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Abstract

Dzhafarov and Colonius (Psychol. Bull. Rev. 6 (1999)239; J. Math. Psychol. 45(2001)670) proposed a theory of Fechnerian

scaling of the stimulus space based on the psychometric (discrimination probability) function of a human subject in a same–different

comparison task. Here, we investigate a related but different paradigm, namely, referent–probe comparison task, in which the pair

of stimuli (x and y) under comparison assumes substantively different psychological status, one serving as a referent and the other as

a probe. The duality between a pair of psychometric functions, arising from assigning either x or y to be the fixed reference stimulus

and the other to be the varying comparison stimulus, and the 1-to-1 mapping between the two stimulus spaces X and Y under either

assignment are analyzed. Following Dzhafarov and Colonius, we investigate two properties characteristic of a referent–probe

comparison task, namely, (i) Regular cross-minimality—for the pair of stimulus values involved in referent–probe comparison, each

minimizes a discrimination probability function where the other is treated as the fixed reference stimulus; (ii) Nonconstant self-

similarity—the value of the discrimination probability function at its minima is a nonconstant function of the reference stimulus

value. For the particular form of psychometric functions investigated, it is shown that imposing the condition of regular cross-

minimality on the pair of psychometric functions forces a consistent (but otherwise still arbitrary) mapping between X and Y, such

that it is independent of the assignment of reference/comparison status to x and to y. The resulting psychometric differentials under

both assignments are equal, and take an asymmetric, dualistic form reminiscent of the so-called divergence measure that appeared in

the context of differential geometry of the probability manifold with dually flat connections (Differential Geometric Methods in

Statistics, Lecture Notes in Statistics, Vol. 28, Springer, New York, 1985). The pair of divergence functions on X and on Y,

respectively, induce a Riemannian metric in the small, with psychometric order (defined in Dzhafarov & Colonius, 1999) equal to 2.

The difference between the Finsler–Riemann geometric approach to the stimulus space (Dzhafarov & Colonius, 1999) and this

dually-affine Riemannian geometric approach to the dual scaling of the comparison and the reference stimuli is discussed.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In geometric theories of the scaling of the stimulus
space, the notion of ‘‘distance’’ plays a key role in
describing the proximity between various stimuli whose
features are defined in some multi-dimensional vector
e front matter r 2004 Elsevier Inc. All rights reserved.
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space Rn: Often, such distance measures are induced by
the so-called norm of a vector space, formally defined as
a real-valued function Rn ! Rþ � Rþ [ f0g and de-
noted k � k; that satisfies the following conditions for all
x; y 2 Rn and a 2 R: (i) kxkX0 with the equality holding
if and only if x ¼ 0; (ii) kaxk ¼ jaj � kxk; (iii) kxþ
ykpkxk þ kyk: The distance measure or metric induced
by such a norm takes the form

Dðx;x0Þ ¼ kx� x0k: (1)

www.elsevier.com/locate/jmp
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1This notation for a psychometric function was used in Dzhafarov

and Colonius (1999, 2001) to denote the probability of same–different

judgment for a pairwise presentation of stimulus values. The subscript

merely refers to fixing a reference point during post hoc analysis of the

psychometric function obtained through this procedure. For this

reason, in Dzhafarov (2002d), the Cðx; yÞ notation is favored to stress
the fact that the psychometric function in same–different comparison

task is a two-variable function. Here for mathematical clarity, we

retain the subscript notation to indicate the stimulus that is fixed

(either procedurally or mentally by instruction).
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Obviously, such a metric satisfies, in addition to being
continuous with respect to its arguments, the axioms of
(i) nonnegativity: Dðx;x0ÞX0; with 0 attained if and only
if x ¼ x0; (ii) symmetry: Dðx; x0Þ ¼ Dðx0; xÞ; and (iii)
triangle inequality: Dðx; x0Þ þ Dðx0;x00ÞXDðx;x00Þ for any
triplet x;x0;x00 2 Rn: A familiar example is the Min-
kowski metric, which is induced on a vector space
equipped with an Lp norm: kxkp ¼

Pn
i¼1 ðjx

ijpÞ
1=p (here

xi; i ¼ 1; 2; . . . ; n denote vector components). The dis-
tance measure Dðx;x0Þ forms the basis of many
geometric models of stimulus similarity in the psycho-
logical space (Shepard, 1962a,b).
Mounting evidence has accumulated indicating that

comparative judgment in humans violated almost all of
the basic axioms about a norm-induced metric, therefore
questioning the psychological validity of (1) as a
measure of proximity. Violation of nonnegativity (in
the strict sense which includes the condition of attaining
zero) occurred when the point of subjective equality in a
psychometric measurement does not always turn out to
be identical to the fixed, reference stimulus value.
Violation of symmetry was frequently demonstrated
following Tversky’s (1977) report that subjects rated less
prominent Communist countries (e.g., North Korea) as
more similar to more prominent country of the same
Communist category (e.g., China) than vice versa—such
asymmetry was attributed to a difference in the
weighting of distinctive/unique features that the com-
parison and the reference stimulus each possessed
(Tversky, 1977), to an emphasis of the common features
that they shared (Ortony, 1979; Medin, Goldstone, &
Gentner, 1993), to the prototypicality or saliency of the
two stimuli (Rosch, 1975), or even to their relative
frequencies of recent exposure (Polk, Behensky, Gonza-
lez, & Smith, 2002). Finally, violation of triangle
inequality was demonstrated by Tversky and Gati
(1982) when perceived dissimilarity for objects that
differed on two separable dimensions (attributes) was
found to be larger than predicted from their perceived
unidimensional differences. While violation of nonne-
gativity can be easily remedied by postulating a re-
scaling for comparison or reference stimulus, it is
difficult to salvage the axioms of symmetry and of
triangle inequality under any metric-based framework.
In fact, it is unclear whether symmetry is a desirable
requirement in comparative judgment tasks, simply
because the different roles a fixed referent and a variable
probe may play.
Recently, a complete reformulation and re-character-

ization of the distance measure in the stimulus space has
been proposed by Dzhafarov and Colonius (1999, 2001),
utilizing the language of Finsler geometry. As a major
departure from the standard approach of inducing the
metric through a norm via (1), the framework uses the
empirically observed psychometric function (specifically,
the discrimination probability function in the same–dif-
ferent discrimination task) to construct a Finslerian
metric function in the small (i.e., locally) and then,
through an integration and minimization procedure, the
Finslerian distance in the large. To be more specific, that
theory starts with a discrimination probability function
in a same/different judgment task, denoted here asCxðyÞ

between a comparison stimulus y 2 Rn against a fixed,
reference stimulus x 2 Rn: The psychometric differential
is defined as1

Cxðxþ usÞ �CxðxÞ;

where s40 is the magnitude of the transition from
stimulus x to stimulus xþ us in the direction ua0 (i.e.,
u 2 Rn � f0g). Under some reasonable assumptions
about how this differential (viewed as a function of
x; u) would behave when s! 0; Dzhafarov and
Colonius (1999, 2001) showed that there exists a global
transformation (global in the sense of being independent
of x; u), denoted g : Rþ ! Rþ; such that when it is
applied to the psychometric differential, the following
holds:

lim
s!0þ

gðCxðxþ usÞ �CxðxÞÞ

s
� F ðx; uÞ:

This was called The Fundamental Theorem of Fechner-
ian scaling; and the resultant function F ðx; uÞ naturally
satisfies Euler homogeneity with respect to its second
variable: F ðx; kuÞ ¼ kF ðx; uÞ for k40: The function
F ðx; uÞ; or its convex closure if it is not already convex
(denoted ~F ðx; uÞ in Dzhafarov & Colonius (2001) but we
ignore such technicality), becomes the local metric
function of an underlying Finsler space. When g takes
the form of a power function: gðtÞ ¼ t1=m or more
generally gðtÞ ¼ ðtlðtÞÞ1=m where lðtÞ is slowly varying,
then m 2 Rþ is referred to as the ‘‘psychometric order’’
of the discrimination probability function and, due to a
fundamental assumption in their papers, that of the
stimulus space.
Note that F ðx; uÞ introduced above, termed Finslerian

metric function in the mathematical theory of Finsler
space (c.f., Rund, 1959), is actually a norm of the
tangent space (defining the u variable) associated with a
point (defining the x variable) sitting in the base
manifold—roughly, it is proportional to the distance
between infinitesimally nearby points on the base
manifold B along the tangent vector u. Unlike (1), to
obtain the Finslerian distance in the large between any
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two points x and x0 on the base manifold B; one first
constructs (step one) a path g connecting x to x0: ½0; 1� 3
t 7! gðtÞ 2 B with gð0Þ ¼ x; gð1Þ ¼ x0; and then computes
(step two) the length of such a path by integrating

Lg ¼

Z 1

0

F gðtÞ;
dgðtÞ

dt

� �
dt

(note that we have replaced x by gðtÞ and u by dg=dt in
the two slots of F ð�; �Þ; and that Euler homogeneity
ensures the above integral to be invariant with respect to
any re-parameterization of the path gð�Þ). Then finally,
one takes (step three) the infimum of all such paths
linking the two points x; x0 as their end points to define
the Finslerian distance Gðx;x0Þ in the large:

Gðx;x0Þ ¼ inf
fgðtÞ:gð0Þ¼x;gð1Þ¼x0g

Lg:

The function Gðx;x0Þ can easily been shown to satisfy
nonnegativity and triangle inequality but not necessarily
symmetry in general. A distance function Gðx;x0Þ in the
large constructed through this procedure (following
steps 1–3 above) from a suitably defined metric function
F ðx; uÞ in the small is said to be ‘‘internal’’ (or
‘‘intrinsic’’). Whenever, after a global transformation h

(continuous and increasing) on the distance func-
tion, such construction is possible, the distance function
is called ‘‘internalizable’’ (Dzhafarov, 2002b). The
idea of an ‘‘internal’’ or ‘‘internalizable’’ metric for a
stimulus space is closed linked with, and in fact a
mathematical articulation of Gustav Fechner’s program
of ‘‘psychophysics’’, i.e., linking distances measured in
the large (‘‘stimulus scaling’’) to just noticeable differ-
ences (jnd’s) measured in the small (‘‘thresholds’’ of
discrimination).
The mathematical framework of Finsler geometry,

which extends Riemannian geometry in a natural way
(c.f., the treatise on the topic by Rund, 1959), makes
clear the conceptual difference and the connection
between a metric in the large Gðx;x0Þ that describes the
distance of two points with finite separation on the base

manifold B and a metric in the small F ðx; uÞ that
describes the distance between points that are infinite-
simally close—in the latter case between a point x and
another point that is slightly off in the direction of u.
The basic premise of a differential manifold is the
assumption that the infinitesimal neighborhood of a
point x on the base manifold forms a space that is
diffeomorphic to a vector space (diffeomorphism mean-
ing, roughly, a transformation of the vector space
characterized by an arbitrary change of coordinates
with nonvanishing Jacobian), called the tangent
space and denoted by the u variable, so that nearby
points on the base manifold can now be represented
by different vectors in the tangent space that is
situated on that particular point of the original
manifold. To avoid confusion, we call Gðx;x0Þ ‘‘dis-
tance’’ and called F ðx; uÞ ‘‘metric function’’. In the
application to the scaling of the stimulus space, the
former corresponds to the subjective distance between
two stimuli x and x0 sufficiently farther apart, while the
latter describes psychometric measurements of discrimi-
nation threshold when the value of the comparison
stimulus changes in different direction u around a fixed
stimulus x.
This Fechnerian scaling framework advanced by

Dzhafarov and Colonius (1999) is seen as a reformula-
tion of the generalized Weber’s Law (Luce & Galanter,
1963)

Cðxþ wðx; sÞÞ �CðxÞ ¼ ZðsÞ;

where the psychophysical function CðxÞ measures the
subjective scale associated with a physical stimulus x,
and the Weber fraction wðx; sÞ is used to induce an
increment ZðsÞ of subjective distance in the stimulus
space. In fact Finsler geometry is seen as a more faithful
implementation of Fechner’s original proposal and a
mathematically correct procedure for deriving distance
in the stimulus space based on experimental measure-
ments of psychometric thresholds. For one thing, it
provides a natural and precise expression of the
Probability-Distance Hypothesis, namely, the represent-
ability of the discrimination probability CxðyÞ as a
function h : Rþ ! Rþ of some distance function Dðx; yÞ
of the underlying stimulus space: CxðyÞ ¼ hðDðx; yÞÞ: It
was shown (Dzhafarov, 2002b) that if such Dðx; yÞ exists
and is either internal or internalizable, then Dðx; yÞ is
either Gðx; yÞ itself (as induced by the CxðyÞ !

F ðx; uÞ ! Gðx;x0Þ procedure) or a transformation there-
of; this is due to the fundamental relation between the
distance Gðx;x0Þ and the metric function F ðx; uÞ in a
Finsler space:

lim
s!0þ

Gðx;xþ usÞ

s
¼ F ðx; uÞ;

inf
all gðtÞjgð1Þ¼x0

gð0Þ¼x

Z 1

0

F gðtÞ;
dgðtÞ

dt

� �
dt ¼ Gðx;x0Þ

(here F ðx; uÞ is assumed to be convex in u, and Gðx; x0Þ
satisfies metric axioms).
This well-formulated theory of psychological scaling

using Finsler geometry techniques invoked certain
assumptions about the asymptotic shape of a psycho-
metric function as the two stimuli approach one
another. Dzhafarov (2002d) recently investigated two
conditions on psychometric functions that appear
theoretically motivated and empirically robust (see,
e.g., Zimmer & Colonius (2000), and many other studies
cited in Dzhafarov (2002d)): (i) the condition of regular
minimality—for the pair of stimulus values involved,
each minimizes the discrimination probability function
when the other is viewed i.e., mathematically (but not
procedurally taken) as fixed; and (ii) the condition of
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nonconstant self-similarity—the values of the discrimi-
nation probability function at its minima when either
stimulus is mathematically fixed is a nonconstant
function of the fixed stimulus value. While their exact
meaning will be elaborated in the next subsection, these
two conditions have been shown to preclude a large
class of well-behaved Thurstonian scaling functions
(Dzhafarov, 2003a,b). In fact, they impose severe
constraints on the psychometric order of any discrimi-
nation probability function and on the stimulus space.
Nonconstant self-similarity alone would also preclude
the Probability-Distance Hypothesis, as the latter
necessarily implies constant self-similarity (Dzhafarov,
2002b).
It should be noted that this Fechnerian scaling

framework applied to the task of same–different compar-

ison, namely, subjects are asked to make a same–different
judgment (discrimination) on a pair of stimuli presented
in distinct observation intervals that are separated in
space and/or in time; the two stimuli involved are
nonetheless not treated differentially in any other regards.
Hence this procedure will yield one psychometric function
in its canonical form Cðx; yÞ; though not necessarily
symmetric in its arguments Cðx; yÞaCðy;xÞ: The place-
holders for the two arguments inCð�; �Þ are referred as the
two ‘‘observation areas’’ (Dzhafarov, 2002d) without
assuming that one of them is to hold a stimulus as the
reference and the other as the comparison; it is only in the
post hoc mathematical analysis of Cðx; yÞ that one talks
about treating or ‘‘viewing’’ x as the reference stimulus
Cx̂ðyÞ ¼ Cðx; yÞjx¼x̂ or y as the reference stimulus
CŷðxÞ ¼ Cðx; yÞjy¼ŷ:
In this paper, a related but different task is

