see next paragraph).
This so-called (non-parametric) ‘‘Random Utility (RU)
model’’, as a probabilistic generalization of deterministic
utility theory, has been argued to provide the much-
needed tool for combining algebraic and probabilistic
representations of choice and, therefore, to serve
as a unifying framework to reconcile normative and
descriptive approaches to modelling and measurement
of choice in social sciences (Regenwetter & Marley,
2001).
One important consequence of RU representation of

choice is its immediate connection to the ranking
paradigm. Denote a total (linear) ranking of all
candidates in ½d� by p ¼ /pð1Þpð2Þ?pðdÞS; where
pðiÞ is the rank (also called ‘‘rank-position’’) given to
candidate i; iA½d�: As a convention adopted in this
paper, the rank-positions are natural numbers 1 through
d; forming a set denoted by ½d� as well, with larger values
indicating higher desirability. For convenience, p�1

denotes the mapping from rank-position to candidate
identity, so p�1ðkÞ represents the candidate who
occupies rank-position k according to ranking p; while
p�1ðdÞ returns the most-desirable candidate. In the
literature as well as in this paper, /pð1Þpð2Þ?pðdÞS is
referred to as ‘‘ranking’’, while ðp�1ð1Þp�1ð2Þ?p�1ðdÞÞ
is referred to as ‘‘ordering’’ (in increasing desirability).
Denote the set of all rankings of d candidates as Ld ;
with set size d !: The ‘‘ranking probability’’ Pp can be
defined on the set of linear orders Ld :

PpX0;
X
pALd

Pp ¼ 1: ð1Þ

Block and Marschak (1960) showed that under certain
conditions, the ranking probability Pp is naturally
connected to the density f ðv1; v2;y; vdÞ of jointly
distributed RU variable v ¼ ½v1; v2;y; vd �T through the
relationship

Pp ¼
Z
Dp

f ðv1; v2;y; vdÞ dv1 dv2?dvd ; ð2Þ

where the region of integration Dp is the connected
point-set

Dp ¼ fvARd : vp�1ðdÞ4vp�1ðd�1Þ4?4vp�1ð1Þg: ð3Þ

The necessary and sufficient condition for (2) to hold is
the ‘‘non-coincidence’’ condition, roughly stated as

f ðv1; v2;y; vdÞ ¼ 0 whenever vi ¼ vj ðiajÞ: ð4Þ

This is to say that the set of points where any two
random variables assume the same value has measure
zero; probability density is not concentrated on the
boundaries of Dp: Block and Marschak (1960) demon-
strated that any such density function f ðv1; v2;y; vdÞ
induced a ranking probability Pp according to (2);
conversely a density function could always be con-
structed to satisfy (2) given an arbitrary ranking
probability Pp:
This result is intuitively important: assuming the non-

coincidence condition, a characterization of RU repre-
sentation is equivalent to a characterization of ranking
probability Pp: As much as non-coincident RU repre-
sentation may become a unifying description for choice
behavior (argued by M. Regenwetter), ranking prob-
ability would play a central role in relating choice
probabilities associated with the various paradigms
mentioned earlier.
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2 In Babington Smith’s (1950) ranking model

Pp ¼ const
Y

fði;jÞ : pðiÞ4pð jÞg
aij ;

one readily obtains a ranking probability from the binary choice

probability, but it does not satisfy Eq. (5).
3Actually, the Binary Choice Polytope is defined in the space Rdðd�1Þ

(instead of Rdðd�1Þ=2) where the relations aij þ aji ¼ 1 are treated as one

of the facet-defining equalities/inequalities.
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1.1. Ranking probability and binary choice

The binary choice paradigm is perhaps one of the
most studied and best axiomatized paradigm of choice.
Let aij be the relative frequency (or probability) of
choosing object ‘‘i’’ in a two-element set fi; jg: There can
be many axiomatizations and representations of the
probability of binary choice. For instance, the ‘‘Weak
Utility Model’’ postulates that aij4aji if and only if
there exists a real-valued function gð
Þ such that
gðiÞ4gð jÞ: The ‘‘Strong Utility Model’’ postulates that
aij4akl if and only if there exists a real-valued function g

such that gðiÞ � gð jÞ4gðkÞ � gðlÞ for all i; j; k; l: The
‘‘Strict Utility Model’’ (Bradley–Terry–Luce or BTL
Model) further requires the existence of a positive-
valued function gð
Þ such that aij ¼ gðiÞ

gðiÞþgð jÞ: The
‘‘Fechnerian Utility Model’’ assumes the existence of a
real-valued function g and a strictly monotone increas-
ing function f; such that the binary choice probability
takes the form aij ¼ f½gðiÞ � gð jÞ�; where f is often
taken as the cumulative distribution function of a
normal random variable, or at other times the logistic
function. Finally, the ‘‘RU model’’ (see (2), with d ¼ 2)
assumes the existence of random variables vi and vj

associated with i and j such that aij ¼ Prob½vi4vj�:
When more than two candidates are involved,

binary choice can be performed on any two-element
subset of ½d�; d42: In this case, the choice probabilities
become a dðd � 1Þ=2-dimensional vector a ¼
½a12; a13;y; aðd�1Þd �T ; called the ‘‘binary choice vector’’,
whose range is the unit cube

Cdðd�1Þ=2 :¼f½a12; a13;y; aðd�1Þd �TARdðd�1Þ=2 :

0paijp1; i; jA½d�; iojg

representing all possible pairwise comparisons of candi-
dates in the master set ½d�: Note that any constraint
placed on the binary-choice probability (such as transi-
tivity) will necessarily limit the feasible region in the cube
Cdðd�1Þ=2: For example, for any triplets i; j; k which are
elements of ½d�; weak stochastic transitivity (WST)
assumes that if aijX

1
2
and ajkX

1
2
then aikX

1
2
; moderate

stochastic transitivity (MST) assumes that if aijX
1
2
and

ajkX
1
2
then aikXminðaij; ajkÞ; while strong stochastic

transitivity (SST) assumes that if aijX
1
2
and ajkX

1
2
then

aikXmaxðaij; ajkÞ; see Luce and Suppes (1965). These
increasingly stronger assumptions about the underlying
process of binary comparison will constrain the realizable
region to some increasingly smaller core in the cube
Cdðd�1Þ=2: While important for various axiomatizations,
in this paper no such constraints will be placed on the
binary choice vector a unless explicitly stated.
The binary choice vector a can be related to the

ranking probability Pp defined for ranking pALd of
elements of ½d�; where Ld denotes the set of all linear
orders. A sensible relationship between binary choice
and ranking is

aij ¼
X

fpALd : pðiÞ4pð jÞg
Pp; ð5Þ

where the summation is over all p’s that rank candidate i

as more desirable than candidate j: Given Pp; one
obtains aij through marginalization, so each ranking
probability gives rise to a unique binary choice vector.
But the inference in the opposite direction, i.e., finding a
ranking probability that is consistent with (in the sense
of (5)) an arbitrarily given binary choice vector, is far
less straightforward2—this problem has been referred to
as the characterization problem (see Marley, 1992). To
begin with, not all dðd � 1Þ=2-dimensional vectors
confined to the cube Cdðd�1Þ=2 are realizable by Pp via

(5); this is because, among the 2
dðd�1Þ

2 vertices of
Cdðd�1Þ=2; only d ! of those are ‘‘valid’’ ones, namely,

ones that map one-to-one to the set of linear orders Ld :
The number of valid vertices represents only a small

proportion; this fraction d !=2
dðd�1Þ

2 equals 0.75, 0.375,
0.117, 0.022 for d ¼ 3; 4; 5; 6; respectively, and ap-
proaches zero rapidly as d increases. Any dðd � 1Þ=2-
dimensional vector which cannot be represented as a
convex combination of valid vertices necessarily cannot
be represented as a convex combination of those
representing linear orders; therefore no ranking prob-
ability Pp exists that will give rise to such a binary choice
vector via (5). Hence, the necessary (and sufficient)

condition for the existence of Pp is that a ¼
½a12; a13;y; aðd�1Þd �T can be expressed as a convex

combination of the valid vertices of Cdðd�1Þ=2: The

convex hull of these d ! vertices, that is, the fractional
mixture of the corresponding vectors, forms a geometric
object contained within Cdðd�1Þ=2: It is called the ‘‘Binary

Choice Polytope’’ or ‘‘Linear Ordering Polytope’’,3

which normatively describes the solution to the char-
acterization problem of binary choice (Cohen &
Falmagne, 1990, Fishburn, 1992, Koppen, 1991, 1995,
Suck, 1992). See Appendix A for the mathematical
background on polytopes.
The Binary Choice Polytope belongs to the general

class of 0/1-polytopes (see Ziegler, 1999 for a recent
introduction). Its facets (faces of maximal dimension)
are defined by a system of inequalities/equalities on aij’s,
the components of a binary choice vector a: However, it
turns out that the problem of finding a complete
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Subset choice 
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b

Characterization Problem
a: yields Linear Ordering Polytope 

c: yields Birkhoff Polytope
b: yields AV Polytope (under SI Model)

Through Marginalization 
By Block & Marschak (1960)

Fig. 1. Connections between common choice paradigms (ranking,

binary choice, subset choice) and the random utility representation.

Note the central role of ranking probability (the direction of an arrow

indicates an inference or specification from one representation/

paradigm to another).
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description of these facets is a deceptively simple but
challenging one, as not only all of its facet-defining
inequalities are not yet found (and new inequalities are
constantly emerging, including the more recent ones by
Bolotashvili, Kovalev, & Girlich, 1999), but there is
some indication that the effort of exhausting all such
inequalities to obtain a complete linear description is
perhaps futile because such a description may not itself
be ‘‘described’’ following arguments in computation
complexity theory (Pekec̆, 2000).

1.2. Ranking probability and subset choice

An alternative to the binary choice paradigm is the
‘‘subset choice’’ paradigm (Brams & Fishburn, 1978,
1983, Falmagne & Regenwetter, 1996, Doignon &
Regenwetter, 1997, Regenwetter, Marley, & Joe, 1998,
Doignon & Regenwetter, 2002, Doignon & Fiorini, to
appear. From the d-element master set ½d�; consider the
set formed by all subsets of ½d�; i.e., Sd ¼ fS : SD½d�g:
The set Sd is commonly referred to as the power set of
the original master set ½d� and denoted as 2½d�; it has 2d

elements, including the null-set | and ½d� itself. Under
the subset choice paradigm, any element SASd of this
power set, i.e., any subset of ½d�; becomes the basic
choice primitive. A probability distribution defined on
the 2d alternative elements of Sd ; called the ‘‘subset
choice probability’’, can be introduced in the same way
that the ranking probability over the d ! elements of Ld

has been introduced in (1)

PSX0;
X

SD½d�
PS ¼ 1:

Subset choice paradigms are natural extensions to a
popular voting mechanism introduced in the social
choice and voting literature, namely approval voting
(AV) (Brams & Fishburn, 1978, 1983). In recent years,
the size-independent (SI) model of AV is proposed by
Falmagne and Regenwetter (1996). The SI model
envisions a two-stage process in voters’ choices of
subsets, a first stage concerning the size of the subset,
followed by a second stage concerning the particular
subset (among all subsets of equal size) being chosen.
The subset choice probability PS is then related to the
ranking probability Pp through

PS ¼ f ðjSjÞ 

X

fpALd : fp�1ðdÞ;y;p�1ðd�jSjþ1Þg¼Sg
Pp: ð6Þ

Here, for a fixed S with set-size jSj ¼ k; the summation
is over all rankings p whose top k entries
p�1ðdÞ;y; p�1ðd � k þ 1Þ are exactly those elements of
S; there are a total of k! ðd � kÞ! rankings for each S:
The set-size probability f ðkÞ; k ¼ 1;y; d � 1 is given by

f ðkÞ ¼
X

fSD½d� : jSj¼kg
PS; ð7Þ
with f ð0Þ ¼ P|; f ðdÞ ¼ P½d� and that
Pd

k¼0f ðkÞ ¼ 1:
Given Pp and f ðkÞ; one readily obtains PS: As with
the binary choice case, the inference in the opposite
direction is much harder. Given PS (and hence f ðjSjÞ),
conditions for inducing a probability distribution Pp on
all rankings in accordance with (6) have been called the
characterization problem for AV. Its solution defines a
polytope called the AV Polytope (Doignon & Regen-
wetter, 1997), and all of its facets have been character-
ized recently (Doignon & Fiorini, to appear).

1.3. Imposing structures on linear orders

The above discussion shows that the probability
distribution on linear orders Pp plays a pivotal role in
formulating the characterization problems for binary
choice and for subset choice paradigms. This is
schematically summarized as Fig 1. The conditions for
the existence of Pp under (5) for a binary choice vector,
or under (6) for a subset choice probability amount to
linear descriptions of the Binary Choice Polytope or the
AV Polytope, respectively. These polytopes are, un-
fortunately, quite complex. One hopes that further
restrictions on how to combine and compare linear
orders may give rise to a simpler geometric–combina-
toric structure.
There have been at least two approaches in the

literature for endowing structures on linear orders
(which turn out to be much related). The first approach
relies on the introduction of a metric on Ld to describe
the difference between two linear orders. Familiar
metrics include Spearman’s Dr (arising from r; the
correlation coefficient of differences in ranks), Kendall’s
Dt (arising from t; the correlation coefficient of signs
of rank comparisons), Cayley’s distance (minimum



ARTICLE IN PRESS
J. Zhang / Journal of Mathematical Psychology 48 (2004) 107–134 111
number of transpositions between two rankings), among
many others (see Kendall, 1962). These metrics are then
used for parametric models of ranking probability
whereby Pp is inversely related to the distance Dðp; p0Þ
from an arbitrary ranking p to a modal ranking p0
(Fligner & Verducci, 1986). A prominent metric-based
ranking model is Mallows’ (1957) f model, an
exponential family with the assumption of unimodality
in the distribution of rankings. When endowed with the
Spearman’s r for measuring the distance between two
rankings p1 and p2

Drðp1; p2Þ ¼
Xd

i¼1
ðp1ðiÞ � p2ðiÞÞ2; ð8Þ

Mallow’s f model yields a particular probability
distribution on the sphere Sd�2; known as the von-
Mises Fisher distribution in the modelling of directional
data (McCullagh, 1993). Other types of distance-based
models may incorporate the dynamics of the ranking
process, such as a multi-stage process where a voter
chooses the most preferred candidate first, and then the
next preferred one from the remaining pool, and so
forth, to produce a linear order (see Critchlow, Fligner,
& Verducci, 1991).
An alternative approach to endow structures onLd is

based on the notion of a ‘‘scoring function’’ (Young,
1975) in the voting literature. Given Pp (called a ‘‘voters
profile’’ there for obvious reasons), the idea is to
construct a score for each candidate iA½d� to reflect
the collective or aggregated preference of the voting
population. Each candidate’s score thus obtained will be
compared against others’ for their desirability. One such
scoring method is the well-acclaimed ‘‘Borda rule’’,
namely, candidate i accrues some point(s) (or ‘‘marks’’)
equal to4 the rank-position pðiÞ in a particular ranking
p; the total points vi accrued by each candidate from the
voting population is then properly weighted by the
voters profile Pp to yield an ‘‘order of merit’’. Formally,
the Borda score of a ranking probability Pp is defined as
a d-dimensional vector vBd:

vBd ¼

P
pALd

Pp 
 pð1ÞP
pALd

Pp 
 pð2Þ
^P

pALd
Pp 
 pðdÞ

2
6664

3
7775; ð9Þ
4Given a linear order p; the points assigned to a candidate i; in the

common Borda rule, is the number of other candidates that are

ordered below the focal candidate i: The points assigned to a candidate

with rank-position pðiÞ is thus pðiÞ � 1; and ranges between 0 (i is least

preferred) to d � 1 (i is most preferred). Here, for convenience, we add

1 to this mark, so the Borda score ranges between 1 (least preferred) to

d (most preferred).
i.e.,

vBd ¼
X
pALd

Pp

pð1Þ
pð2Þ
^

pðdÞ

2
6664

3
7775: ð10Þ

The notions of the Borda rule and the Borda score are
well-known in the social choice literature; in fact they
have been systematically axiomatized (Young, 1974,
1975, Nitzan & Rubinstein, 1981). Among its axioms
(Young, 1974) is a cancellation condition effectively
stating that two rankings p1 and p2 will cancel each
other’s effect if one is the ‘‘reverse’’ of the other, defined
as p1ðiÞ ¼ d � p2ðiÞ for any iA½d�: The cancellation in
the net consequence of reverse rankings is a crucial
axiom; it is closely related to the construction of ‘‘net
ranking probability’’ (Regenwetter & Grofman, 1998a).
The above two approaches of imposing structures on

linear orders, one involving a metric on rankings and the
other involving a scoring function on ranking probabil-
ities, turn out to be closely related; indeed they often
parallel one another. Of special interest here is a result
by Cook and Seiford (1982)5 showing that the Borda
vector vBd in (10) actually achieves the minimum over
the distance from a point v ¼ ½v1; v2;y; vd �TARd to all
rank vectors when weighted by Pp and using Spearman’s
r metric (8)

Drðv; pÞ ¼
X
pALd

Xd

i¼1
Ppðvi � pðiÞÞ2: ð11Þ

The Borda vector is thus construed as an ‘‘average’’
rank vector, in the least-mean-square sense and con-
sistent with the generalized average on ordered sets
(Ovchinnikov, 1996), obtained from the d rankings
associated with a voters profile Pp: Note that the
geometries arising out of Borda scores, and more
generally the position voting schemes, were discussed
in Saari (1990, 1992, 1993); however, these papers fell
short of identifying the space of all Borda vectors as
forming a well-defined polytope under investigation
here.
As we shall see, construction (10) of the Borda score

(vector) gives rise to a combinatoric–geometric object
known as the permutahedron (alternatively spelt as
permutohedron). The permutahedron is a very simple
and special kind of polytope that has been well studied
by mathematicians, see the recent treatise by Ziegler
5These authors apparently mis-attributed Spearman’s r to Kendall

in this and a number of subsequent publications. It is clear from

Kendall (1962) that the metric associated with his t is

Dtðp1;p2Þ ¼
X

all ioj

1� ðsgnðp1ðiÞ � p1ð jÞÞ 
 sgnðp2ðiÞ � p2ð jÞÞÞ

in which sgnðtÞ denotes the sign of t; whereas the metric associated

with Spearman’s r is given by (8).
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6Strictly speaking, one should refer to Pd�1 as a ðd � 1Þ-
permutahedron, since the prefix usually refers to the dimensionality

of a polytope in the polytope literature. In this paper, we call it a d-

permutahedron to emphasize the fact that it arises as permutations

over d objects. We retain the notation of Pd�1 to indicate that it is a

ðd � 1Þ-dimensional object.
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(1995) and its excellent review by Suck (1997). As its
vertices represent the set of permutations of d objects, a
permutahedron is a kind of permutation polyhedra
(Bowman, 1972) that geometrically represent permuta-
tions. It can be realized in various ways, as projections
or lift-ups of projections of other polytopes. Its nice
geometric properties allow a unified treatment of
various choice paradigms (binary choice, subset choice,
etc.) and the related RU theory.
Although permutahedron is a familiar object to

combinatorial mathematicians, it has so far rarely been
used in models of choice (binary, subset, RU, Borda
scoring) where the polytope theory has demonstrated to
be relevant. In particular, the potential power of
permutahedron in connecting the aforementioned
choice paradigms has not been systematically investi-
gated. The paper provides a comprehensive review of
some well-known mathematical properties of a permu-
tahedron, points out their meanings within the context
of, as well as their applications to various choice
paradigms and models, along with a few new results.
The goal of this paper is to bring to the awareness of
mathematical psychologists such a geometric-combina-
torial object and the intuitions it provides. The main
new results include the demonstration of: (i) the
surjective mapping of the space of binary choice vectors
to the permutahedron, the space of Borda scores
(Theorem 2.3); though this was presented and proven
as an exercise in Ziegler’s book, the projection will be
explicated in a matrix form allowing direct appreciation
of the connection between the permutahedron and any

binary choice vector (not only the ones that lie within
the Binary Choice Polytope); (ii) the monotonicity and
homogenizing property associated with this projective
map if one further assumes BTL representation of the
choice probability (Corollary 2.4); (iii) the embedding of
the permutahedron in a hypersphere (Proposition 2.5);
this enables a geometric description of the RU
representation of ranking probabilities and the Block
and Marschak (1960) condition; (iv) the connection
between the Brams–Fishburn score of the AV and the
Borda score under the equal-probability interpretation
of subset choice (Theorem 2.7) and the latent voters
profile consistent with this interpretation (Corollary
2.8); and (v) the core that defines the AV Polytope under
the SI model of the underlying preference structure
(Theorem 2.9).
The remaining of the paper is organized as follows:

Section 2.1 introduces the formal definition of permu-
tahedron, both as a convex combination of permutation
vectors and as an intersection of half-planes with a
system of inequalities defining its facets, the dual
definitions of a convex polytope that are of fundamental
importance in the polytope theory. We then elaborate
various alternative constructions of a permutahedron,
i.e., as a zonotope (which is a projection of the cube) in
Section 2.2, as a geometric object circumscribing a
hypersphere in Section 2.3, as a monotone path
polytope (which arises from the lift-up of the projective
map from the cube onto a line segment) in Section 2.4,
and through the canonical projection from the Birkhoff
Polytope in Section 2.5. Each of these constructions
provides a natural link to the binary choice paradigm,
the RU representation, the subset choice paradigm, and
the rank-assignment paradigm, respectively. Section 3
summarizes the central role of permutahedron in
connecting these choice paradigms in view of its rich
geometric–combinatorial properties, and discusses a
connection to the topological approach (Chichilnisky
& Heal, 1983) to preference and choice.
To help readers who might be unfamiliar with the

polytope theory, a review of the mathematical back-
ground is provided as Appendix A. This includes
dualistic characterizations of a polytope either by its
vertices or by its facets, the face lattice of polytopes, the
projection of polytopes (including the projection of
cubes), and the fiber polytope as lift-ups of polytope
projection (including the monotone path polytope).
These materials provide the necessary mathematical
knowledge that our current exposition draws upon.
2. Choice paradigms and the permutahedron

This section will review various choice paradigms and
discuss their inter-connections under the common
framework of the permutahedron. Special attention will
be paid to the geometric and the combinatorial view of
the permutahedron, the various realizations of a
permutahedron as they relate to the various choice
paradigms, and the projections as well as the lift-ups of
projections as the inter-connections among the choice
paradigms.
First, from its construction in Section 2.1, a permu-

tahedron over d objects, or d-permutahedron Pd�1 for
short,6 will be shown to be a natural candidate for
representing the probability distribution Pp of linear
orders p over a d-element set ½d�; with each of the d !
vertices of Pd�1 representing a possible ranking pALd :
Since a point within Pd�1 represents the Borda score
associated with Pp; the various geometric properties of a
permutahedron reviewed here will naturally link the
ranking probability and its Borda score to other choice
paradigms, including the binary choice paradigm, the
subset choice paradigm, and the rank-assignment
paradigm, and to other representations of choice
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7The reason that a d-permutahedron is subscripted d � 1 rather

than d will become clear in Proposition 2.5. See also footnote 6.
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probability, including the BTL representation and the
RU representation. Then, in Section 2.2, the d-
permutahedron Pd�1 will be realized as the affine
projection of a dðd � 1Þ=2-dimensional cube Cdðd�1Þ=2;
the latter is the space that defines binary choice
probabilities. Explicating the projection matrix yields a
formula, Young’s formula, to associate an induced score
for any binary choice vector (probability), not necessa-
rily the ones that conform to a given ranking probability
through (5), i.e., the ones that lie within the Binary
Choice Polytope. It will be shown that this induced score
is consistent with the representation of the binary choice
probability, along with certain desired properties. Next,
in Section 2.3, the d-permutahedron Pd�1; as a ðd � 1Þ-
dimensional object, is shown to be circumscribed by a
unit sphere Sd�2; this property will be used to construct
a geometric representation of the RU model and to
derive its relation to ranking probabilities (including the
Block–Marschak condition). There, it will be shown that
any interval-scale vector (a vector whose components
are subject to the affine freedom in the choice of a
reference zero and a scaling factor) can be mapped to a
point in the ðd � 2Þ-dimensional unit sphere Sd�2

osculating Pd�1: Next, in Section 2.4, Pd�1 will be
realized as a special fiber polytope, namely the mono-
tone path polytope, arising from projecting a d-cube
CdCRd to a line segment ½0; d�CR1; this property will
be shown to relate subset choice to ranking. There, all
subsets of the d-element set ½d� are naturally mapped to
the 2d vertices of Cd ; and AV under the Brams–
Fishburn tally procedure is shown to amount to an
equal-probabilistic assignment of all linear orders
that are compatible with the chosen subset. The SI
model of approval voting (Falmagne & Regenwetter,
1996) is also analyzed using this framework. Finally,
in Section 2.5, Pd�1 will be related to the rank-
position probability that arises from rank-matching
paradigm. That a Birkhoff Polytope Bd for d 
 d

bistochastic matrices has a canonical projection to
Pd�1 will be utilized to derive an induced score for the
d candidates.

2.1. Permutahedron

2.1.1. Construction of a permutahedron

Permutahedron is a convex polytope associated with
permutations on a set of given objects labelled by
natural numbers ½d� ¼ f1;y; dg: To fix the notation, let
p ¼ /pð1Þpð2Þ?pðdÞS denote as a mapping from ½d� as
the set of candidates to ½d� as the set of ranks, with pðiÞ
denoting the rank (also called ‘‘rank-position’’) asso-
ciated with candidate i; and p�1ð jÞ denoting the
candidate occupying the rank j: Our convention is that
higher ranks correspond to larger integer values, so p ¼
/4132S means that candidate ‘‘1’’ has the highest rank
or is most preferred ðpð1Þ ¼ 4Þ; that candidate ‘‘2’’ has
lowest rank or is least preferred ðpð2Þ ¼ 1Þ; etc. For d

candidates, there are a total of d ! ¼ d 
 ðd � 1Þ?2 
 1
different permutations, denoted as pkALd ðk ¼
1; 2;y; d!Þ; where Ld is the set of all permutations
over d elements.
To understand how a permutahedron arises, intro-

duce the notion of a permutation vector, namely, a d-
dimensional vector whose components are rank-posi-
tions of a linear order p:

xp ¼ ½pð1Þ; pð2Þ;y; pðdÞ�T ; ð12Þ

with T denoting vector transpose. For instance, when
p ¼ /4132S; the corresponding permutation vector is
xp ¼ ½4; 1; 3; 2�T : There are d! permutation vectors
xpk

ARd ; k ¼ 1;y; d!; all defined in Rd :
A d-permutahedron, denoted Pd�1;

7 is the convex
hull of all of the d! permutation vectors P ¼
fxp1 ; xp2 ;y; xpd!

g

Pd�1 ¼ convðPÞ ¼ l1xp1 þ l2xp2 þ?þ ld!xpd!
:

(

pkALd ; lkX0;
Xd!

k¼1
lk ¼ 1

)
: ð13Þ

Its barycenter b; a d-dimensional vector, is obtained by
setting l1 ¼ l2 ¼ ? ¼ ld! ¼ 1=d ! in (13):

b ¼
Xd!

k¼1

1

d !
xpk

¼ ðd � 1Þ!ð1þ 2þ?þ dÞ
d !

1 ¼ d þ 1

2
1;

where 1 ¼ ½1; 1;y; 1�T :
This construction of a permutahedron is closely

related to the calculation of Borda scores in the voting
and the social choice literature (cf. Section 1.3). There,
the collection of lk (denoted Pp) is rightfully called
the voters profile, and formula (10) for calculating
Borda scores vBd gives exactly the same form of (13),
once the definition of a permutation vector (12) is
understood. Though not widely picked up by mathe-
matical psychologist until recently, permutahedra
have been explicitly applied to consensus ranking
(Cook & Seiford, 1982, 1990) and to the description
of statistical ranking models in general (McCullagh,
1993).
The permutahedronPd�1 characterizes concisely both

combinatorial and geometric properties of permutations
over d objects, apparently first investigated by Schoute
(1911). The actual shapes of some low-dimensional
permutahedra are graphically illustrated in Fig. 2 for
d ¼ 3; 4: Instead of using the permutation vectors
½pð1Þ; pð2Þ;y; pðdÞ�T ; define the p-corresponding vertex
as xp ¼ ½cpð1Þ; cpð2Þ;y; cpðdÞ�T for any base vector
½c1; c2;y; cd �T (for later convenience c14c24?4cd is
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(a)

(b)

Fig. 2. Permutahedra in two and three dimensions, in the case of (a)

d ¼ 3 (note its construction as the convex hull of

½1; 2; 3�T ; ½1; 3; 2�T ;y; ½3; 2; 1�T ); and in the case of (b) d ¼ 4: Note

that in (b), consistent with our convention of interpreting pðiÞ ¼ j as

‘‘item i’s rank-position is j’’, the vertices are labelled as ordering

ðp�1ð1Þp�1ð2Þp�1ð3Þp�1ð4ÞÞ; such that the neighboring vertices differ

only in the transposition of adjacent ranks between two objects (for

instance the exchange of the lowest ranks between the first and the

third object ð1342Þ2ð3142Þ). This ensures that the permutation

vectors associated with adjacent vertices differ with only minimum

distance. This is the labelling scheme adopted in Ziegler (1995, p. 18)

and in Yemelichev (1984, p. 227). Note that the permutation vector

associated with, say ð1342Þ; is ½1; 4; 2; 3�T :

J. Zhang / Journal of Mathematical Psychology 48 (2004) 107–134114
required without loss of generality). The resulting
geometric object

convf½cpð1Þ; cpð2Þ;y; cpðdÞ�T : pALdg ¼
Xd!

k¼1
lk

cpkð1Þ

cpkð2Þ

^

cpkðdÞ

2
6664

3
7775
is called a permutation polytope, which generalizes
permutahedron (13) in a trivial way. Such mathematical
generalization is in obvious correspondence with the
general position methods for rank aggregation (Young,
1975, Cook & Kress, 1992). Another related combina-
toric–geometric object is the permuto-associahedron
constructed for signed, bracketed permutations, see
Ziegler (1995) for further details.