investigated, which we call the referent–probe compar-

ison task. Here, one stimulus in a pair is held fixed while
the other is varied, randomly or in ascending/descending
(‘‘staircase’’) order, either controlled by the experimen-
ter or by the subject, while the subject make the
same–different judgment. The stimulus that is procedu-
rally (or, by instruction, mentally.) fixed is called the
referent (reference stimulus), while the stimulus that is
procedurally (or mentally by instruction) varied is called
the probe (comparison stimulus). The two stimuli, aside
from their being presented in distinct temporal or spatial
intervals, have substantively different psychological
status that subjects must maintain in their mental
representations. As an example, suppose a subject is to
make a same–different judgment on the ‘‘value’’ of two
gambles, one involving a guaranteed payoff of x-utility
units and the other involving a probabilistic payoff of y-
units (in which the subject will receive either y or 0 as a
random event with a known, given probability). In this
situation, the experimenter can either hold x fixed and
have y values change in a series of trials, called the
forward procedure, or conversely hold y fixed and have x

values change, called the reverse procedure. Of course,
this terminology can itself be reversed; we use it only to
fix the notation.
In such a referent–probe comparison task, the

psychometric function CxðyÞ obtained from treating x

as the reference stimulus may be an entirely different
function from the dual psychometric function FyðxÞ

obtained from treating y as the reference stimulus. For
the previous example, it is natural to assume that the
comparative process where a fixed amount of guaran-
teed payoff (‘‘certainty equivalence’’ or CE) is used as a
mental reference for the evaluation of a series of
gambles with variable payoffs as their probabilistic
outcome is different from the process where a probabil-
istic outcome with a fixed payoff is used as a reference
for the evaluation of varies amounts of certainty
equivalence. Indeed, not only the ‘‘points of subjective
equality’’ from the two procedures may be different, the
entire psychometric functions obtained from these two
procedures may be different; the asymmetry in this
scenario may reveal some fundamental difference in a
subject’s mental representation between a risky and a
risk-free outcome. Hershey and Schoemaker (1985)
employed such mutually dual procedures to separately
measure the certainty equivalence of gambles and
probability equivalence (PE) of a certain gain/loss
(where the probability of a fixed outcome, not the value
of a fixed probabilistic outcome, is varied), and showed
that subjects often displayed serious inconsistencies
between the CE and PE responses in a way that strongly
depended on a subject’s initial risk attitude and the
specific domain of gain versus loss.
Despite the reported violation of this so-called

‘‘procedural invariance’’ in the literature on utility
measurement, which has been attributed to cognitive
factors such as insufficient adjustment due to anchoring
and reframing effects (Hershey & Schoemaker, 1985;
Schoemaker & Hershey, 1992), the author is unaware of
any study that has already tested this type of procedural
invariance in the context of psychophysical measure-
ment. We call this kind of procedural invariance regular

cross-minimality, or regular minimality across the
(mutually dual) procedures. The term is adapted from
Dzhafarov’s (2002d) notion of ‘‘regular minimality’’ in
the same–different comparison tasks. In the current
context, the minimality requirement is applied across
two psychometric functions, whereas in Dzhafarov’s
case, it is applied to a single psychometric function.
Though much stronger than the constraint of regular
cross-minimality (see below), the condition of regular
minimality was seen to be largely satisfied in same–-
different comparison task (Dzhafarov, 2002d).
This paper deals with purely theoretical issues about

the conditions of regular (cross)-minimality and non-
constant similarity. These two conditions were shown to
restrict possible shapes of a psychometric function for
the same–different comparison procedure (Dzhafarov,
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2The reader is reminded that x; x̂ always denote the stimulus that is
used as a fixed reference in the forward procedure whereas y; ŷ always
denote the stimulus that is used as a fixed reference in the reverse

procedure. The former procedure contains a series of y values used as

comparison stimuli, whereas the latter procedure contains a series of x

values used as comparison stimuli.
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2003a,b). One might ask whether they would place any
restrictions on the pair of psychometric functions in the
referent–probe comparison procedure. A priori, one
should not expect any significant constraints—this is
because we now have two psychometric functions at our
disposal. The condition of nonconstant self-similarity
merely calls for an opportunity to add an arbitrary
single-variable function (of the reference stimulus value
only) onto the psychometric function from either the
forward or the reverse procedure (but not simulta-
neously onto both), thus resulting in no substantial
constraints on their forms. Applying the regular cross-
minimality requirement across two different psycho-
metric functions would, at most, restrict the relationship
between one function (for the forward procedure) and
the other (for the reverse procedure). However, it will be
shown that for the particular form of psychometric
functions studied in this paper, this restriction amounts
precisely to the requirement of consistent mappings
between the two stimulus spaces, regardless of which
space contains the reference stimulus and which the
comparison stimulus. Regular cross-minimality requires
the two psychometric differentials (but not psychometric
functions) to be identical. Differential status of the
referent and of the probe and asymmetry in the
psychological divergence function can manifest in a
dualistic fashion—the same psychometric differential
can take two alternative yet dually symmetric forms
expressing precisely the duality in the stimulus status/
psychometric procedure.

1.1. Regular cross-minimality and nonconstant self-

similarity

Consider the standard two-alternative choice para-
digm, in which two stimuli, assigned the role of
comparison stimulus and reference stimulus, respec-
tively, are presented in spatially (or temporally) sepa-
rated observation intervals. The value of the reference
stimulus is fixed while that of the comparison stimulus is
variable (adjustable) during a block of trials. Let the
psychometric function (called the discrimination prob-
ability function in a discrimination paradigm) CxðyÞ

denote the probability that a comparison stimulus y

(written as the functional argument) is judged as being
‘‘different’’ in magnitude, when compared against a
reference stimulus x (written as the subscript). The
condition of regular cross-minimality states that if,
corresponding to a particular value of the reference
stimulus x̂; there exists a unique value of the comparison
stimulus y ¼ ŷ such that

ŷ ¼ argminyCx̂ðyÞ;

then when the entire procedure is reversed, i.e., when ŷ is
held fixed and x becomes adjustable, the psychometric
function FŷðxÞ so obtained would yield a minimum
value at x ¼ x̂:

x̂ ¼ argminxFŷðxÞ:

The condition of nonconstant self-similarity simply
states that the psychometric functions evaluated at their
respective minima

Cx̂ðyÞjy¼ŷaconst;

FŷðxÞjx¼x̂aconst;

that is, each minimum, in general, is a nonconstant
function of the reference stimulus value x̂ (in the
forward procedure) or ŷ (in the reverse procedure),
respectively.2

To gain insights to what these conditions entail, let us
consider the case of unidimensional stimuli. Let X � R

and Y � R denote, respectively, the domain where
stimulus x 2 X and stimulus y 2 Y are defined. In the
forward procedure, elements of Y are chosen to be the
varying comparison stimuli whereas an element of X is
selected as the fixed reference stimulus; the two domains
are hence denoted as Yc and Xr; respectively. Because
the stimuli under consideration can at least be ordered
(i.e., defined on an ordinal scale), there must exist some
strictly increasing (and hence invertible) transformation
c : Yc ! Xr; so that x and y are comparable. For
convenience, we assume differentiability of c (as well as
c�1). For any fixed reference stimulus x̂; c is chosen so
that the psychometric function Cx̂ðyÞ achieves its
minimum at y ¼ c�1ðx̂Þ; so

dCx̂ðyÞ

dy

����
y¼c�1ðx̂Þ

¼ 0

and

d2Cx̂ðyÞ

dy2

����
y¼c�1ðx̂Þ

40:

Obviously, if we require

dCx̂ðyÞ

dy
¼ cðyÞ � x̂;

then both of the above would be satisfied (since the first
derivative of a strictly increasing function cð�Þ is always
positive). Integrating the above yields