2.1.2. Facet-defining inequalities of a permutahedron

Permutahedra are known to have relatively simple
configurations in space. They are simple polytopes. In
fact, although a d-permutahedron has d ! vertices
defined in Rd ; it is actually a geometric object of
dimension d � 1 (a proof of this observation will be
given in Proposition 2.5 in the next subsection). For this
reason, the d-permutahedron is denoted as Pd�1:
As an alternative to defining a permutahedron as the

convex combination of permutation vectors, we may
also define it as the bounded intersection of half-spaces
given by a system of hyperplanes, in accordance with the
basic, dualistic view of a convex polytope (see Appendix
A). As any facet of a permutahedron is passed through
by one and exactly one of the hyperplanes (which
assumes an equality sign in the system of facet-defining
inequalities/equalities), the geometric arrangement of
these hyperplanes in space defines the same Pd�1:
Fortunately, this system of facet-defining inequalities/
equalities has been worked out and is to be reproduced
below—they followed a strong result on vector major-
ization by the combinatoric mathematician Richard
Rado in a paper published in 1952, and were given in its
explicit form in a book on polytope and optimization by
Yemelichev, Kovalev, and Kravtsov (1984). The facet-
defining equality/inequalities were also independently
derived by Gaiha and Gupta (1977).

Theorem 2.1 (Rado, 1952; Gaiha & Gupta, 1977,
Theorem 2; Yemelichev, Kovalev, & Kravtsov,
1984). The d-permutahedron Pd�1 is given by the

following system of constraints on its coordinates v ¼
½v1; v2;y; vd �TX
iAM

vip
jMjð2d � jMj þ 1Þ

2
for all MC½d�; ð14Þ

X
iA½d�

vi ¼
dðd þ 1Þ

2
; ð15Þ

where M is a non-trivial (proper and non-empty) subset of

½d� having integer set-size jMj:

Proof. See Yemelichev et al. (1984, pp. 228–230), using
Rado’s result regarding necessary and sufficient condi-
tions for majorization of one vector by another. An
alternative proof is given in Gaiha and Gupta (1977),
using a well-known inequality from Hardy, Litteg, and
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Polya (1934). A third proof is given in Ziegler (1995, p.
304). &

Remark 1. Recall the generalization of a permutahe-
dron to a permutation polytope, in which the base
vector becomes ½c1; c2;y; cd �T (with c14c24?4cd).
The corresponding system of facet-defining inequalities/
equalities areX
iAM

vip
XjMj

i¼1
ci for all MC½d�;

Xd

i¼1
vi ¼

Xd

i¼1
ci:

The case for the d-permutahedron is obtained by simply
setting ci ¼ d � i þ 1:

Remark 2. The proof of this proposition, as well as
Corollary 2.2 below involves the notion of vector
majorization and the Birkhoff/von Neumann Theorem
on bistochastic matrices (see Section 2.5). Ziegler’s
(1995) proof was based on the notion of fiber polytopes.
These proofs are omitted here due to their high
technicality.

Remark 3. Because of equality (15), the system of
inequalities (14) can be equivalently cast asX
iAM

viX
jMjðjMj þ 1Þ

2
for all MC½d�:

Since a permutahedron can be described as the
intersection of a collection of half-spaces (each given
by a facet-defining hyperplane), its individual faces are
characterized by letting certain inequality to assume
equal sign. Yemelichev et al. (1984) provided a
particularly powerful result in elucidating all faces
of a permutahedron, as reproduced below without
proof.

Corollary 2.2 (Yemelichev et al., 1984, Theorem 3.4). A

set of solutions of system (14), (15) is a j-face ð0pjpd �
2Þ of the d-permutahedron if and only if for each such

solution, inequalities (14) are satisfied as equalities only

for a nested sequence of subsets M1;M2;y;Md�j�1;
where

M1CM2C?CMd�j�1Cf1; 2;y; dg:

In particular, each of the hyperplanes that define the

boundary of the permutahedron (i.e. that pass through the

facets) ‘‘converts’’ only one of the inequalities in (14) into

an equality (since d � j � 1 equals 1 for j ¼ d � 2). Each

of the 2d � 2 ways of selecting a non-trivial subset MC½d�
corresponds to a distinct facet.

Proof. See Yemelichev et al. (1984, p. 231). &
Remark. The faces of Pd�1 have interesting properties:
each of its j-dimensional faces or j-face ð j ¼ 0; 1;y; d �
2Þ corresponds to an ordered partition of the set
f1; 2;y; dg into d � j non-empty parts. Thus vertices
ð j ¼ 0Þ are permutations, and edges ð j ¼ 1Þ connect
pairs of rankings that differ only by a single transposi-
tion of adjacent rank-positions for two elements of ½d�
(cf., Fig. 2). It can be shown that every vertex
of Pd�1 belongs exactly to d � 1 edges (Gaiha &
Gupta, 1977). Each facet (j ¼ d � 2), on the other
hand, is a partition of the set ½d� into two subsets
with non-overlapping elements ðS; ½d�\SÞ; where S

is any non-empty and proper subset of ½d�: The
number of j-faces of a permutahedron fjðPd�1Þ has the
expression

fj ¼
X

fi1;i2;y;id�j

i1þi2þ?þid�j¼dg

d!

i1!i2!?id�j!
ð16Þ

(the sum is taken across all positive integral solutions of
i1 þ i2 þ?þ id�j ¼ d). The number of facets can be
calculated as 2d � 2:

Besides being characterized as the convex hull of
permutation vectors (13), or as the intersection of a
system of half-spaces (14) and (15), a permutahedron
can also arise as a projection, or a lift-up of a certain
projection, between polytopes. More specifically, a d-
permutahedron can be realized as a zonotope, the
projection of a unit cube of dimension dðd � 1Þ=2; as a
monotone path polytope associated with projecting a
cube of dimension d onto a line segment ½0; d�; or as
the canonical projection of the Birkhoff Polytope
which is associated with d 
 d bistochastic matrices;
see below.

2.2. Connection to binary choice vectors via zonotope

projection

2.2.1. Projection of a binary choice vector

Permutahedron is a special kind of polytope, namely
a zonotope, defined as the image of a cube under affine
projection. In other words, a permutahedron can be
realized as the projection of a cube of an appropriate
(and higher) dimension. This observation was made in
Ziegler (1995, p. 200), along with a sketch of proof.
Since this fact plays a major role in linking binary
choice probabilities and ranking probabilities, such
zonotope projection is explicated here, along with a
constructive proof. A graphic illustration is shown as
Fig. 3, for d ¼ 3:

Theorem 2.3. The d-permutahedron Pd�1 is realizable

as an affine projection of a cube Cdðd�1Þ=2; the domain

on which the binary choice probability vector
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Cd(d-1)/2
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x
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a13

a23

Fig. 3. The d-permutahedron as a zonotope, i.e., resulting from a

suitably chosen projection of a cube of dimension dðd � 1Þ=2 (here

d ¼ 3). Note that projecting to the center of the hexagon (the 3-

permutahedron) are two vertices ½a12; a13; a23�T ¼ ½1; 0; 1�T and

½a12; a13; a23�T ¼ ½0; 1; 0�T ; which are ‘‘invalid’’ vertices that lie outside

of the Binary Choice Polytope for d ¼ 3 (cf. Section 1.1).
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a ¼ ½a11; a12;y; aðd�1Þd �T is defined. In other words,
there exists a surjective map: Cdðd�1Þ=2{a/v ¼
½v1; v2;y; vd �TAPd�1 given by

v1 ¼ a11 þ a12 þ?þ a1d þ 1

2
¼

Pd
j¼1;ja1

a1j þ 1

v2 ¼ a21 þ a22 þ?þ a2d þ 1

2
¼

Pd
j¼1;ja22

a2j þ 1

??

vd ¼ ad1 þ ad2 þ?þ add þ 1

2
¼

Pd
j¼1;jad

adj þ 1

8>>>>>>>>>><
>>>>>>>>>>:

: ð17Þ
J ¼

1 1 1

�1 0 0

0 �1 0

0 0 �1
^ ^ ^

^ ^ ^

0 0 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflffl
d�1

2
6666666666666664
Proof. Recall (see Appendix A) that a p-dimensional
unit cube Cp; centered at origin, can be expressed as
x ¼

Pp
l¼1tl el with el ’s as base vectors and �1

2
ptlp1

2
as

coordinates ðl ¼ 1; 2;y; pÞ; see (A.1). Its projection
x/z ¼ Jxþ b into a lower-dimensional space Rq{z

ðqopÞ can be expressed as z ¼
Pp

l¼1tl jl þ b where jl is
the lth column vector of the q 
 p matrix J; and b is the
image of the p-cube’s center, see (A.2). In the present
case, p ¼ dðd � 1Þ=2 and tl represents the pairwise
binary choice probability tl ¼ aij � 1

2
; 0paijp1: For

convenience, the ij subscript (i ¼ 1; 2;y; d; j ¼ i þ 1;
i þ 2;y; d) is used in place of l ðl ¼ 1; 2;y; d

ðd � 1Þ=2Þ; so long as it is understood that
Pdðd�1Þ=2

l¼1 ¼Pd
i¼1
Pd

j¼iþ1; with

l ¼ ði � 1Þd � iði þ 1Þ
2

þ j: ð18Þ

To ensure that the center of the cube is properly mapped

to the center of the d-permutahedron, we choose b ¼
dþ1
2 1 ¼ dþ1

2 ½1; 1;y; 1�T :
We now proceed to construct the particular matrix

J ¼ ½j1; j2;y; jdðd�1Þ=2� by setting

jl ¼ ei � ej; i ¼ 1; 2;y; d; j ¼ i þ 1; i þ 2;y; d;

where ei ¼ ½0;y; 0|fflfflffl{zfflfflffl}
i�1

; 1; 0;y; 0|fflfflffl{zfflfflffl}
d�i

�T is just a base vector of

Rd (with 1 in its ith coordinate and 0 elsewhere). More
explicitly, the ðk; lÞth entry of the matrix J is dik � djk;

with l linked to i; j through (18), and the Kronecker d-
function given by

dki ¼
1 when k ¼ i;

0 otherwise:

�

So the ðk; lÞth entry of the projection matrix is 1 (if
k ¼ i), �1 (if k ¼ j), or 0 (otherwise). When we line up
the components of the binary choice vector (a column
vector) in the following order a ¼ ½a12; a13;y; a1d ; a23;

y; a2d ;y; aðd�1Þd �T ; the projection matrix has the

following explicit form
? 1

? 0

? 0

? 0

? ^

? 0

? �1fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0 0 ? 0

1 1 ? 1

�1 0 ? 0

0 �1 ? 0

^ ^ ? ^

0 ^ ? 0

0 0 ? �1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
d�2

?

?

?

?

?

?

?

0 0

0 0

0 0

^ ^

1 1

�1 0

0 �1|fflfflfflfflffl{zfflfflfflfflffl}
2

0

0

0

^

0

1

�1|{z}
1

3
7777777777777775

: ð19Þ
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With this J; the resulting zonotope is, according to (41),

z ¼ d þ 1

2
1þ

Xd

i¼1

Xd

j¼iþ1
aij �

1

2

� �
ðei � ejÞ:

The terms for summation evaluate toXd

i¼1

Xd

j¼iþ1
aij �

1

2

� �
ei �

Xd

i¼1

Xd

j¼iþ1
aij �

1

2

� �
ej

¼
Xd

i¼1

Xd

j¼iþ1
aij �

1

2

� �
ei

�
Xd

j¼1

Xd

i¼jþ1
aji �

1

2

� �
ei ðexchange of indices i; jÞ

¼
Xd

i¼1

Xd

j¼iþ1
aij �

1

2

� �
ei

þ
Xd

i¼1

Xi�1
j¼1

1

2
� aji

� �
ei

Xd

j¼1

Xd

i¼jþ1
¼
Xd

i¼1

Xi�1
j¼1

 !

¼
Xd

i¼1

Xd

j¼iþ1
aij �

1

2

� �
ei

þ
Xd

i¼1

Xi�1
j¼1

aij �
1

2

� �
ei aij �

1

2
¼ 1

2
� aji

� �

¼
Xd

i¼1

Xd

j¼1;jai

aij �
1

2

� �
ei

¼
Xd

i¼1

Xd

j¼1;jai

aij ei �
d � 1

2
1

Xd

i¼1

Xd

j¼1;jai

ei

 

¼
Xd

i¼1
ðd � 1Þei ¼ ðd � 1Þ1

!
:

Therefore,

z ¼
Xd

i¼1

Xd

j¼1;jai

aij

 !
ei þ 1 ¼

Xd

i¼1

Xd

j¼1;jai

aij þ 1

 !
ei:

To verify that the zonotope described by the above z

vector is indeed the d-permutahedron, we proceed to
show that its components, hereafter denoted vi with an
abuse of notation

vi ¼ 1þ
Xd

j¼1;jai

aij ¼
1

2
þ
Xd

j¼1
aij ;

in fact satisfy the system of constraints defining a
permutahedron. First, consider equality (15):Xd

i¼1
vi ¼

Xd

i¼1
1þ

Xd

j¼1;jai

aij

 !

¼ d þ dðd � 1Þ
2

ðsince aij þ aji ¼ 1Þ

¼ dðd þ 1Þ
2

;

which is the right-hand side of (15). Second, for any
subset MCf1; 2;y; dg; denote its complementary as
%M; and the number of elements in M and %M as jMj and

d � jMj;

X
iAM

vi ¼
X
iAM

1þ
Xd

j¼1;jai

aij

 !