Cx̂ðyÞ �Cx̂ðc
�1
ðx̂ÞÞ

¼ CðyÞ �Cðc�1ðx̂ÞÞ � x̂ ðy� c�1ðx̂ÞÞ; ð2Þ
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where

CðyÞ ¼
Z y

c

cðyÞ dy

is strictly convex3 (the constant associated with the
indefinite integral can be any arbitrary number c).
Denote

C�ðx̂Þ ¼ x̂c�1ðx̂Þ �Cðc�1ðx̂ÞÞ; (3)

which is known as the convex conjugate of C (the � on
the convex function indicates the conjugacy operation),
and introduce what will be called the psychometric

differential

AðCÞðx̂; yÞ ¼ CðyÞ � yx̂þC�ðx̂Þ; (4)

which attains 0 when y ¼ c�1ðx̂Þ; due to (3). The
psychometric function Cx̂ðyÞ then takes the form

Cx̂ðyÞ ¼ Cx̂ðc
�1
ðx̂ÞÞ þAðCÞðx̂; yÞ: (5)

Keeping in mind that Cx̂ðyÞ refers to the psychometric/
discrimination function arising from the procedure (of
referent–probe comparison) whereby stimulus x ¼ x̂ is
being fixed (a referent); it is viewed as a function of y,
the varying comparison stimulus. The minimum value of
the discrimination function Cx̂ðc

�1
ðx̂ÞÞ; now viewed as a

function of the reference stimulus x̂; is usually a
nonconstant function—this is what the condition of
‘‘nonconstant self-similarity’’ requires.
Let us study the psychometric function FyðxÞ of the

reverse procedure, whereby y is being treated as a fixed
referent and x as a varying probe. Assume that in the
reverse procedure, the two stimulus domains, now
denoted as Xc and Yr; are related to each other via
another smooth and strictly increasing function f :
Xc ! Yr: An analogous expression for the psycho-
metric function FŷðxÞ of the reverse procedure can be
derived using a strictly convex function Fð�Þ

FŷðxÞ ¼ Fŷðf
�1
ðŷÞÞ þAðFÞðŷ;xÞ;

where A is defined earlier, and Fŷðf
�1
ðŷÞÞ is the

minimal value of the psychometric function, as a
function of the referent ŷ now; it is in general a
nonconstant function.
Now, the two convex functions C and F; which are

used to construct a pair of psychometric functions CxðyÞ

and FyðxÞ; are not necessarily related to each other in
3Since cð�Þ is strictly monotone increasing, the functionCðyÞmust be
strictly convex (see Section A.1 for a brief review of convex functions).

Now, any strictly monotonic (possibly x̂-dependent) transformation of

Cx̂ðyÞ itself would not change the location of its minimum, Cx̂ðyÞ can

thus be taken to represent either the psychometric/discrimination

probability function or the ‘‘discrimination function’’—so named to

indicate that its range may lie outside ½0; 1�—so long as the two are

monotonically related to one another. Therefore, no further distinction

will be made between a psychometric (discrimination probability)

function and a discrimination function, and the terms will be used

interchangeably.
obvious ways. However, if one imposes the condition of
regular cross-minimality, then it will be shown in this
paper that the convex functions C and F must be
conjugated: F ¼ C�2F� ¼ C; with ðC�Þ� ¼ C; ðF�Þ� ¼
F: In convex analysis (see Section A.1), a pair of
conjugated convex functions C and C� are related
through the Legendre–Fenchel transformation. Further-
more, since their derivatives are inverse of one another,
we obtain f ¼ c�1: This means that the regular cross-
minimality condition, when applied to a referent–probe
comparison task, forces a consistent diffeomorphic
mapping between the two stimulus spaces X and Y
regardless of which space contains reference and which
comparison stimuli. The mapping f ¼ c�1 : X!
Y !c ¼ f�1 : Y! X can be any strictly increasing
transformation, so the correspondence between the two
stimulus spaces is allowed to be in a quite arbitrary
form. Nevertheless, it must be the one and the same for
both the forward and the reverse procedures; hence the
subscripts indicating the reference/comparison role each
space serves (r versus c) can be dropped. As a
consequence, the psychometric differentials for the
forward and reverse procedures are equal and have the
following dualistic relation:

AðCÞðx; yÞ ¼AðC
�Þðy;xÞ:

In the following, we extend these considerations from
the unidimensional stimulus space to the multi-dimen-
sional one, investigate the properties of regular cross-
minimality and nonconstant self-similarity, and char-
acterize the relationship between the pair of psycho-
metric differentials arising from the forward and reverse
procedures and the dual scaling of the two stimulus
spaces. In Section 2.1, we show how regular cross-
minimality amounts to requiring the one and same 1-to-
1 mapping between the two stimulus spaces regardless of
the assignment of the reference/comparison role to each.
In Section 2.2, we investigate the dualistic expression of
the psychometric differentials for the two procedures
and show they become equal under regular cross-
minimality. This allows the introduction of an asymme-
trically defined divergence function between a referent
and a probe, both expressed in the same stimulus space.
Mathematically the dualistic expression of the nonne-
gative psychometric differential arises from the funda-
mental inequality (Fenchel inequality) associated with
the conjugacy operation (Legendre transformation) in
convex analysis. In Section 2.3, we investigate the global
properties of the psychometric differential and the
divergence function, and prove their nonnegativity,
conjugacy, triangle relation, quadrilateral relation, and
dualistic representability. In Section 2.4, the local
property of the divergence function is studied; it is
shown that this proposed measure of psychological
dissimilarity, when considered in the small, induces a
Riemannian metric indeed, a special case of the
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Finslerian one. Finally, since our analysis hinges on a
particular form of the psychometric function, we discuss
its characterization from the perspective of biorthogonal
mappings associated with a Riemannian manifold. The
paper closes with a discussion about of the significance
of the current framework of dual scaling of the
comparison stimulus and the reference stimulus, and
its difference from the Finslerian geometric framework
of the stimulus space proposed by Dzhafarov and
Colonius (1999, 2001). The main conclusion of the
present analysis is to demonstrate that, while regular
cross-minimality requires the correspondence between
the two stimulus spaces be independent of the reference/
comparison status each space is assigned to serve, one
may still construct a pair of psychometric differentials,
one for either assignment, which turn out to be identical
yet respect the differential status of a reference stimulus
and that of a comparison stimulus—the two stimulus
spaces involved in the referent–probe comparison tasks
are hence ‘‘dual’’ with respect to one another in this
precise sense.
2. Stimulus dissimilarity and dual scaling of the reference

and the comparison stimuli

In this section, a systematic framework is advanced to
deal with the basic asymmetry in the two stimuli under
referent–probe comparison, i.e., between the one serving
as the comparison stimulus (‘‘probe’’) and the one
serving as the reference stimulus (‘‘referent’’). Following
Dzhafarov and Colonius’ proposal for the same–differ-
ent comparison task, we advance the notions of (i)
regular cross-minimality and (ii) nonconstant self-
similarity in a pair of psychometric/discrimination
function. The discrimination function under investiga-
tion can be expressed using a strictly convex (but
otherwise arbitrary) function that satisfies nonconstant
self-similarity in a straightforward way. Imposing the
regular cross-minimality requirement across the two
psychometric functions, each associated with a convex
function, reveals that the two convex functions must be
conjugated to one another. This in turn means that the
scaling of either stimulus space, as measured by the
(generally) asymmetric divergence functions, is dualistic
with respect to the psychometric procedure (whether
forward or reverse). Mathematically, regular cross-
minimality and nonconstant self-similarity are proper-
ties that naturally arise from the fundamental duality
(Legendre–Fenchel transformation) associated with the
conjugacy operation on any convex functions.

2.1. Convex representation of psychometric functions

Within the context of a referent–probe comparison
experiment, a trial consists of the presentation of a
comparison stimulus and of a reference stimulus in two
alternative observational intervals that are spatially and/
or temporally separated (e.g., on two sides of the screen,
in two successive frames). A reference stimulus or
referent is one that is held constant during a block of
experimental trials (in the method of staircase or the
method of constant stimuli) or during a trial (in the
method of adjustment). A comparison stimulus or probe

is one that is varied in magnitude during its multiple
presentations, in either ascending or descending order,
or with randomization. The referent–probe distinction
refers to the status of the actual physical stimuli being
presented to the subjects. This status is understood by
the subject as a result of either the delivery procedure
and/or the mental representation of the stimulus.
Therefore, any asymmetry that arises out of a switch
of their status necessarily indicates the presence of some
intrinsic difference in information processing by the
subject, rather than merely a difference of observation
intervals, whether spatial or temporal, within which the
stimuli are presented.
To account for the fundamental difference in the

referent and the probe, we would need to assume two
distinct psychometric (discrimination probability) func-
tions: CxðyÞ for the forward procedure where x is
presented in one interval as the referent and y in another
interval as the probe, and FyðxÞ for the reverse
procedure where x is now allowed to vary and assumes
the role of the probe while y is treated as a fixed referent.
The two functions CxðyÞ and FyðxÞ may not be
obviously related to each other. But we require them
to satisfy regular cross-minimality and nonconstant self-
similarity as described in Section 1.1.
The psychometric function CxðyÞ is a bivariate

function where x ¼ ½x1; . . . ; xn� and y ¼ ½y1; . . . ; yn�

represent, respectively, the two stimuli used in compar-
ison judgment, where each is defined in some subsets of
Rn; denoted here and below as X and Y: To denote that
x is treated as the reference stimulus (referent) and y as
the comparison stimulus (probe), one variable is written
as the subscript and the other as the functional
argument of the two-variable function CxðyÞ: In the
framework of Dzhafarov and Colonius (1999), CxðyÞ is
taken to be the probability that y is judged as different
from x. Here, a less restrictive interpretation is adopted:
CxðyÞ is taken to represent some ‘‘degree’’ of discrimi-
nation between a variable probe y and a fixed referent x,
and need not be bounded between ½0; 1�; as long as it is
strictly monotonically related to the relative frequency
that y is judged different from x in a discrimination task
(the transformation itself can be x-dependent, see
footnote 3).
Following the arguments developed in Section 1.1, we

write the psychometric function in the form (c.f. Eq. (5))

CxðyÞ ¼ C1ðxÞ þAðCÞðx; yÞ; (6)
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where the multi-dimensional version of the psycho-
metric differential (of the forward procedure) has the
form

AðCÞðx; yÞ ¼ CðyÞ � x � yþC�ðxÞ: (7)

Here, x � y �
Pn

i xiyi denotes the dot product of two
vectors x and y, Cð�Þ : Rn ! R is a smooth and strictly
convex function with convex conjugate

C�ðxÞ ¼ ðrCÞ�1ðxÞ � x�CððrCÞ�1ðxÞÞ (8)

(r denotes the gradient operation, see below). In (6), the
function C1ð�Þ : Rn ! R is smooth but otherwise arbi-
trary. The rationale for writing the psychometric
differential in the form of (7) will be further investigated
in Section 2.5, where characterization results are
provided.
With x as the fixed reference stimulus, CxðyÞ is viewed

as a function of the comparison stimulus y. The first
derivative or gradient of CxðyÞ with respect to y is

ryðCxðyÞÞ ¼ rCðyÞ � x;

where the gradient operator is ry ¼ ½
q
qy1

; . . . ; q
qyn� (for

clarity, we omit the subscript in r when the function
being operated on has single variable). The first
derivative is zero if and only if

x ¼ rCðyÞ:

The second derivative or Hessian of CxðyÞ; with respect
to y again, is

rT ðrCðyÞÞ � HCðyÞ (9)

(rT is treated as a column vector, and r as a row
vector). Since HC is positive semi-definite by the strict
convexity property of the function Cð�Þ; the mapping
y 7!x ¼ ðrCÞðyÞ is 1-to-1 and hence invertible. Further-
more, for any fixed value of x ¼ x̂; since the Hessian of
CxðyÞ with respect to y is positive semi-definite due to
positive semi-definiteness of HC; the point

ŷ ¼ ðrCÞ�1ðxÞjx¼x̂ (10)

is a unique, global minimum of Cx̂ðyÞ when the latter is
viewed as a function of y:

ŷ ¼ argminy Cx̂ðyÞ:

The minimum value of such a discrimination function,
for the fixed referent x, is

min
y

CxðyÞ ¼ C1ðxÞ:

So C1ðxÞ is precisely the function of ‘‘self-similarity’’ in
the notion of Dzhafarov (2002d), which varies according
to the value of the reference stimulus x. Clearly, it need
not be a constant.
Now turning to the reverse procedure in which x is

treated as a comparison stimulus and hence variable
while y is treated as the reference stimulus and hence
fixed. Analogous to (5), the psychometric function FyðxÞ
is assumed to take the form:

FyðxÞ ¼ C2ðyÞ þAðFÞðy; xÞ; (11)

where Fð�Þ : Rn ! R is another smooth and strictly
convex function, and AðFÞ is simply

AðFÞðy;xÞ ¼ FðxÞ � y � xþ F�ðyÞ: (12)

The function C2ð�Þ : Rn ! R is smooth but otherwise
arbitrary; it is the minimal value function of the reverse
discrimination function FyðxÞ when minimizing over x,
for any fixed referent y.
We can, for the fixed referent y ¼ ŷ; find the value of

x ¼ �x that achieves the global minimum in this reverse
discrimination task

�x ¼ argminx FŷðxÞ:

Differentiating the right side of (12) with respect to x,
and setting x ¼ �x; y ¼ ŷ yields

ŷ ¼ rFð �xÞ:

This is the equation that �x would have to satisfy.
Note that the condition of regular cross-minimality

requires that

�x � x̂:

Because of (10), we can see that

rFðx̂Þ ¼ ðrCÞ�1ðx̂Þ:

Since ðrCÞ�1 ¼ rC� by the property of convex con-
jugacy (see Section A.2), we have

F ¼ C�

apart from a constant. Therefore, regular cross-minim-
ality dictates that the convex function F in expression
(11) for the psychometric function of the reverse
procedure to be conjugated to the convex function C
in expression (6) for the psychometric function of the
forward procedure; consequently the two psychometric
differentials are equal

AðCÞðx; yÞ ¼AðC
�Þðy;xÞ:

To summarize, using a pair of conjugated convex
functions Cð�Þ and C�ð�Þ; we may express the two
discrimination functions CxðyÞ and FyðxÞ (that char-
acterize the degree of discrimination performance when
x or y is fixed, respectively) by

CxðyÞ ¼AðCÞðx; yÞ þ C1ðxÞ;

FyðxÞ ¼AðC
�Þðy;xÞ þ C2ðyÞ;

such that (i) their global minima are both nonconstant
functions C1ð�Þ;C2ð�Þ of the value of the fixed referent
(subscript of the function)

min
y

CxðyÞ ¼ C1ðxÞ;

min
x

FyðxÞ ¼ C2ðyÞ
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and that (ii) the value of the probe (argument of the
function) that attains their respective global minimum

ŷ ¼ argminy Cx̂ðyÞ;

x̂ ¼ argminx FŷðxÞ;

satisfies

ŷ ¼ rC�ðxÞjx¼x̂;

x̂ ¼ rCðyÞjy¼ŷ;

where rC� ¼ ðrCÞ�1: The use of a pair of conjugated
functions C and C� in representing the respective
discrimination function CxðyÞ and FyðxÞ is a direct
consequence of imposing the regular cross-minimality
condition on the two psychometric functions.