¼ jMj þ
X
iAM

X
jAM;jai

aij þ
X
jA %M

aij

0
@

1
A

¼ jMj þ jMjðjMj � 1Þ
2

þ
X
iAM

X
jA %M

aij

p jMj þ jMjðjMj � 1Þ
2

þ jMjðd � jMjÞ

since ðaijp1 and j %Mj ¼ d � jMjÞ

¼ jMjð2d � jMj þ 1Þ
2

;

which is the right-hand side of (14). Third, we show that
for any pALd ; there is a one-to-one mapping between a
p-representing vertex of Pd�1 and the corresponding
vertex of Cdðd�1Þ=2 consistent with p: For ranking p; the
inequality pðiÞ4pð jÞ means that candidate i ranks
higher than candidate j according to p: The particular
vertex of Cdðd�1Þ=2 consistent with this p is represented
by the binary choice vector ap whose components are

ap
ij ¼

1 if pðiÞ4pð jÞ;
0 if pðiÞopð jÞ:

�
After projection,

vi ¼ 1þ
Xd

j¼1;jai

ap
ij

¼ 1þ
X

f j : pð jÞopðiÞg
ap

ij ðsince ap
ij ¼ 0 if pðiÞopð jÞÞ

¼ 1þ ðpðiÞ � 1Þ ðsince apij ¼ 1 for each j : pð jÞopðiÞÞ
¼ pðiÞ:

This is to say, the coordinates of the projected point
½v1; v2;y; vd �T ¼ ½pð1Þ; pð2Þ;y; pðdÞ�T is the p-repre-
senting vertex in the d-permutahedron. &

Remark 1. Mnemonically, projection (17) can be
written

v1

v2

^

vd

2
6664

3
7775 ¼

a12 a22 ? a1d

a21 a22 ? a2d

^ ^ ^ ^

ad1 ad2 ? add

2
6664

3
7775

1

1

^

1

2
6664
3
7775þ 1

2

1

1

^

1

2
6664
3
7775

or

v ¼ A1þ 1

2
1:
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It conforms8 to the formula in Young (1974) for
calculating Borda scores given a binary choice prob-
ability (see also Regenwetter & Grofman, 1998a), but
there is an important difference. Young’s formula
applies to the case where (i) the ranking probability
(voters profile) Pp is known; and (ii) the binary choice
probability is calculated from Pp according to (5). By
applying Young’s formula, the resulting scores are
consistent with Borda’s idea of assigning a weight of k

ð0pkpd � 1Þ in accordance with the number of objects
ðkÞ ranked below the focal object. Here, no constraint
has been placed on the binary choice probability vector.
Even when it may not be compatible with any ranking
probability/voters profile, i.e., when it lies outside of the
Binary Choice Polytope, a binary choice vector still
maps to a unique point in the permutahedron and
thereby defines a Borda score. Formula (17) can also be
viewed as constructing the graph-theoretic ‘‘out-degree’’
of each candidate, and reflects the essence of the ‘‘net
probability’’ constructed by Regenwetter, Marley, and
Grofman (2002) for arbitrary binary relations.

Remark 2. Formula (17) provides some useful insights
into the property of the so-called ‘‘Condorcet winner’’ in
the voting literature. A Condorcet winner is a candidate
who is preferred to any other candidate in pairwise
contests. Translated into the current notation, a Con-
dorcet winner k satisfies akjX

1
2
for all jA½d� (and for at

least one such j; strict inequality holds). Therefore,
the associated Borda score satisfies vk4ðd þ 1Þ=2:
This is to say, a Condorcet winner k cannot have the
lowest Borda score, for otherwise vkpvi; ðiA½d�; iakÞ;Pd

i¼1 viX
Pd

i¼1 vk ¼ vk 
 d4dðd þ 1Þ=2; contradicting
(15). This is a well-known result in the voting commu-
nity.

Remark 3. Formula (17) provides a connection to
another important notion in voting, namely, that of
Copeland score (Copeland, 1951, Saari & Merlin, 1996,
Merlin & Saari, 1997). A Copeland scoring rule first
assigns, in pairwise contests between a focal candidate i

and each other candidates kA½d�; kai; a mark of 1; 1
2
; 0 if

candidate i beats, ties with, or loses to candidate k: The
marks are then summed to yield a Copeland score vCPi

for each candidate i; 8iA½d�: Translated into the current
notation, aik is allowed to only take the value of 1;

1
2; 0—

formula (17) in this case exactly yields the Copeland
score.

Remark 4. Note that mapping (17) is surjective (onto):
in general there are uncountably many points of
Cdðd�1Þ=2 (i.e., points in the Binary Choice Polytope)
8The additional term 1 in (17) is the result of our assigning a mark of

pðiÞ; as opposed to the more conventional pðiÞ � 1; for candidate i

under p: See footnote 4.
that map to the same point in the d-permutahedron
Pd�1; this is understandable since the former is of much
higher dimension than the latter. The center of the cube
Cdðd�1Þ=2; with coordinates aij ¼ 1

2
; ði ¼ 1; 2;yd; j ¼

i þ 1; i þ 2;y; dÞ projects to the barycenter b ¼ dþ1
2
1 of

Pd�1: The ‘‘strength’’ of this induced ranking can be
defined as

1

d

X
i;jA½d�

ðvi � vjÞ2:

When vi ¼ dþ1
2
; 8iA½d�; there is null strength in the

induced ranking. For d ¼ 3; null ranking strength
occurs if and only if the following tri-cyclic condition
is satisfied—this is when the binary choice vector
coincides with the axis of projection (see Fig. 3):

a12 ¼ a23 ¼ a31:

For d43; cyclic preference is neither a necessary nor a
sufficient condition for null ranking strength. Statistical
tests on the strength of a rank vector have been devised
(Feigin & Cohen, 1978, Alvo, Cabilio, & Feigin, 1982;
Feigin & Alvo, 1986, Alvo & Cabilio, 1993).

2.2.2. Compatibility with the BTL choice model

The previous subsection shows that any binary choice
vector induces a (generalized Borda) score for each
candidate in ½d�: the induced score equals the sum of
probabilities in which a candidate is (pairwise) chosen
over other candidates. Here we further investigate
whether this induced score is compatible with other
representations for binary choice, most notably the BTL
representation (Bradley & Terry, 1952, Luce, 1959). If
the score v ¼ ½v1; v2;y; vd �T ðvi40; i ¼ 1; 2;y; dÞ is
compatible with the BTL representation of the binary
choice probability, then

aij ¼
vi

vi þ vj

:

If our induced score (17) is compatibility with the BTL
representation, then a mapping arises G : Pd�1-Pd�1:
In vector components G : v/½g1; g2;y; gd �T through

gkðv1; v2;y; vdÞ ¼
Xd

j¼1

vk

vk þ vj

þ 1

2
; kA½d�: ð20Þ

The properties of such a map are given in the next
corollary.

Corollary 2.4. (i) The map G is ‘‘rank-preserving’’,
namely, it preserves the ranks of the components of the

vector v ¼ ½v1; v2;y; vd �T ; in that gipgj if and only if

vipvj: (ii) The map G is ‘‘homogenizing’’, namely, it

makes pairwise utility ratios closer to unity:

gi

gj

� 1

����
����p vi

vj

� 1

����
����:
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9The affine equivalence relationship is easily seen to be: (i) reflexive:

vBv; (ii) symmetric: vBv0-v0Bv; this is because v0 ¼ avþ b1-v ¼
ð1=aÞv0 þ ð�b=aÞ1; and (iii) transitive: vBv0; v0Bv00-vBv00; this is

because v0 ¼ avþ b1; v00 ¼ a0v0 þ b01-v00 ¼ ðaa0Þvþ ða0b þ b0Þ1:
10Let X be a set and let B be an equivalence relation on X : The

equivalence classes due to B form a partition of X into pairwise

disjoint subsets whose union is X : The set of all equivalence classes will

be denoted X=B; and is called the quotient set of X modulo the

equivalence relation. There is a natural projection

g : X-X=B

such that gðxÞ is the equivalence class of x:
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(iii) The only fixed point of the map G is the barycenter of

the Pd�1:

Proof. From (20), we have

gi � gk ¼
Xd

j¼1

vi

vi þ vj

�
Xd

j¼1

vk

vk þ vj

¼
Xd

j¼1

ðvi � vkÞvj

ðvi þ vjÞðvk þ vjÞ

¼ ðvi � vkÞ
Xd

j¼1

vj

ðvi þ vjÞðvk þ vjÞ
:

Since all the terms under summation are strictly positive,
we conclude that gi � gk and vi � vk have the same sign,
and that vi ¼ vk iff gi ¼ gk: Therefore the transforma-
tion G is ‘‘rank preserving’’: giXgk iff viXvk:
To prove the homogenizing property of the map G;

we calculate

gi

gk

� vi

vk

¼ gi

vi

� gk

vk

� �
vi

gk

¼
Xd

j¼1

vk � vi

ðvi þ vjÞðvk þ vjÞ

 !
vi

gk

¼ 1� vi

vk

� �
vivk

gk

Xd

j¼1

1

ðvi þ vjÞðvk þ vjÞ

 !
: ð21Þ

Therefore, gi=gk � vi=vk and 1� vi=vk have the same
sign. Suppose vipvk; or vi=vkp1; then gi=gkXvi=vk: On
the other hand, since G has just been proven to be rank-
preserving, the assumption vipvk also leads to gipgk or
gi=gkp1: That is to say
vi

vk

p
gi

gk

p1

holds whenever vipvk: Similarly we can show that when
viXvk;
vi

vk

X
gi

gk

X1:

Therefore

gi

gk

� 1

����
����p vi

vk

� 1

����
����:

The mapping G is making the scores more and more
homogenous.
Finally, vi ¼ dþ1

2 ; 8iA½d� is easily verified to be a fixed
point of the map G: To show that it is the only fixed
point, i.e., to show that gi ¼ vi; 8iA½d� leads to vi ¼ dþ1

2
;

we note from (21) that requiring gi ¼ vi and gk ¼ vk for
two distinct i; k leads to vi ¼ vk: Therefore all vi’s must
be equal (and equal to dþ1

2
) for any fixed point of G: &

Remark. Given the arbitrary binary choice probability
aij’s, one often seeks to recover a scale, namely the vi’s
under the BTL representation, on individual candidates
in ½d�: Part (iii) of Corollary 2.4 implies that the gi’s may
not be such v0iS in general, but are only compatible with
the BTL representation, in the sense of (i) and (ii).

2.3. Connection to the RU representation via spherical

embedding

2.3.1. Affine equivalence and the representation of RU on

the unit sphere

As briefly discussed in Section 1.3, the non-parametric
RU representation assumes that each candidate in the
choice set ½d� � f1; 2;y; dg is associated with a real-
valued random variable (‘‘utility’’) vi; i ¼ 1; 2;y; d:
The joint distribution of the d random variables v ¼
½v1; v2;y; vd �T is given by the probability density
f ðv1; v2;y; vdÞ: Under (4), the non-coincidence condi-
tion of Block and Marschak (1960), the ranking
probability and the density function of the jointly
distributed RU variables are related through Eq. (2).
Let us now investigate the properties of the

region of integration Dp ¼ fv ¼ ½v1; v2;y; vd �T : vp�1ðdÞ
4vp�1ðd�1Þ4?4vp�1ð1Þg associated with a given p:
Clearly, if vADp is a point in this region, then after a
positive affine transformation v0 ¼ avþ b1; with any
a40 and b; the new point also belongs to this region
v0ADp; this is because vp�1ðdÞ4vp�1ð1Þ4?4vp�1ð1Þ-
avp�1ðdÞ þ b4avp�1ðd�1Þ þ b4?4avp�1ð1Þ þ b for all
a40 and b: This observation motivates us to introduce
the notion of ‘‘affine equivalency’’ B over the point-set
Rd in which the utility vectors v are defined. Specifically,
vBv0 if and only it there exists a unique a40 and b such
that v0 ¼ avþ b1:9 The affine parameters a; b are defined
on A ¼ ð0;NÞ 
 ð�N;NÞ: We can thus define a
quotient space,10 Rd=A; to represent all equivalence
classes of utility vectors vARd :
The idea of affine equivalency of utility vectors is

actually rooted in the interval-scale nature of utility
measurement. The affine freedom ða; bÞ is a natural
consequence of the arbitrariness in choosing the origin
and the unit in assigning utility values (here all utility
dimensions are interchangeable therefore necessarily
have the same reference zero and measuring unit). So
we may impose, as a normative requirement of the RU
model, the following representational constraint on the
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probability density function:

f ðv1; v2;y; vdÞ ¼ gða; bÞ hðu1; u2;y; udÞ
with

ui ¼
vi � b

a
;

along with the restrictionsXd

i¼1
ui ¼ 0;

Xd

i¼1
u2i ¼ 1

so that

b ¼
Pd

i¼1vi

d
; a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

i¼1 ðvi � bÞ2
r

:

Note that the probability density hðu1; u2;y; udÞ is
defined on the unit sphere u ¼ ½u1; u2;y; ud �TASd�2;
which can be divided into d ! patches

dp ¼ u ¼ ½u1; u2;y; ud �T : up�1ðdÞ4up�1ðd�1Þ

(

4?4up�1ð1Þ;
Xd

i¼1
ui ¼ 0;

Xd

i¼1
u2i ¼ 1

)
:

Each point uAdp defines an affine-equivalent class of
points vADp: Therefore

Pp ¼
Z
Dp

f ðv1; v2;y; vdÞ dv1 dv2?dvd

¼
Z
dp

hðu1; u2;y; udÞ do;

where the a; b variables have been integrated out, with
the remaining spherical variables to be integrated on the
unit sphere (here do denotes the surface element of
Sd�2). Parametric models of hðu1; u2;y; udÞ on Sd�2 can
be prescribed—a prominent one being the von-Mises–
Fisher distribution, which belongs to an exponential
family.
To summarize, based on considerations of the

interval-scale nature of utility vectors, we converted
the RU model into an affine-equivalent representation
on the unit sphere.

2.3.2. Vertices of a permutahedron as spherical

landmarks

As the next step, we follow the approach of
McCullagh (1993) to relate the unit sphere Sd�2 to the
permutahedron Pd�1: To do so, the following property
of a permutahedron is reviewed.

Proposition 2.5. A d-permutahedron Pd�1 is a ðd � 1Þ-
dimensional object. All of its d ! vertices are equidistant to

its barycenter dþ1
2
½1; 1;y; 1�T :

Proof. Recall the definition of a permutahedron (13),
using permutation vectors as its vertices. For any
permutation vector xpk
ARd as given by (12), its

projection along the axis 1 � ½1; 1;y; 1�T equals

½1; 1;y; 1� 
 xpk
¼ pkð1Þ þ pkð2Þ þ?þ pkðdÞ ¼

dðd þ 1Þ
2

;

which is a constant (i.e., independent of the particular
k). Therefore, for any point v in the permutahedron, its
projection along ½1; 1;y; 1�T

½1; 1;y; 1� 
 v ¼ ½1; 1;y; 1� 

Xd!

k¼1
lkxpk

 !