2.2. Divergence functions and dual scaling of stimulus

spaces

The psychometric differential AðCÞðx; yÞ; as given by
(7), measures the difference in the large between a
reference stimulus x and a comparison stimulus y (the
term ‘‘differential’’ is really a misnomer since its value
need not be infinitesimal). Under regular cross-minim-
ality the two psychometric differentials for the forward
and the reverse procedure the are equal. The basic
convex duality ðC�Þ� ¼ C results in the dualistic form of
the psychometric differential

AðC
�Þðy;xÞ ¼AððC

�Þ
�
Þðx; yÞ ¼AðCÞðx; yÞ:

Psychometric differentials equal zero if and only if the
functional arguements x and y satisfy

x ¼ ðrCÞðyÞ2 y ¼ ðrC�ÞðxÞ: (13)

In such case, AðCÞðx; yÞ ¼AðC
�Þðy; xÞ ¼ 0 simply ex-

presses the Legendre–Fenchel duality (see Eq. (22) in
Section A.1).
Denote cðyÞ ¼ ðrCÞðyÞ and fðxÞ ¼ c�1ðxÞ ¼
ðrCÞ�1ðxÞ:We observe a diffeomorphic correspondence
between the space X and the space Y; namely f : X!
Y !c : Y! X; regardless of which is being used to
contain the comparison stimulus and which the refer-
ence stimulus (i.e., whether the forward or the reverse
procedure):

X 3 x 7!fðxÞ ¼ y 2 Y !Y 3 y 7!cðyÞ ¼ x 2 X:

Because the mapping between the two spaces is
continuous and 1-to-1, we can now express the
psychometric differential either using values defined in
X alone or in Y alone (i.e., both the comparison and the
reference stimuli are now expressed in the same space).
For stimulus values y; y0 2 Y where y is the referent and
y0 is the probe, we define

DðCÞðy; y0Þ ¼AðCÞðcðyÞ; y0Þ

¼ Cðy0Þ � cðyÞ � y0 þC�ðcðyÞÞ:
Substituting the expression of C�ð�Þ from (8) and
rewriting cðyÞ ¼ ðrCÞðyÞ; we have

DðCÞðy; y0Þ ¼ Cðy0Þ �CðyÞ � ðrCÞðyÞ � ðy0 � yÞ: (14)

This defines a distance-like measure between a probe y0

and a referent y both expressed in the same space. We
call this measure DðCÞðy; y0Þ the (psychological) diver-

gence function between two stimuli in the multi-
dimensional stimulus space; it provides a scaling of the
stimulus space Y: Similarly, for two stimuli x;x0 2 X
serving as referent and probe, respectively, their dissim-
ilarity is

DðC
�Þðx;x0Þ ¼AðC

�ÞðfðxÞ; x0Þ;

or writing out explicitly (recall rC� is simply
ðrCÞ�1 ¼ c�1 ¼ f)

DðC
�Þðx;x0Þ ¼ C�ðx0Þ �C�ðxÞ � ðx0 � xÞ � ðrC�ÞðxÞ;

(15)

providing a scaling of the stimulus space X: The duality
between the two dissimilarity measures presents itself as
the identity

DðC
�Þðx;x0Þ ¼ DðCÞðfðx0Þ;fðxÞÞ;

DðCÞðy; y0Þ ¼ DðC
�Þðcðy0Þ;cðyÞÞ:

Expressions (14) and (15) are formally identical since
ðC�Þ� ¼ C: Henceforth, we will not distinguish, between
C and C�; the original versus the conjugated status of a
convex function; we only need to note that the two
stimulus spaces are in correspondence through the use of
the gradients of a pair of mutually conjugated convex
functions. In particular, we will freely write DðCÞðx;x0Þ to
denote the divergence function for the stimulus space X
as ‘‘scaled’’ by the convex function C (c.f. Eq. (15))

DðCÞðx; x0Þ ¼ Cðx0Þ �CðxÞ � ðrCÞðxÞ � ðx0 � xÞ:

It is noteworthy that the psychometric differential
defined above coincides in form with the so-called
‘‘canonical divergence’’ encountered in the analysis of
the differential manifold structure of parametric prob-
ability distributions where the technique of Legendre
transform is also used (Amari, 1985; Amari & Nagaoka,
2000). The psychological divergence function DðCÞðx; x0Þ
has appeared in an entirely different context—in the
field of optimization and machine learning—and is
known as the Bregman (1967) divergence. Clearly, from
the above analysis, it is the canonical divergence
function AC in disguise. It is called ‘‘divergence’’ as
opposed to ‘‘distance’’, because DðCÞðx;x0Þ in general
does not satisfy the symmetry axiom
DðCÞðx; x0ÞaDðCÞðx0; xÞ nor the axiom of triangle in-
equality. In fact, it will be shown elsewhere (Zhang,
2004) that a parametric family of dissimilarity (diver-
gence) functions based on a single convex function can
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be constructed which include the current form as a
special case.
Note that our present construction, like that of

Dzhafarov and Colonius, is inherently multi-dimen-
sional. When the stimulus dimensions are noninteract-
ing (i.e., they are perceptually separable), then

CðxÞ ¼
Xn

i¼1

f ðxiÞ

for smooth and strictly convex f : R! R; and

rC ¼ ½ f 0ðx1Þ; f 0ðx2Þ; . . . ; f 0ðxnÞ�;

where f 0 denotes the ordinary derivative. This allows
one to define a dissimilarity measure on each dimension
separately

Dðf Þðxi;x0iÞ ¼ f ðx0iÞ � f ðxiÞ � ðx0i � xiÞf 0ðxiÞ;

such that the total dissimilarity is

DðCÞðx;x0Þ ¼
X

i

Dðf Þðxi; x0iÞ:

This is the case of ‘‘perceptual separability’’ (Dzhafarov,
2002c) in the representation of psychological divergence
functions.

2.3. Properties of psychometric differentials and

divergence functions

The psychometric differential AðCÞðx; yÞ defines a
measure of dissimilarity between the stimulus x as a
referent and a comparison stimulus y as a probe
when the former is defined in one stimulus space X
and the latter in another stimulus space Y; its
conjugate AðC

�Þðy;xÞ measures the dissimilarity in
the two stimuli when their respective roles are switched.
It can be shown that the psychometric differential
satisfies:

(A1) Nonnegativity: For all x 2 X; y 2 Y;

AðCÞðx; yÞX0;

with the equality holding if and only if x ¼ ðrCÞðyÞ:
(A2) Conjugacy: For all x 2 X; y 2 Y;

AðCÞðx; yÞ ¼AðC
�Þðy; xÞ:

(A3) Triangle relation (generalized cosine): For any
three points x 2 X; y; y0 2 Y;

AðCÞðx; yÞ ¼AðCÞðx; y0Þ þAðCÞðrCðy0Þ; yÞ

� ðx� rCðy0ÞÞ � ðy� y0Þ:

(A4) Quadrilateral relation: For any four points x;x0 2
X; y; y0 2 Y;

AðCÞðx; y0Þ þAðCÞðx0; yÞ �AðCÞðx; yÞ �AðCÞðx0; y0Þ

¼ ðx� x0Þ � ðy� y0Þ:
As a special case, if x0 and y0 are in correspondence, i.e.,
x0 ¼ ðrCÞðy0Þ; then AðCÞðx0; y0Þ ¼ 0; and (A4) becomes
the triangle relation (A3).
In parallel to properties enjoyed by AC; the

psychological divergence function DðCÞðx; x0Þ; and simi-
larly DðC

�Þðy; y0Þ; satisfies the following properties:

(D1) Nonnegativity: For all x;x0 2 X;

DðCÞðx; x0ÞX0;

with the equality holding if and only if x ¼ x0:
(D2) Conjugacy: For all x;x0 2 X;

DðCÞðx; x0Þ ¼ DðC
�ÞðrCðx0Þ;rCðxÞÞ:

(D3) Triangle relation (generalized cosine): For any
three points x; x0;x00 2 X;