¼
Xd!

k¼1
lk

dðd þ 1Þ
2

¼ dðd þ 1Þ
2

is a constant, since
Pd!

k¼1 lk ¼ 1: This proves that d-
permutahedron lies in a ðd � 1Þ-dimensional subspace,
and the distance of any vertex to the barycenter
dþ1
2
½1; 1;y; 1�T is

Xd

j¼1
pð jÞ � d þ 1

2

� �2

¼
Xd

j¼1
j � d þ 1

2

� �2

¼ðd þ 1Þdðd � 1Þ
12

;

a constant. To prove that it is of dimensionality d � 1
exactly (and not less), we only need to show that if its
projection along a vector c ¼ ½c1; c2;y; cd �T is a
constant, then that vector must be proportional to 1;
i.e., c1 ¼ c2 ¼ ? ¼ cd : To show, for instance, c1 ¼ c2;
consider the projection of two vertices x1 ¼
½1; 2; 3;y; d�T and x2 ¼ ½2; 1; 3;y; d�T : That x1 
 c ¼
x2 
 c immediately leads to c1 ¼ c2: Therefore, all ci’s
must be equal. &

Remark 1. Proposition 2.5 shows that the d ! vertices of
a permutahedron are equal-distant to its barycenter.
This suggests that a properly scaled d-permutehedron
can be circumscribed by the unit sphere Sd�2: For
example, the hexagon (in Fig. 2a) is circumscribed by a
circle ðS1Þ; whereas the 4-permutahedron (in Fig. 2b) is
circumscribed by a sphere (S2). Therefore, the d !
vertices of the permutehedron serve as landmarks of
Sd�2 on which the probability density hðu1; u2;y; udÞ is
defined. The vertex p ¼ /pð1Þpð2Þ?pðdÞS corresponds
to equally spaced u-values:

up�1ðdÞ � up�1ðd�1Þ ¼ up�1ðd�1Þ � up�1ðd�2Þ

¼ ? ¼ up�1ð2Þ � up�1ð1Þ: ð22Þ
Solving for the ui’s yields

up�1ð jÞ ¼
ffiffiffi
3

p
ð2j � ðd þ 1ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðd þ 1Þðd � 1Þ
p :

With this set of vertices, most points on Sd�2 can be
classified, using the spherical distance metric, as
belonging to a certain closest vertex—each vertex p ¼
/pð1Þpð2Þ?pðdÞS has a region of ‘‘attraction’’ dp; i.e.,
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a neighborhood within which all points are closer to this
vertex than to any other vertex. The only exceptions are
the points on the boundaries of such regions—they
occur when at least two (but not all d) candidates have
same utility values, i.e., are tied in a weak order. Each
region of attraction turns out to be the intersection of an
unbounded, polyhedral cone (whose apex is at the center
of the sphere) with Sd�2; the sphere Sd�2 itself is then
divided, by these d ! polyhedral cones, into d ! patches
dp; pALd :

Remark 2. Three observations of this spherical repre-
sentation can be made. First, the Block and Marschak
(1960) condition (4) is equivalent to stating that the
boundaries of d’s have measure zero in probability.
Second, ranking probabilities can be viewed as a
special kind of RU model in which the probability
measure is concentrated on the d ! isolated points
on the sphere Sd�2; this is exactly Block and Marschak’s
(1960) construction of RU density function from a
given ranking probability. Third, for any RU distribu-
tion, the ranking probability, induced according
to (2), can be viewed as individual vertices (linear
orders) of the permutahedron ‘‘pulling’’ the probability
measure that are ‘‘spread’’ in respective neighborhoods
towards their centers; the boundary of attraction is
given by setting up�1ðkþ1Þ ¼ up�1ðkÞ for one of the k ¼
1; 2;y; d � 1; this is in accord with the geometric
description of Borda’s rule of converting Borda
scores to a ranking assuming no ties (Cook & Seiford,
1982).

Remark 3. It is worth mentioning that the spherical
representation of the preference space derived here is in
the same spirit as the topological approach to preference
aggregation in the social choice and welfare context
(Chichilnisky, 1980, Chichilnisky & Heal, 1983, Bar-
yshnikov, 1993, Heal, 1997). However, since the utility
vectors associated with the null-preference v1 ¼ v2 ¼
? ¼ vd map to the barycenter of the d-permutahedron,
the space of utility vectors (modulo the affine equiva-
lence) should be, strictly speaking, Sd�2,f0g: The
inclusion of the null-preference point introduces non-
trivial topological consequences for the existence of a
proper social choice function. An elaboration on this
topic will be given by another paper (Jones, Zhang, &
Simpson, 2003).

2.4. Connection to AV via monotone path polytope

2.4.1. Approval voting

AV is a mechanism of social choice through which
each voter selects or approves of, from a master set of
candidates ½d�; a subset of individuals SD½d� who
presumably are above a voter’s ‘‘threshold’’ of accept-
ability. First informally suggested by Robert T. Weber,
it was popularized as a viable alternative voting
mechanism in a number of articles by Brams and
Fishburn (e.g., 1978, 1983). To date, AV mechanism
was or has been adopted by several professional
societies in their electoral process, and its effectiveness
was analyzed using the outcomes of 10 real-life elections
(Regenwetter & Grofman, 1998b). Once AV ballots are
collected, a probability distribution PS (in terms of
relative frequencies) over all subsets SD½d� is specified.
In the common tally procedure of AV (Brams &
Fishburn, 1978), the accumulation of votes (across the
voting population) in favor of each candidate is
according to the total number of times a candidate has
appeared in the subsets of which he is a member/
element. The votes (AV score) for candidate i is counted
by summing across the probability distribution PS over
all subsets S

vi ¼
X

SD½d�
PS miðSÞ;

where miðSÞ is the membership function

miðSÞ ¼
1 if iAS;

0 otherwise:

�
In other words, each subset S (approved by a voter)
contributes to the score vector by an amount
½m1ðSÞ;m2ðSÞ;y;mdðSÞ�T : We call the total score
accumulated according to this ‘‘vanilla’’ AV method
the Brams–Fishburn score, vBF ¼ ½v1; v2;y; vd �T :

vBF ¼
X

SD½d�
PS

m1ðSÞ
m2ðSÞ

^

mdðSÞ

2
6664

3
7775: ð23Þ

One could, of course, implement other tally procedures.
An obvious alternative is to inversely weigh the
importance of each subset by the percentage of the
total voters choosing subsets equal to its size:

vSI ¼
X

SD½d�

PS

f ðjSjÞ

m1ðSÞ
m2ðSÞ

^

mdðSÞ

2
6664

3
7775; ð24Þ

where f ðkÞ is given by (7). As we shall see (Section
2.4.6), this tally procedure is related to the SI model of
AV, and hence hereby referred to as the SI score. In
essence, it encourages a voter to choose an unpopular
set-size in order to increase the importance of his/her
vote.
Apart from these different tally procedures, research-

ers have also been interested in underlying models of
voters’ preferences that generate the AV ballots. For
instance, one may imagine that approving a particular
subset S amounts to equal-probabilistically choosing all
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11Note that in the graph, the cube’s sides have lengths 1=d and the

projection is along the vector c ¼ 1=
ffiffiffi
d

p
½1; 1;y; 1�; but the resulting

algebraic relationship (27) still holds.
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linear orders whose top jSj elements are precisely the
elements of S (hereafter referred to as the ‘‘equal-
probability model’’). On the other hand, one may
hypothesize a two-stage process, as in the SI model,
and seek to uncover, from the given data PS; an
underlying probability distribution Pp over all linear
orders pALd that is ‘‘consistent’’ with PS; in the sense
of (6). While in the former case there is a unique
probability distribution Pp over linear orders that can be
inferred from ballots, in the latter case, there is no
guarantee that such a Pp will ever be found for an
arbitrary PS: The condition under which this is possible
is called the characterization problem for AV, whose
solutions, in the space of all subset choice probabilities
PS; form a polytope, the so-called AV Polytope
(Doignon & Regenwetter, 1997; Doignon & Regenwet-
ter, 2002; Doignon & Fiorini, to appear).
One interesting question arises: how are AV scores

(the Brams–Fishburn score versus the SI score) related
to the AV models (the ‘‘equal-probability’’ model versus
the SI model)? Though the former is a matter of tally
procedures while the latter latent preference models, it
will be shown (Sections 2.4.4 and 2.4.6) that AV scores
exactly equal Borda scores of the latent probability
distribution of linear orders under the corresponding
models. This again demonstrates the important role
played by Borda scoring method (and the permutahe-
dron) in linking a tally procedure with a voter preference
model in the case of AV.

2.4.2. Permutahedron as a monotone path polytope

It is known (Ziegler, 1995) that permutahedron can be
realized as a ‘‘monotone path polytope’’ arising from the
lift-up of the projection from a cube to a line segment.
The mathematical details of monotone path polytopes
(and fiber polytopes in general) are given in Appendix
A. Here we give the motivation of considering such a
projection, and then reproduce this conclusion (Theo-
rem 2.6) and its proof due to Ziegler. Since the
construction is crucial in linking ranking probability to
a subset choice model, the necessary mathematical facts
are reviewed here using a language familiar to research-
ers of probabilistic choice.
Let Cd ¼ ½0; 1�dCRd be the d-dimensional unit

cube with the lower left corner aligned with the
origin. There is a natural correspondence between the
vertices of Cd and the subsets of ½d� to be constructed
as follows. Denote the base vectors of Rd as

ei ¼ 0;y; 0|fflfflffl{zfflfflffl}
i�1

; 1; 0;y; 0|fflfflffl{zfflfflffl}
d�i

2
4

3
5T

for iA½d�: A vertex of the

cube Cd ; represented as a vector of the form
P

iAS ei;

is identified with the subset SD½d� itself. Recall that
any ranking (ordering) p induces a sequence of
nested subsets

|Cfp�1ðdÞgCfp�1ðdÞ; p�1ðd � 1Þg
C?Cfp�1ðdÞ;p�1ðd � 1Þ;y; p�1ð1Þg � ½d�:

We denote Lðp; kÞ; namely the kth ‘‘leading set’’ of p; as
the set of candidates at the k top ranks associated with a
given p

Lðp; kÞ ¼ fp�1ðdÞ; p�1ðd � 1Þ;y; p�1ðd � k þ 1Þg
ð25Þ

for 1pkpd with jLðp; kÞj ¼ k; and

Lðp; 0Þ ¼ |:

These nested subsets induced by p simply obey

Lðp; 0ÞCLðp; 1Þ?CLðp; dÞ
as more and more candidates are included, based on
their desirability as determined by p: Geometrically, i.e.,
using vertices to represent subsets, this sequence can be
seen as defining a ‘‘path’’ associated with p; denoted sp;
that starts from the lower-left vertex of the cube Cd and
travels along its edges all the way up to its upper-right
vertex:

sp : 0 � spð0Þ-spð1Þ-spð2Þ-?-spðdÞ � 1; ð26Þ
where each spðkÞ is the vertex corresponding to the k-
element set Lðp; kÞ

spðkÞ ¼
Xk

i¼1
ep�1ðd�iþ1Þ; k ¼ 1; 2;y; d:

To formalize this intuition under the framework of
monotone path polytope, construct the following special

projection g from Cd to R1 along the diagonal axis

½1; 1;y; 1�T :

g : ½0; 1�d-½0; d�; x/½1; 1;y; 1� 
 x ¼
Xd

i¼1
xi: ð27Þ

Here the range ½0; d�CR1 of the projection is actually a
line segment ½0; d� (see Fig. 4)11. When the aforemen-
tioned path sp is projected via g onto line segment
(see Fig. 4), points that are increasingly farther
away from the origin map onto increasingly larger
values between 0 and d—the vertex corresponding to
the set Lðp; kÞ maps to the point kA ½d�,f0g: Fig. 4
shows an example for d ¼ 3; where the darker line
indicates the path corresponding to p ¼ /213S; so that
Lðp; 1Þ ¼ f3g;Lðp; 2Þ ¼ f1; 3g;Lðp; 3Þ ¼ f1; 2; 3g; and
spð1Þ ¼ e3; spð2Þ ¼ e1 þ e3; spð3Þ ¼ e1 þ e2 þ e3:
The projection g : Rd{Cd-½0; d�AR1 induces a so-

called fiber polytope (see Appendix A), which necessa-
rily is of dimension d � 1; and which lives in the fiber
orthogonal to the projected dimension and originating
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0 1 2 3

γ γ
γ

Q = [0,d]

P = Cd

x

e2

e3

e1

e1

e3 e1 + e2 + e3 = 1

e1 + e3

e2

0

γ (−1) (x)

.

Fig. 4. The d-permutahedron as a fiber polytope, i.e., resulting from

the construction of monotone paths associated with the projection of a

cube of dimension d to a line segment ½0; d�: Here, for d ¼ 3; the

thicker line represents a particular linear-order path (corresponding to

/213S; represented as a dot in the inset), while the vertical plane

cutting across the cube in the middle is shown in the inset to contain

the proper fiber polytope—a hexagon.
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from gðr0Þ where r0 is the barycenter of Cd : It turns out
that this resulting fiber polytope is in fact a d-
permutahedron.

Theorem 2.6 (Ziegler, 1995, p.303). The fiber polytope

associated with the diagonal projection (27) from a

d-cube CdCRd to a line segment ½0; d�CR1 is a

d-permutahedron.

Proof. According to its definition, the fiber polytope is
the collection of points whose coordinates are given by
integral (A3) for all possible (horizontal) sections s of
Cd with respect to the projected line segment. To prove
that the monotone path polytope resulting from the
specific projection (27) is indeed a permutahedron, one
only needs to calculate the coordinates corresponding to
the monotone paths that consist of extreme points of the
cube, i.e., its edges. Given a ranking p; an explicit
calculation of the coordinates associated with the path
sp (26) is given below, which is adapted from Ziegler
(1995, p. 303):Z d

0

spðxÞ dx

¼
Xd

k¼1

1

2
ðspðk � 1Þ þ spðkÞÞ

¼ 1

2
spð0Þ þ spð1Þ þ spð2Þ þ?þ spðd � 1Þ
þ 1

2
spðdÞ

¼ d ep�1ðdÞ þ ðd � 1Þep�1ðd�1Þ þ?þ 2 ep�1ð2Þ

þ ep�1ð1Þ �
1

2
1

¼
Xd

k¼1
kep�1ðkÞ �

1

2
1

¼
Xd

k¼1
pðkÞ ek �

1

2
1

¼

pð1Þ
pð2Þ
^

pðdÞ

2
6664

3
7775� 1

2

1

1

^

1

2
6664
3
7775:

This established a one-to-one correspondence of a p-
defined path in Cd to a p-representing vertex of Pd�1—
the fiber polytope associated with projection (27) is
indeed a d-permutahedron. &

2.4.3. Subset choice probability and facets of a

permutahedron

The fact (Theorem 2.6) that the fiber polytope
induced by projection (27) turns out to be the d-
permutahedron is of special significance in linking the
subset choice paradigm to ranking probability. First, as
mentioned earlier, the 2d vertices of a d-cube Cd

are in one-to-one correspondence with all subsets
of ½d�; it is easy to envision a d-dimensional vector,
½m1ðSÞ;m2ðSÞ;y;mdðSÞ�T ; whose binary-valued vector
component indicates whether or not an element of ½d�
has been included in the subset SD½d�: Therefore Cd is a
natural representation for the subset choice paradigm,
where the subset choice probability PS can be defined on
the subsets SD½d�; which are vertices of Cd : Second, the
surjective projection (27) of Cd onto the line segment
½0; d� collapses subsets according to their set-sizes—all
subsets of a given size jSj ¼ k project to the same
(integer-valued) point kA½d�,f0g; so the probability
distribution over set-size f ðkÞ; k ¼ 0; 1;y; d; can be
defined, on the integer support along the line-segment
½0; d�: Third, a monotone path sp on the boundary of the
cube Cd ; which starts from the vertex ½0; 0;y; 0�T and
ending at the vertex ½1; 1;y; 1�T ; generates a sequence
of leading sets Lðp; kÞ of p:

Lðp; kÞ ¼ Lðp; k � 1Þ,fp�1ðd � k þ 1Þg:

The gradual inclusion of elements into Lðp; kÞ as k ¼
jLðp; kÞj increases depends on the ordering p�1; it always
starts with the most desired object p�1ðdÞ; followed by
the second most desired one p�1ðd � 1Þ; so on. Since
each such path spð1Þ-spð2Þ-?-spðdÞ uniquely
represents a linear order, it is called a linear-order path.
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Ranking probability Pp can be defined on the d! linear-
order paths.
These considerations provide all necessary ingredients

for a concise description and characterization of subset
choice models (in connection with ranking models).
Consider a particular vertex VSACd corresponding to a
given subset SC½d� with set-size jSj ¼ k; ð1pkpd � 1Þ:
The vertex VS is en route of many linear-order paths of
Cd ; in fact those paths that correspond to all such linear
orders that rank elements of S ahead of elements of
½d�\S; i.e., those p’s whose kth leading set Lðp; kÞ equals
S: This vertex (of the cube) defines a bipartition of the
set ½d� into two disjoint subsets that are set-wise ordered
for desirability; hence, from Section 2.1.2, it corresponds
to a unique facet of the permutahedron Pd�1; hereby
denotedFS: There are d!=ððd � kÞ!k!Þ vertices (of Pd�1)
on this facet, each corresponding to one of the linear-
order paths on the cube Cd constrained to pass through
VS: All such linear orders pALd satisfy S ¼ Lðp; kÞ; or

S ¼ fp�1ðdÞ; p�1ðd � 1Þ;y; p�1ðd � k þ 1Þg:

Following Doignon and Regenwetter (1997), denote the
set of all rankings/permutations whose leading set (as
defined by (25)) equals a given S as PS:

PS ¼ fpALd : Lðp; kÞ ¼ S; k ¼ jSjg:

In other words, PS; which is a subset ofLd ; contains all
those p’s that rank any candidate belonging to S more
favorably than any one not belonging to S: Each
element of PS; which is a ranking and which at the same
time represents a linear-order path, corresponds to a
certain vertex of the facet FS of the permutahedron.
Note that a vertex of the permutahedron Pd�1
corresponds to a ranking p; whereas a vertex of the
cube Cd corresponds to a subset S of ½d�; one should not
confuse the two. On the other hand, p corresponds to a
path of the d-cube, while S corresponds to a facet of
Pd�1—the facet in fact represents the convex hull of all
monotone paths of Cd constrained to pass one of its (the
cube’s) vertex. All vertices of Cd ; organized in terms of
the number of steps away from the origin, give a total
count of

d

1

� �
þ

d

2

� �
þ?þ

d

d � 1

� �
¼ 2d � 2:

The 2d � 2 facets of the permutahedron are organized in
the following way: d facets each with ðd � 1Þ! edges,
dðd � 1Þ=2 facets each with 2ðd � 2Þ! edges;y;
d!=ðk!ðd � kÞ!Þ facets each with k!ðd � kÞ!
edges;y; and d facets each with ðd � 1Þ! edges. The
total number of edges is

1

2
ðd 
 ðd � 1Þ!þ dðd � 1Þ=2 
 2ðd � 2Þ!

þ ?þ d 
 ðd � 1Þ!Þ ¼ d=2 
 d!;
which conforms to the formula for f -numbers (Eq. (16),
for j ¼ 1).
For example, when d ¼ 4 (see Fig. 2b), the

subset S ¼ f1; 3; 4gCf1; 2; 3; 4g is associated with a
particular vertex e1 þ e3 þ e4 of C4: Each ranking
that is compatible with S in placing candidates ‘‘1’’,
‘‘3’’, ‘‘4’’ in front of ‘‘2’’ (i.e., pð2Þ ¼ 1) has the
general form p ¼ / � 1 � �S or p�1 ¼ ð� � �2Þ; the set
of permutations PS ¼ f/4132S;/4123S;/3124S;
/2134S;/2143S;/3142Sg ¼ fð1342Þ; ð1432Þ; ð4132Þ;
ð4312Þ; ð3412Þ; ð3142ÞgCLd corresponds to all paths of
Cd passing through e1 þ e3 þ e4 ¼ ½1; 0; 1; 1�T with
monotonically increasing path-lengths. These paths
map onto the vertices (of Pd�1) that define the facet
Ff1;3;4g: Unfortunately, it is not possible to visualize the
projection g for d ¼ 4 in the same way we did for d ¼ 3
in Fig. 4.

2.4.4. Brams–Fishburn score of AV ballots and the equal-

probability model

The above combinatorial–geometric considerations
hint at some intimate connections between the AV
paradigm and the ranking paradigm, along with their
scoring rules (Bram–Fishburn score for the former and
Borda score for the latter). Specifically, the event of
choosing a particular subset (a vertex of the d-cube, a
facet of the d-permutahedron) and the event of ranking
candidates in a particular linear order (a monotone path
of the d-cube, a vertex of the d-permutahedron) can be
made equivalent in terms of the scores they generate
over the set of candidates.

Theorem 2.7 (Connection of the Brams–Fishburn score
and the Borda score). In an AV paradigm, if the

approval of a subset SD½d� of candidates amounts to

assigning equal probability to all rankings PSDLd

consistent with S; i.e., to those rankings which place the

approved candidates in front of the non-approved ones,
then Brams–Fishburn score (23) is equivalent, up to an

affine transform, to computing the Borda score for each

candidate that is consistent with the latent ranking

probabilities of the voters.

Proof. For any subset SD½d� with 0pjSj ¼ kpd; the
corresponding set of consistent rankings is PSCLd :
Assuming equal probability among the total of k!ðd �
kÞ! rankings inPS; the Borda score due to S is computed
as

vBdðSÞ ¼ 1

k!ðd � kÞ!
X
pAPS

pð1Þ
pð2Þ
^

pðdÞ

2
6664

3
7775:

Denote the ith component of vBdðSÞ as vBdi ðSÞ: If iAS;
then pðiÞAfd; d � 1;y; d � k þ 1g: The sum of the



ARTICLE IN PRESS
J. Zhang / Journal of Mathematical Psychology 48 (2004) 107–134 125
k! ðd � kÞ! terms of pðiÞ; as p runs through PS; equals

ðk � 1Þ!
Xd

j¼d�kþ1
j

 !

 ðd � kÞ! ¼ k!ðd � kÞ! 2d � k þ 1

2
;

for iAS:

If ieS; then pðiÞAf1; 2;y; d � kg; and the sum of the
k! ðd � kÞ! terms of pðiÞ equals

ðd � k � 1Þ!
Xd�k

j¼1
j

 !

 k! ¼ k!ðd � kÞ! d � k þ 1

2
;

for ieS:

Therefore

vBdi ðSÞ ¼ 2d � k þ 1

2
miðSÞ þ

d � k þ 1

2
ð1� miðSÞÞ

¼ d

2
miðSÞ þ

d � k þ 1

2
:

Note that the coefficient before miðSÞ is independent of
k: Summing over SD½d�

vBdi ¼
X

SD½d�
PS vBdi ðSÞ

yields

vBdi ¼ d

2

X
SD½d�

PS miðSÞ

0
@

1
Aþ d þ 1

2
� 1

2

Xd

k¼1
kf ðkÞ

 !
;

ð28Þ

where f ðkÞ denotes the probability distribution over
subset size k as given by (7), with

Pd
k¼0 f ðkÞ ¼ 1: This

shows that the Borda score vBdi for candidate i is
equivalent to the Brams–Fishburn score vBFi in (23),
apart from an affine transform. &

Remark 1. The value
Pd

k¼1 kf ðkÞ ¼
P

SD½d� PS 
 jSj is
the average subset size chosen by the voting population.
It is uniformly subtracted from the scores of all
candidates, and therefore will not affect their Borda
ordering.

Remark 2. Theorem 2.7 says that approving a particular
subset (under Brams–Fishburn scoring) is equivalent to
several possible rankings (using Borda score) chosen in a
way that is consistent with the approved subset and
without bias; here ‘‘consistency’’ is taken to mean that
the chosen k candidates rank higher than the non-
chosen d–k candidates, and ‘‘without bias’’ means
equal-probabilistically. This gives the geometric inter-
pretation of the Brams–Fishburn tally procedure, i.e.,
each choice of a subset (vertex of the d-cube) SD½d�
amounts to an equal-probabilistic assignment of all
rankings (linear-order paths on the d-cube) that are
compatible with the chosen subset. The subset choice
probability PS will induce a ranking probability Pp; as
stated in the next corollary (note that with an abuse of
notation, we use the same symbol P for ranking
probability and for subset choice probability).

Corollary 2.8 (Latent profile under equal-probabilistic
model). The probability distribution over subsets PS in
AV, under equal-probability model, induces a prob-
ability distribution over rankings Pp; under Borda
scoring, through:

Pp ¼
Xd

k¼0
PLðp;kÞ

¼ 1

d!
P| þ

Xd

k¼1

1

k!ðd � kÞ!

 Pfp�1ðdÞ;p�1ðd�1Þ;y;p�1ðd�kþ1Þg: ð29Þ

Proof. The weighting factor for each eligible subset,
1=ðk!ðd � kÞ!Þ; is according to the multiplicity of all
permutations consistent with a given subset of size k:
Summing up all contributing Lðp; kÞ gives (29). &

Remark. Intuitively, the ‘‘support’’ for a ranking p is
contributed to by all subsets S with which p is consistent
in the sense that all S’s are leading sets of p: The support
for p is accumulated along the path of its leading sets
with increasing set-size

| � Lðp; 0ÞCLðp; 1ÞC?CLðp; dÞ � ½d�;

where Lðp; kÞ is defined in (25). From Corollary 2.2,
each Lðp; kÞ (for any pALd and 1pkpd) defines a facet
of Pd�1 that contain k!ðd � kÞ! vertices. Since the p-
representing vertex of Pd�1 is the intersection of d � 1
such facets (corresponding to k ¼ 1; 2;y; d � 1 respec-
tively), each term in summation of (29) is indeed a
contribution from those facets to their common vertex.
2.4.5. SI model and the core of the AV polytope

Under the SI model of subset choice (Falmagne &
Regenwetter, 1996, Doignon & Regenwetter, 1997),
voters are assumed to have (i) an explicit profile or
probability distribution Pp of all rankings p over ½d�;
and independently (ii) a probability distribution f ðkÞ
over the size of the subset (k ¼ 0; 1;y; d) that is to be
approved of. The subset choice probability PS is related
to the ranking probability Pp and the size probability
f ðkÞ through (6).
The SI model proposes to group all subsets according

to their sizes; geometrically, this amounts to grouping
the vertices of Cd according to their image of projec-
tion on the line-segment ½0; d�: For each k; any linear-
order path sp (for pALd) has to include one of the
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d!=ðk!ðd � kÞ!Þ vertices that project to kA½0; d�: The
fundamental assumption of the SI model (6) is
that the sum of the probabilities of all rankings
compatible with a chosen subset equals, after normal-
ization by the set-size probability f ðkÞ; the subset
probability PS:
The SI model for subset choice differs from the equal-

probability model of AV in two important aspects: (i)
While the latter can always induce a probability
distribution of ranking from an empirically observed
probability distribution over subsets (namely AV
ballots), the former assumes the existence of a
probability distribution of ranking from which the
empirically observed probability distribution of
subsets (AV ballots) are related to; (ii) While the
latter attributes equal probability to all paths
(rankings) compatible with a given subset, the former
does not require (and indeed often violates) the
equal-probability interpretation of compatible paths
(rankings).
The existence of a latent ranking probability distribu-

tion is by no means automatically guaranteed for any
AV ballots—the necessary conditions are characterized
by the AV polytope (Doignon & Regenwetter 1997,
2002, Doignon & Fiorini, to appear). Here we further
investigate necessary conditions on the subset choice
probability PS such that the SI model would yield the
same ranking probability as the equal-probability
model. The region within the AV Polytope that is
compatible with the equal-probability model is called
the core of the AV Polytope.

Theorem 2.9 (Core of the AV polytope). The subset

probability PS consistent with both the SI and the equal-

probability interpretations of AV satisfies the following

simultaneous equations:

PS ¼ f ðjSjÞ PS þ
X

fS0:S0CSg
r1ðS0;SÞPS0

0
@

þ
X

fS0 : S0*Sg
r2ðS0;SÞ PS0

1
A; ð30Þ

where S; S0 are subsets of ½d�;

r1ðS;S0Þ ¼ ðjSj � jS0jÞ!ðd � jSjÞ!
ðd � jS0jÞ! for S0CS;

r2ðS;S0Þ ¼ ðjS0j � jSjÞ! ðjSjÞ!
jS0j! for SCS0;

and f ðkÞ is the probability over set-size given by (7).

Proof. According to Corollary 2.8, under the equal-
probability model, the induced ranking probability Pp is
related to the probability distribution over subsets PS

through (29). Requiring PS to also fulfill the condition
of the SI model (6) yields

PS ¼ f ðjSjÞ
X

fpALd : Lðp;jSjÞ¼Sg

Xd

l¼0

1

l!ðd � lÞ! PLðp;lÞ

¼ f ðjSjÞ
Xd

l¼0

1

l!ðd � lÞ!
X

fpALd : Lðp;jSjÞ¼Sg
PLðp;lÞ

0
@

1
A:

With S fixed, the summation over p is performed
for those rankings having their top k � jSj elements
as those in S; and the summation over set-size l

is performed for variable-size leading sets of a given,
eligible p: When lok; since Lðp; lÞCLðp; kÞ holds
for any pALd ; the summation over p in the paren-
theses above only includes terms PS0 for which
S0CLðp; kÞ ¼ SX
fpALd : Lðp;jSjÞ¼Sg

PLðp;lÞ ¼
X

fS0 : S0CS;jS0 j¼lg
wS0 PS0 ;

where wS0 denotes the multiplicity of an l-element subset
S0CS that can be produced by an eligible p satisfying (i)
Lðp; kÞ ¼ S and (ii) Lðp; lÞ ¼ S0: A straightforward
combinatoric consideration gives wS0 ¼ l!ðk � lÞ!ðd �
kÞ!: ThereforeX
fpALd : Lðp;jSjÞ¼Sg

PLðp;lÞ

¼
X

fS0 : S0CS;jS0 j¼lg
l!ðd � lÞ!ðd � kÞ!PS0 :

Similarly, for l4k; one may deriveX
fpALd : Lðp;jSjÞ¼Sg

PLðp;lÞ

¼
X

fS0 : S0*S;jS0j¼lg
k!ðl � kÞ!ðd � lÞ!PS0 :

Finally, for l ¼ k; the only term that survives the
summation is S0 ¼ S: Putting these results together
yields the desired formula (30). &

Remark 1. Note that the system of simultaneous
equations (30) is linear in PS: The total number of
independent constraints on PS; according to (30), is

2d � ðd þ 1Þ þ 1 ¼ 2d � d;

this is because at each k ¼ 0; 1;y; d;
P

fS : jSj¼kg PS ¼
f ðkÞ; while

Pd
k¼0 f ðkÞ ¼ 1 (resulting in over-counting of

the number of constraints). The total number of
independent components of PS is

2d � 1� ð2d � dÞ ¼ d � 1;

which is the dimension of the d-permutahedron! There-
fore, the region within the AV polytope satisfying (30)
forms the core of the probability space associated with
the subset choice paradigm.
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12 In Theorem 5 of Regenwetter and Grofman (1998a), the

summation does not include the S ¼ ½d� term. However, they define

Borda scores using ½d � 1; d � 2;y; 0�T as weighting function, rather

than ½d; d � 1;y; 1�T used in this article, see footnote 4. As a result,

(35) is a valid formula for calculating Borda scores under the current

definition so long as the summation over S includes the master set ½d�:
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Remark 2. Note that the reciprocal of r1ðS;S0Þ and of
r2ðS;S0Þ

r�11 ¼
d � jS0j
d � jSj

� �
; r�12 ¼

jS0j
jSj

� �
equal the number of ways of choosing d � jS0j items out
of d � jSj items (jS0jojSj), or choosing jSj items out of
jS0j items (jS0j4jSj), respectively. Therefore, r2ðS;S0Þ
can be interpreted as the probability that those voters
choosing S0 would also have chosen SCS0 if they were
restricted to choose a smaller subset, while r1ðS;S0Þ can
be interpreted as the probability that those voters not
choosing %S0 ¼ ½d�\S0 would not have chosen ½d�\S ¼
%SC %S0 either even if they were to enlarge the approved
subset. Under this interpretation, the constraints (30),
after a recast

PSP
S0CS r1ðS0;SÞPS0 þ

P
S0*S r2ðS0;SÞPS0

¼ f ðjSjÞPd
k¼0;kajSj f ðkÞ

¼ f jSj
1� f ðjSjÞ; ð31Þ

can be viewed as some kind of consistency requirement
on subset probability if the set-size is a truly irrelevant
factor in determining the aggregated preference (in
terms of Borda score over the candidates, see Section
2.4.1). It gives the condition under which the Brams–
Fishburn score and the SI score become equivalent.

2.4.6. Comparing the SI score and the Brams–Fishburn

score

In calculating the Brams–Fishburn score (23), total
votes for each candidate are tallied according to how
many times a candidate is included among all approved
subsets. As shown in Section 2.4.4, this vote counting
rule is equivalent, up to an affine transform, to the rule
of calculating Borda scores, provided that the choice of
a subset is interpreted as an equal-probabilistic approval
of all linear orders consistent with the chosen subset. In
this sense, AV scores (arising from subset choice
paradigm) are said to be equivalent to Borda scores
(arising from ranking paradigm).
Under the Brams–Fishburn tally procedure, any

chosen subset S contributes towards the entire candidate
pool a total vote count of

Pd
i¼1 vBFi ðSÞ ¼

Pd
i¼1 miðSÞ ¼

jSj: In Borda scoring, any chosen linear order con-
tributes towards the candidate pool a total count ofPd

i¼1 i ¼ dðd þ 1Þ=2: To truly equate vote distribution
under the approval voting procedure with that under
Borda scoring (of the induced voters profile), one
would use a modified scoring rule vModðSÞ ¼
½vMod
1 ðSÞ;y; vMod

d ðSÞ�T ; which may give some sense of
balancing the contributions from subsets of different set-
size (since a voter may be contented with the idea that
the same amount of total effective votes will be cast
regardless how many candidate he/she chooses):

vModðSÞ ¼ d

2

m1ðSÞ
m2ðSÞ

^

mdðSÞ

2
6664

3
7775þ d � jSj þ 1

2

1

1

^

1

2
6664
3
7775: ð32Þ

This rule, in comparison to the Brams–Fishburn score

vBFðSÞ ¼

m1ðSÞ
m2ðSÞ

^

mdðSÞ

2
6664

3
7775; ð33Þ

makes
Pd

i¼1 vMod
i ¼ dðd þ 1Þ=2; regardless of the num-

ber of candidates (jSj ¼ k) being approved of. Under
this situation, the Brams–Fishburn score on the AV
ballots is identical to the Borda score on the latent voters
profile (under equal-probability interpretation of each
chosen subset).
The SI model, on the other hand, may also induce a

ranking probability distribution under very stringent
conditions (stated as conditions for AV Polytope).
When such a ranking probability does exist, the Borda
score on each candidate can be calculated using a
formula developed in Regenwetter and Grofman (1998a,
Theorem 5), which is reproduced here

vSIi ¼
X

SD½d�

PS

f ðjSjÞ miðSÞ: ð34Þ

The contribution to the Borda scores by SD½d� is (for
f ðjSjÞa0)

vSIðSÞ ¼ 1

f ðjSjÞ

m1ðSÞ
m2ðSÞ

^

mdðSÞ

2
6664

3
7775; ð35Þ

and vSIðSÞ ¼ 0 if f ðjSjÞ ¼ 0:12 Compared with (23), it is
obvious that the only (and significant) difference
between the Brams–Fishburn score (equal-probability
model) and the SI model (SI model) is with respect to
the weights individual subsets carry. In the former case
(33), a candidate’s appearing (or non-appearing) in a
subset constitutes a vote of 1 count (or 0 count), whereas
in the latter case (35) a candidate’s appearing (or non-
appearing) constitutes 1

f ðjSjÞ count (or 0 count). The SI
score appears to have given too much weight to those
voters who happen to choose an unpopular set-size
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13Thus, the situation with rank-position probabilities bij here is quite

different from the binary choice case and from the subset choice case,

where constraints on the binary choice probability or on the subset

choice probability exist for each to induce a ranking probability

distribution.
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(small f ðjSjÞ), whereas the Brams–Fishburn score gives
equitable contribution for each voter.
When the subset probability PS falls within the core

of the AV polytope, then the latent rank probability
distribution Pp (voters profile) is consistent with both
the SI interpretation and the equal-probability inter-
pretation. In this case, the Brams–Fishburn tally
procedure and the SI tally procedure yield the same
score—the Borda score over one and the same Pp: This
occurs when the subset size is truly irrelevant, see
Eq. (31) under Remark 2 (Section 2.4.5).

2.5. Connection to the rank-position probability

Finally, for completeness of this exposition, the
connection between the permutahedron and the rank-
matching paradigm will be discussed. A rank-matching
(also called rank-assignment) paradigm involves the
assignment of rank-positions 1; 2;y; d to the d candi-
dates. Let bij be the amount (fraction) of jth rank-
position assigned to candidate i; which satisfies (i) bijX0
(positivity of assignment); (ii)

P
i bij ¼ 1 (each rank-

position fully spent); (iii)
P

j bij ¼ 1 (each candidate
fully assigned). The bij’s (for i; jA½d�) form elements of a
d 
 d bistochastic matrix Bd :
Among all bistochastic matrices, of special interest is

the class of permutation matrices Op; whose elements
assume the value of either 0 or 1, with exactly one 1 in
each row and in each column. The permutation matrix
Op is in one-to-one correspondence with the linear order
p; with its ijth entry

ðOpÞij ¼
1 if pðiÞ ¼ j;

0 otherwise:

�
The convex hull of all permutation matrices (i.e., when p
exhausts the set of linear orders Ld) forms a polytope,
known as the Birkhoff Polytope (alternatively called
Assignment Polytope or Perfect Matching Polytope):

Bd ¼ convfOpg

¼ l1Op1 þ l2Op2 þ?þ ld!Opd!
: pkALd ; lkX0;

(

Xd!

k¼1
lk ¼ 1

)
: ð36Þ

Examples of permutation matrices are shown as follows
(for d ¼ 3):

O/123S ¼
1 0 0

0 1 0

0 0 1

2
64

3
75; O/132S ¼

1 0 0

0 0 1

0 1 0

2
64

3
75;

O/213S ¼
0 1 0

1 0 0

0 0 1

2
64

3
75; O/231S ¼

0 1 0

0 0 1

1 0 0

2
64

3
75;
O/312S ¼
0 0 1

1 0 0

0 1 0

2
64

3
75; O/321S ¼

0 0 1

0 1 0

1 0 0

2
64

3
75:

Since permutation matrices ðOpÞ are bistochastic ma-
trices Bd in their extreme forms, one might ask whether
every bistochastic matrix can be represented in this way
(36), i.e., as a convex combination of permutation
matrices (and therefore corresponds to a point in the
Birkhoff Polytope). Since the ranking probability Pp

itself can be viewed as the coefficients for this convex
combination, an equivalent statement of this character-
ization problem, in the language of choice paradigms, is

bij ¼
X
pALd

Pp ðOpÞij ¼
X

fpALd : pðiÞ¼jg
Pp: ð37Þ

Given Pp; one readily obtains bij through margin-
alization. Given bij’s, are there any constraints required
of bij for such Pp to exist (as in the characterization
problems for binary choice and for subset choice)?
It turns out that the answer is ‘‘no’’: any bistochastic

matrix (rank-position probability bij) can be represented
as a ranking probability Pp where the rankings are
represented by permutation matrices; this is commonly
known as the Birkhoff/von Neumann Theorem, proven
independently by Birkhoff (1946) and von Neumann
(1953) under different contexts. Therefore, all bistochas-
tic matrices (rank-position probabilities) are well ‘‘char-
acterized’’—the set of all bistochastic matrices is the
Birkhoff Polytope, with permutation matrices (linear
orders) as its vertices.13 Also with d! vertices, the
dimensionality of Bd equals ðd � 1Þ2; which is deter-
mined as follows:

d2|{z}
degree of freedom for a

d
d square matrix

� 2d|{z}
constraints on each

row and each column

þ 1|{z}
over�counting constraints since
each row=column sums to 1

:

Properties of Bd have been studied and documented in
great mathematical detail (Brualdi & Gibson, 1977a, b,
c, 1976); in particular, all of its d2 facets have been
characterized (Balinski & Russakoff, 1974). The Birkh-
off Polytope has been introduced into the choice
probability literature by Suck (1992) in connection with
the study of the Binary Choice Polytope.
Permutation matrices and permutation vectors (in-

troduced in Section 2.1.1) are two representations of the
set of linear orders Ld ; with the former resulting in the
Birkhoff Polytope Bd and the latter the permutahedron
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Pd�1: Naturally, the two polytopes have close connec-
tions. In fact, it is well known that there exists a
canonical projection g : Rd2

-Rd from the Birkhoff
Polytope Bd to the d-permutahedron Pd�1: Denote b ¼
½b11;y; b1d ; b21;y; bdd �TARd2

: The so-called canonical

projection

v ¼ Jb

with JARd2
d given by

1 2 ? d 0 0 ? 0 ? 0 0 ? 0

0 0 ? 0 1 2 ? d ? 0 0 ? 0

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

0 0 ? 0 0 0 ? 0 ? 1 2 ? d

2
6664

3
7775

gives rise to a point vAPd�1: In other words,

Proposition 2.10 (Permutahedron as canonical projec-
tion of the Birkhoff Polytope). Any d 
 d bistochastic

matrix Bd can be surjectively mapped onto the d-
permutahedron via:

Bd 
 ½1; 2;y; d�T ¼ vBkAPd�1: ð38Þ

Proof. The following proof is adapted from Yemelichev
et al. (1984, p. 229). All one needs to show is that the
coordinates

vBki ¼
Xd

j¼1
jbij; i ¼ 1; 2;y; d; ð39Þ

satisfy the system of constraints defining the d-permu-
tahedron (in Theorem 2.1). Clearly,Xd

i¼1
vBki ¼

Xd

i¼1

Xd

j¼1
jbij

¼
Xd

j¼1
j 
 1 since

Xd

i¼1
bij ¼ 1

 !

¼ dðd þ 1Þ
2

;

hence proving (15). Now, for any subset MC½d� and any
integer jA½d�; denote hM

j ¼
P

iAM bij as a partial sum of
the elements in the jth column. Clearly 0phM

j p1 and
0p
Pd

j¼1 hM
j ¼

P
iAM

Pd
j¼1 bij ¼ jMj: Therefore,

X
iAM

vBki �
XjMj

j¼1
j

¼
Xd

j¼1
jhM

j �
XjMj

j¼1
j

¼
Xd

j¼jMjþ1
jhM

j �
XjMj

j¼1
jð1� hM

j Þ

X

Xd

j¼jMjþ1
jMj 
 hM

j �
XjMj

j¼1
jMj 
 ð1� hM

j Þ
¼ jMj 

Xd

j¼1
hM

j � jMj
 !

¼ 0:

ThereforeX
iAM

vBki X

XjMj

j¼1
j ¼ jMjðjMj þ 1Þ

2
;

which is the system of inequalities (14) defining the
permutahedron. &

Remark 1. This connection between the Birkhoff Poly-
tope Bd and the permutahedron Pd�1 indicates that
Borda scoring of a ranking probability Pp can be
conducted in two separable steps: converting Pp into a
rank-position probability bij (while still preserving the
structure of linear orders), and then using Borda’s point-
assignment system, i.e., assigning j points to rank-
position j; to construct Borda scores via (38). This is
seen in the following identities

vBdi ¼
X
pALd

Pp pðiÞ from ð10Þ

¼
Xd

j¼1

X
fp : pðiÞ¼jg

Pp 
 j

¼
Xd

j¼1
j 


X
fp : pðiÞ¼jg

Pp

0
@

1
A

¼
Xd

j¼1
j 
 bij from ð37Þ

¼ vBki :

In other words, the contribution of the jth rank-position
is counted as having strength j; while the induced voting
score for each candidate i is the sum of strengths of all
rank-positions weighted by the fraction assigned for
each rank-position. See Regenwetter and Grofman
(1998a, p. 43). Just as vBd ¼ ½vBd1 ; vBd2 ;y; vBdd �T mini-

mizes (11), vBk ¼ ½vBk1 ; vBk2 ;y; vBkd �T would, as pointed

out in Cook and Seiford (1982), minimize the expressionXd

i¼1

Xd

j¼1
bijðvi � pð jÞÞ2

among all v ¼ ½v1; v2;y; vd �TARd :
3. Conclusions and discussions

Permutahedron, as the space of Borda scores of a
probability distribution on the set of rankings (linear
orders) over d candidates, is a useful tool in linking
various choice paradigms: (i) It can be realized as a
‘‘zonotope’’, i.e., a projection from a cube, of dimension
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zonotope
projection

canonical 
projection

fiber 
polytope

osculation

Permutahedron
Πd-1 for {1,…,d}

Subset Choice  
Cube Cd

Binary Choice  
Cube Cd(d-1)/2

Random Utility 
Hypersphere  Sd-2

Birkhoff  
Polytope Bd

Fig. 5. Connection of a d-permutahedron, the space of Borda scores

of candidates given a ranking probability, to the dðd � 1Þ=2-cube, the
d-cube, and the ðd � 2Þ-hypersphere, representing, respectively,

the binary choice probability, the subset choice probability, and the

random distribution of utility values of the d candidates (cf. Fig. 1).
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dðd � 1Þ=2; that describes the binary choice probability;
(ii) It can be realized as a ‘‘monotone path polytope’’
associated with projecting a cube, of dimension d;
that describes subset choice probability, onto a line
segment that describes the subset size; (iii) It can be
realized as a canonical projection from the Birkhoff
Polytope that describes bistochastic matrices, with d 
 d

elements, that relates to the rank-position probability;
(iv) Finally, all of its vertices are contained in a
hypersphere, with dimension d � 2; which is the
quotient space of all equivalent classes of interval-
scaled d-dimensional utility vectors. See Fig. 5 for a
summary.
These properties of a permutahedron supply us with a

wealth of connections to various choice paradigms,
namely, those of binary choice, subset choice, ranking,
and rank-matching, that are commonly employed in
psychology, economics, political science, consumer
behavior, etc. Important insights gained from this
approach include: the extension of Young’s formula of
Borda scores to all cases of binary choice probabilities
(from only those induced from a ranking probability), as
well as its compatibility with the BTL representation of
choice probability; the connection between the AV tally
procedure à la Brams and Fishburn (1983) and the
equal-probability model of the induced voters profile;
the condition for the compatibility of the Brams–
Fishburn tally procedure with the size-independent
model à la Falmagne and Regenwetter (1996); and the
spherical representation of the random utility model of
choice, in a way that illuminates the intimate connection
between interval-valued utility vectors and linear orders.
Most importantly, the notion of Borda scores can be
extended from the scoring of a ranking probability
(Eq. (10)) to the scoring of a binary choice probability
(Eq. (17)), the scoring of a subset choice probability
(Eq. (28)) under the equal-probability model under the
SI model (Eq. (34)) and the scoring of a rank-position
probability (Eq. (39)).
The permutahedron-based approach may also
prove to be useful in aggregation of preference or
social choice. The pivotal result in social choice and
welfare is Arrow’s impossibility theorem, which sets
fundamental limits on any well-behaved social welfare
ordering. In recent years, the essence of this impossi-
bility of ‘‘proper’’ (i.e., unanimous, anonymous, and
continuous) aggregation of preference, as well as the
homotopic equivalence from the Pareto rule to a
dictator rule, has been understood from a deep,
topological perspective (Chichilnisky, 1980, Chichilnis-
ky & Heal, 1983, Baryshnikov, 1993, Heal, 1997,
Baryshnikov, 2000, Lauwers, 2000). Central to these
arguments is the topological notion of non-contract-
ibility of the space of preference, an example being
the space of non-coincidental random utilities under
the spherical representation (see Section 2.3.1). When
null preference is allowed, the space of affinely
equivalent utility vectors also includes the origin (the
barycenter of the permutahedron). Jones, Zhang, &
Simpson (2003) have investigated the natural topo-
logy (which turns out to be non-Hausdorff) that
includes this null-preference point as a connected
component in the space of preference. There, it is
shown that proper aggregation is possible if and
only if the null-preference is allowed for the society
(output of the aggregation map) but not for the
individual voters (input to the aggregation map). A
natural question is that whether this conclusion
can be generalized to other preference spaces (of binary
choice, subset choice, etc). It is known (Baryshnikov,
1993) that the nerve of the covering of the set of
linear orders on ½d� by pairwise (binary) comparisons,
which is a simplicial complex of dimension ðd þ 1Þ
ðd � 2Þ=2; is homotopically equivalent to the sphere
Sd�2: It is unclear whether a covering by variable-sized
subsets enjoys similar properties. Future research will
illuminate the mathematical structure of and connec-
tions between the various spaces of preference and
choice.
Appendix A. Mathematical background on polytopes

This appendix contains basic materials about the
convex polytope, including its dualistic characteriza-
tions either using the set of its vertices or by the set
of its facets. Special attention will be paid to the
projection and to the lift-up of projections of polytopes,
where permutahedra may arise. For details, see Ziegler
(1995).

A.1. Polytopes

A convex polytope (‘‘polytope’’) is the convex hull of a
finite set P of points (vectors) P ¼ fx1; x2;y; xng in
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(b)

(a)

Fig. 6. A polytope defined as (a) the convex hull of a finite set of

points; or equivalently as (b) the enclosure of finite number of

intersecting half-spaces.
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some real vector space Rd{xiði ¼ 1; 2;y; nÞ:

P ¼ convðPÞ

¼ l1x1 þ l2x2 þ?þ lnxn : all liX0;

(

Xn

i¼1
li ¼ 1

)
:

Assuming that none of the xi’s can be written as a
convex combination of the other points (otherwise, they
can always be excluded from P to yield a reduced set of
points), such a set of n distinct points or vectors form the
vertices of the polytope P: When all vectors in P are in
general positions in Rd (i.e., no d of them lie on a
common affine hyperplane), then the polytope is called a
simplicial polytope.
On the other hand, one can also define a polytope as

an enclosure (i.e., intersection that is bounded in space)
of finitely many closed half-spaces in Rd :

P ¼ fxARd : J xpb; JARm
d ; bARmg:

Each half-space is governed by one linear inequality (with
equality sign corresponding to a hyperplane), and a finite
collection of them (indicated by the matrix J above), if
unbounded, would form a polyhedron. When all the
defining hyperplanes are in general positions, the poly-
tope is called a simple polytope. These two definitions of
a polytope, as a linear combination of points and as the
bounded intersection of half-spaces (see Fig. 6), reflect the
fundamental duality between a linear space and its dual
space induced by the inner-product operation.
Familiar examples of polytopes include: (i) polygons,

which are polytopes with dimension d ¼ 2 (e.g.,
trapezoid, pallellogram); (ii) the d-dimensional hyper-
cube (‘‘d-cube’’), which is the d-dimensional extension
of a cube; (iii) the d-dimensional simplex, with d þ 1
vertices; here one of the vertices xdþ1 ¼ ½0; 0;y; 0�T is
the origin, and the other d vertices are xk ¼
½0;y; 0|fflfflffl{zfflfflffl}

k�1

; 1; 0;y; 0|fflfflffl{zfflfflffl}
d�k

�T ; k ¼ 1; 2;y; d:
Several polytopes have received considerable interest
in recent years in the choice literature. They are (i) the
Binary Choice Polytope, resulting from the character-
ization of binary choice vectors compatible with a
ranking probability; (ii) the AV polytope, resulting from
the characterization of the subset choice probability (of
the SI model) as compatible with a ranking probability;
and (iii) the Birkhoff Polytope, arising from the rank-
assignment paradigm and bistochastic matrices.

A.2. Faces of a polytope

The dimension, dimP; of a polytope P is the
dimension of its affine span. A polytope contains faces
which form its boundaries. The face of a d-dimensional
polytope can take the form of: (i) a vertex, which is of
zero-dimension (i.e., a point); (ii) an edge, which is one-
dimensional (i.e., a line segment); (iii) a facet, which has
dimension d � 1 (i.e., the maximal proper face); or (iv)
any dimension in between. In fact, any proper face
FCP can be expressed as the convex combination of a
subset F of the original set P of vectors making up P

F ¼ convfxi : xiAFCPg:

The collection of all faces of a polytope, ordered by
inclusion, forms a lattice, called the face lattice. The
length of the maximal chain of this lattice plus one
equals the dimension of the polytope. For a d-
dimensional simple polytope, every vertex belongs to d

facets, whereas for a d-dimensional simplicial polytope,
every facet has d vertices and hence are all simplices.
Simple and simplicial polytopes are dual to each other.
Any d-dimensional polytope (dX3) that is both simple
and simplicial must be a simplex.
From the combinatoric point of view, a polytope is

completely characterized by its face-lattice—two poly-
topes are said to be combinatorially equivalent if their
face lattices are isomorphic. For a d-dimensional
polytope P; denote the total number of its j-dimensional
faces as fjðPÞ; ð j ¼ d � 1; d � 2;y; 1; 0Þ; and define
fdðPÞ ¼ 1 for convenience. These numbers collectively
form a ðd þ 1Þ-dimensional vector called the f -vector
(some authors also define f�1ðPÞ ¼ 1; thus making the
f -vector ðd þ 2Þ-dimensional). The components of the f -
vector of a polytope satisfy some numerical relation-
ships. The most prominent one is the Euler–Poincaré
relationXd

j¼0
ð�1Þj

fjðPÞ ¼ 1;

which reduces, as a special case for d ¼ 3; to the famous
Euler formula between the number of vertices (f0), the
number of edges (f1), and the number of facets (f2) for
any convex polytope in three dimensions:

f0 � f1 þ f2 ¼ 2:
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Q
Fγ

γ(−1) (F)

Fig. 7. Affine projection between polytopes (note the tracing of a face

of a lower-dimensional polytope to that of a higher-dimensional one).
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Interestingly, for simplicial polytopes, the Euler–Poin-
caré relation itself turns out to be a special case (k ¼ d)
of the so-called Dehn–Sommerville relations:Xk

j¼0
ð�1Þj d � j

d � k

� �
fjðPÞ ¼ fkðPÞ;

which holds for k ¼ 0; 1; 2;y; d (only half of these
relations are linearly independent). Moreover, compo-
nents of the f -vector may be constrained within certain
upper and lower bounds (e.g., the Upper Bound
Theorem, McMullen, 1971). More details can be found
elsewhere (see Bayer & Lee, 1993, Ziegler, 1995).

A.3. Projection of polytopes

An interesting property of a polytope that follows
immediately from its definition concerns its affine
projection. A projection g :P-Q of a polytope is
defined as an affine map g : Rp-Rq;

x/Jxþ b;

where PCRp is a p-dimensional polytope, QCRq is a q-
dimensional polytope, and gðPÞ ¼ Q: Here JARq
p

specifies a q 
 p matrix, bARq is a vector of dimension
q; and xARp is a vector of dimension p: Clearly,
dim ðQÞpdim ðPÞ ¼ p; with equality holding when the
rank of J is p: From the linear algebra behind the affine
map, for any face FCQ; its pre-image

g�1ðFÞ ¼ fyAP : gðyÞAFg
is a face of P: Furthermore, if F1; F2 are faces of Q;
then F1DF2 holds if and only if g�1ðF1ÞDg�1ðF2Þ:
That is, the inclusion relation between faces in the
projected polytope (of a lower dimension) can be
‘‘traced’’ back to their inclusion relation in the original
polytope (of a higher dimension). See Fig. 7.
An interesting case is the projection of a cube, which

yields a special kind of polytope called a zonotope. A
zonotope Z is the image of a cube under an affine
projection g : Rp*Cp-ZCRq

Z ¼ fz : z ¼ Jxþ b; xACpg:
An example is given by Fig. 3 where the two-
dimensional zonotope arises as the projection of C3:
Expressing the p-cube Cp in 0-centered coordinates, one
has

Cp ¼ x : x ¼
Xp

l¼1
tlel ;�

1

2
ptlp

1

2
;

(

l ¼ 1; 2;y; p

)
ðA:1Þ

where el ’s ðl ¼ 1; 2;y; pÞ are a set of p Cartesian base
vectors in Rp: The matrix J can be expressed in terms of
its column vectors: J ¼ ½j1; j2;y; jp� where each of the
jl ðl ¼ 1; 2;y; pÞ is a q-dimensional vector. Since el ¼
½0;y; 0|fflfflffl{zfflfflffl}
l�1

; 1; 0;y; 0|fflfflffl{zfflfflffl}
p�l

�T has a 1 only in its lth position and

has 0 elsewhere, J el ¼ jl ; so

Z ¼ z : z ¼ bþ
Xp

l¼1
tl jl ;

(

�1
2
ptlp

1

2
; l ¼ 1; 2;y; p

#
: ðA:2Þ

Being a zonotope is a geometric property rather than a
combinatorial one. Zonotopes are centrally symmetric
with respect to its barycenter. Affine projection of a
zonotope is still a zonotope; faces of a zonotope is again
a zonotope. Further properties of zonotopes are
reviewed in McMullen (1971).

A.4. Fiber polytopes

Two concepts are intimately associated with projec-
tions, namely, ‘‘sections’’ and ‘‘fibers’’. Let g :P-Q be a
projection of polytopes with PCRp; QCRq; such that
gðPÞ ¼ Q; with dimðQÞodimðPÞ: A section is a (con-
tinuous) map s :Q-P that satisfies gðsðxÞÞ ¼ x for all
xAQ: Informally, since any projection maps many
points of a higher dimensional space yARp to one single
point of a lower dimensional space xARq (p4q), the set
of pre-image points (i.e., y’s) that project to the same
point xARq form a fiber g�1ðxÞ ¼ fyARp : gðyÞ ¼ xg
that is attached, or growing out of x on Rq; the base
manifold. A (horizontal) section s is then an inverse
map (not unique, of course) obtained by selecting one
point in each fiber on Rq: The collection of fibers on a
base manifold is called the fiber bundle; it allows various
horizontal sectioning.
For any given section s; one can construct the

integralZ
Q

sðxÞ dx;

where the vector-valued integral is with respect to points
of the base manifold xAQ; thus the integral itself is a
point in Rp�q: The fiber polytope SðP;QÞ is defined as
the set of all such points, each obtained through a
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sectioning s:

SðP;QÞ ¼ 1

volðQÞ

Z
Q

sðxÞ dx : s
�

is a section associated with g
#
; ðA:3Þ

where the volume of Q is defined as

volðQÞ ¼
Z
Q

dx:

It can be shown that SðP;QÞ indeed form a convex set.
Though an object defined in Rp; its dimensionality is
only p � q; it is contained in the fiber growing out of the
point r0AQ:

SðP;QÞDg�1ðr0Þ-P;

where the point r0 is the barycenter of Q:

r0 ¼
1

volðQÞ

Z
Q

x dx:

More materials on fiber polytopes can be found in
Billera and Sturmfels (1992).
A special kind of fiber polytope is the so-called

monotone path polytope, constructed through an
interesting projection map. Here the projection g is
given as follows: choose a fixed but otherwise arbitrary
p-dimensional row vector c; and form a dot product
with any column vector xAPCRp: The set of points

Q ¼ c 
 x : xAPf g

define a one-dimensional polytope Q ¼ ½cmin; cmax�DR1

such that

cmin ¼ minxAPc 
 x; cmax ¼ max
xAP

c 
 x:

With such Q; the corresponding fiber polytope SðP;QÞ
is the monotone path polytope. The coordinates for a
particular section s : Q{x-sðxÞAP is

1

cmax � cmin

Z cmax

cmin

sðxÞ dx:
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