DðCÞðx;x0Þ þDðCÞðx0;x00Þ �DðCÞðx;x00Þ

¼ ðx00 � x0Þ � ðrCðxÞ � rCðx0ÞÞ:

(D4) Quadrilateral relation: For any four points
x; x0;x00;x000 2 X;

DðCÞðx;x0Þ þDðCÞðx000;x00Þ �DðCÞðx; x00Þ �DðCÞðx000;x0Þ

¼ ðx00 � x0Þ � ðrCðxÞ � rCðx000ÞÞ:

As a special case, when x000 ¼ x0; DðCÞðx000; x0Þ ¼ 0; (D4)
reduces to the triangle relation (D3).
Finally, we have the connection between the psycho-

metric differential AC and the psychological divergence
function DC; namely, the dualistic representability:

DðCÞðx; x0Þ ¼AðCÞððrCÞðxÞ; x0Þ ¼AðC
�Þðx0; ðrC�Þ�1ðxÞÞ:

The proof for (D1)–(D4) and for the dualistic
representability is given in Section A.2. Since
(A1)–(A4) are counterparts to (D1)–(D4), their proof
is omitted.
2.4. Riemannian metric induced by the divergence

functions

Recall that in the Fechnerian scaling of the stimulus
space (Dzhafarov & Colonius, 1999), the Finslerian
metric function F ðx; uÞ plays a pivotal role in linking a
distance measure in the small and that in the large. Here
x ¼ ½x1; . . . ;xn� is a point on the base manifold and u ¼

½u1; . . . ; un� is a nonzero vector on the tangent space
(attached to the point x). For a given x, the set of u-
vectors satisfying F ðx; uÞ ¼ 1 is called the indicatrix. The
metric tensor g associated with a Finslerian metric
function has components (see Rund, 1959)

gijðx; uÞ �
1

2

q2ðF ðx; uÞÞ2

quiquj
;
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which can be shown to be positive semi-definite. Because
of the Euler homogeneity

F ðx; kuÞ ¼ kF ðx; uÞ ðk40Þ;

the following identity can be derived:

ðF ðx; uÞÞ2 ¼
X

i;j

gijðx; uÞu
iuj :

The right-hand side of the above equation resembles the
expression of the line element under the Riemannian
geometry, only that the metric tensor gðx; uÞ; called
Finsler–Riemannn metric, now depends on u in addition
to depending on x. Therefore, Finsler geometry can be
seen as an extension of Riemannian geometry properly
defined by the quadratic form of the line-element. On
the other hand, when the Finslerian metric function
F ðx; uÞ ¼ F ðuÞ does not depend on x, the Minkowski
distance measure results. For these reasons, Finslerian
metric function extends both the Riemannian metric and
the Minkowski metric.
We next investigate local properties of the psycholo-

gical divergence function introduced above. According
to The Fundamental Theorem of Fechnerian scaling
(Dzhafarov & Colonius, 1999, and more elaborated in
Dzhafarov, 2002a), under a certain co-measurability
condition, there exists a global psychometric transfor-
mation gð�Þ such that, when globally applied,

lim
s!0þ

gðDðx; xþ suÞÞ

s
;

exists and is to be identified with F ðx; uÞ; the metric
function of Finsler space. The ‘‘order’’ of such psycho-
metric transformation is determined by the Taylor
expansion of Dðx; xþ suÞ to the lowest nonvanishing
term in s:

DðCÞðx; xþ suÞ ¼ Cðxþ suÞ �CðxÞ � rCðxÞ � ðsuÞ

� 1
2

suT � ðHCÞðxÞ � su;

where H was defined in (9) as the Hessian matrix
(second derivative) operator. With the square-root
operation gðtÞ ¼ t1=2;

lim
s!0þ

gðDðCÞðx;xþ suÞÞ

s
¼

1

2
uT ðHCÞðxÞu

� �1=2

Analogously, if one expands Dðxþ su;xÞ; the same
F ðx; uÞ results—the Finslerian metric function obtained
is ‘‘balanced’’ using the terminology of Dzhafarov
(2002d). The psychometric order is 2. Furthermore,

F ðx; uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

X
ij

q2CðxÞ
qxiqxj

uiuj

vuut

is actually a Riemannian metric function. So, the
psychological dissimilarity measure, though asymmetric
in the large, actually induces (i.e., is compatible with) a
symmetric Riemannian metric in the small.
For reader’s information, we may also calculate the
‘‘level function’’—the o-function as defined in Dzhafar-
ov’s (2002d),

Cxþsuðxþ suÞ �CxðxÞ ’ s
X

i;j

q2CðxÞ
qxiqxj

xiuj ;

Fxþsuðxþ suÞ � FxðxÞ ’ s
X

i;j

q2C�ðxÞ
qxiqxj

xiuj :

They are both in the first order of s, though the
psychometric differentials DðCÞðx;xþ suÞ; DðCÞðxþ
su;xÞ; DðC

�Þðx;xþ suÞ; DðC
�Þðxþ su; xÞ all approach

zero in the second order of s (and hence with
psychometric order of 2). This is not inconsistent with
the results of Dzhafarov (2002d), see further discussions
in Section 3.

2.5. Biorthogonality and characterization of dualistic

psychometric differentials

The divergence function defined on the stimulus space
is different from the distance function defined on it.
Recall the three axioms of the distance function (see
Section 1) and contrast them with the properties of the
divergence function DðCÞ or its equivalence AðCÞ:
Notably, the nonnegativity axiom is replaced by a
modified requirement of AðCÞðx; yÞX0; with 0 achieved
if and only if y ¼ cðxÞ for some diffeomorphic (1-to-1
and continuous) transformation cð�Þ in multi-dimen-
sional case or strictly increasing transformation in
one-dimensional case. The symmetry axiom is replaced
by a dual symmetry: AðCÞðx; yÞ ¼AðC

�Þðy; xÞ with
C� satisfying ðC�Þ� ¼ C: Lastly, triangle inequality
is replaced by the triangle relation (generalized
cosine law). These properties of a divergence function
differ sharply from a distance function Dðx; yÞ
which enjoys nonnegativity, symmetry, and triangle
inequality.
This paper investigated a particular form of the

discrimination function (6), which results in the specific
form of the psychometric differential (7) or equivalently
the divergence function in the form (14). As mentioned
earlier, in the unidimensional case, such form (5) arises
out of the presumed existence of a smooth, strictly
increasing (i.e., order-preserving) transformation be-
tween the two stimulus spaces (Section 1.1). In the
multi-dimensional case, monotonicity of the mapping
no longer makes sense. Therefore, the assumption of
smooth, order-preserving transformations is to be
replaced by some other restrictions on the class of
permissible diffeomorphic transformations c : Y! X
which, by definition, must have nonvanishing Jacobian.
In fact, if we require the Jacobian to be symmetric (here
ci and cj denote the ith and jth component of the
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vector-valued map c)

qci

qyj
¼

qcj

qyi
; (16)

as well as positive-definite, then convex analysis tells us
that there must exist a strictly convex function C such
that c ¼ rC: This is to say, the assumption (in Section
2.1) of the existence of

x ¼ cðyÞ ¼ f�1ðyÞ ¼ rCðyÞ

 !y ¼ c�1ðxÞ ¼ fðxÞ ¼ rC�ðxÞ

amounts to a requirement (16) that the mapping from Y
to X be ‘‘curl’’-less.
When points in the two spaces X and Y are 1-to-1

identified in such a way, i.e., when they satisfy (16), x

and y may be viewed as two coordinate representations
of some underlying abstract manifold (remember a
manifold is locally differeomorphic to a subset of Rn; in
this case X or Y). The metric tensor g of the underlying
manifold is then given by (in matrix form)

ijth element of g ¼
qci

qyj
¼

qcj

qyi
;

whose inverse is

ijth element of g�1 ¼
qfi

qxj
¼

qfj

qxi
:

The two coordinate systems x and y are said to be
‘‘biorthogonal’’ with respect to the metric. The manifold
possesses, in addition to a Riemannian metric, a pair of
dually flat affine connections (related to C and C�) that
can be used for parallel transport of vectors. Such pair
of connections, though not satisfying the Levi–Civita
condition and hence incompatible with the Riemannian
metric, are dually flat in the sense that a unique,
canonical divergence function exists between any two
points on the manifold. This is precisely the (asym-
metric) psychometric differential/divergence functions
discussed in Section 2.2. These important concepts
(biorthogonal coordinates, dual connections, canonical
divergence) have been advanced in the field of ‘‘in-
formation geometry’’(Amari, 1985; Amari & Nagaoka,
2000), which studies the manifold of all probability
functions where the Fisher information defines the
Riemannian metric.
So far, we have characterized the dual correspondence

between X and Y through the gradients of a pair of
conjugated convex functions C and C�: To characterize
psychometric functions CxðyÞ which take the exact form
of (6), we examine, equivalently, the characterization of
divergence functions DðCÞðx;x0Þ which take the exact
form (14).
Kaas and Vos (1997, p. 240) showed that (14)

arises uniquely if the following three conditions are
satisfied (i) DðCÞðx; x0ÞX0; the equality holding if
and only if x ¼ x0; (ii) the first derivatives
rxD

ðCÞðx;x0Þjx0¼x ¼ rx0D
ðCÞðx; x0Þjx¼x0 ¼ 0; and (iii) the

second derivative (Hessian) Hx0D
ðCÞðx; x0Þ is positive

semi-definite in x0 and independent of x. (Here rx0 ;Hx0

denote the first and the second derivative operators with
respect to the the x0-variable). Eguchi (1983), in his
theory on divergence (called also contrast) functions, did
not use (iii) above, but stipulated instead that (iii)’ the
mixed second derivative ðrxÞ

T
ðrx0 ÞD

ðCÞðx;x0Þ; which is
necessarily symmetric, be negative semi-definite. The
reader may verify the above claims by simply noting the
following relations:

rx0D
ðCÞðx;x0Þ ¼ rCðx0Þ � rCðxÞ;

rxD
ðCÞðx;x0Þ ¼ ðx� x0Þ � ðHCÞðxÞ;

Hx0D
ðCÞðx;x0Þ ¼ ðHCÞðx0Þ:

3. Discussion

Geometrization of the multi-dimensional stimulus
space has always captured the interest of mathematical
psychologists. Differential geometric descriptions of the
perceptual space, excluding the large body of work on
binocular depth perception where geometry is substan-
tively involved (Luneburg, 1947; Smith, 1959; Indow,
1982, 1991), have recently been applied to the discrimi-
nation and comparison of stimuli in multi-dimensional
setting invoking the notion of affine connection for
vector comparison (Yamazaki, 1987; Levine, 2000), the
emergence of perceptual oneness in segregated objects
invoking the notion of intrinsic parallelism (Zhang &
Wu, 1990; Zhang, 1995), the perception of complex
visual stimuli through infinite-dimensional analysis
(Townsend, Solomon, & Smith, 2001), and the char-
acterization of perceptual distance in the large via local
measurement of stimulus discrimination using the
Finsler geometry approach (Dzhafarov & Colonius,
1999, 2001). Here, in the same spirit, the foundation of
comparative judgment between a probe (comparison
stimulus) and a referent (reference stimulus) is investi-
gated, with a special interest in the issue of asymmetry in
comparison.
Scalings for the comparison stimulus space and for

the reference stimulus space that are dual to each other
are formally constructed. The duality between the
comparison and the reference stimuli, which are never-
theless in diffeomorphic correspondence, gives rise to a
difference structure characterized by an asymmetric
(but dually symmetric) measure of dissimilarity, in
contrast to the symmetric distance measure of similarity.
The nonnegativity axiom is relaxed to state that
AðCÞðx; yÞX0 with 0 attained iff y ¼ cðxÞ for some
diffeomorphic (1-to-1 and continuous) transformation
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c ¼ rC: In the unidimensional case, the requirement of
diffeomorphic transformation is reduced to the assump-
tion of a monotonic (order-preserving) mapping be-
tween the two stimulus spaces X and Y: In lieu of the
symmetry axiom, a dualistic relation is in place
AðCÞðx; yÞ ¼AðC

�Þðy; xÞ with C� satisfying ðC�Þ� ¼ C:
In lieu of the triangle inequality, the triangle relation
(generalized cosine) is satisfied by AC: These properties
of the psychometric differential (or its alternative form,
the psychological divergence function) have been shown
to be consistent with the property of regular cross-
minimality without violating the property of noncon-
stant self-similarity in the psychometric functions
themselves; in fact regular cross-minimality dictates that
the differomorphic mapping between the two spaces X
and Y to be the one and the same regardless of which is
taken to contain the reference stimulus and which the
comparison stimulus, and the psychometric differentials
for either assignment to be identical.
Asymmetric measures of dissimilarity are perhaps, we

claim, more important for a stimulus space than perhaps
the symmetric, distance measure of similarity4 because
of the pervasiveness of asymmetry in comparative
judgment CxðyÞaFyðxÞ: The differential status of a
fixed referent (status quo) and a variable probe is of
fundamental importance to any theory of the underlying
psychological process of comparative judgment, for
example between one stimulus in perception and
another in memory during categorization, between the
current state and the goal state during planning,
between the frame of reference (anchoring point) and
the potential targets to be mentally searched during
problem solving, between the known status quo and the
uncertain gains or losses during decision-making, etc. In
the framework of Dzhafarov and Colonius (1999, 2001),
asymmetry in same–different comparison is possible
because, in general, the Fechnerian metric function in
the small F ðx; uÞ can be made to be asymmetric:
F ðx;�uÞaF ðx; uÞ: Put in another way, the Finsler
geometry generalizes the conventional Riemannian
geometry by allowing directional dependence in the
metric tensor (in component form) gij that define the
quadratic line element ds2 ¼

P
i;j gijðx; uÞu

iuj : Since such
a mechanism works for unidimensional scaling as well,
asymmetry is seen to arise fundamentally as the
‘‘building-up’’ of local, asymmetric psychometric judg-
ments in the small, as opposed to arising from the multi-
dimensional nature of the stimuli, as in the contrast
model of similarity (Tversky, 1977). In the present
framework, asymmetry in the discrimination function in
4Our form of divergence function includes the Euclidean metric as a

special case, but is distinct from all other Minkowski metric functions.

In fact, when in the large, Euclidean metric is the only common

element that is both a (necessarily symmetric) distance function and a

(generally asymmetric) divergence function.
the large does not arise as a consequence of local
asymmetry—in fact the local, Riemannian metric
induced is a symmetric one. Asymmetry in comparative
judgments in the dualistic psychometric procedures
arises from an additive, nonconstant self-similarity term
reflecting the properties of the reference stimulus; the
psychometric differentials themselves are dually sym-
metric. The divergence function on the one hand
respects the differential status of a variable probe and
a fixed referent; on the other hand it is expressible in one
of the two dually equivalent forms, one for each
stimulus space. To the extent that self-similarity is
related to the typicality of a stimulus within a category
(as discussed in Smith, 1995), our account is different
from the contrast model of Tversky (1977) which
attributes the asymmetry in performance to distinct
features a comparison stimulus and a reference stimulus
each possesses and the differential weighting among the
unique features.
It is worth pointing out that, from a purely

mathematical standpoint, the framework of Dzhafarov
and Colonius and the current framework do not
subsume one another. Dzhafarov and Colonius (1999,
2001) models discrimination probability by a single two-
variable function Cðx; yÞ that is quite arbitrary to begin
with (apart from a certain co-measurability-in-the-small
condition), whereas the current framework allows two
two-variable functions while restricting them to a
particular representation involving a convex function.
Applying the conditions of regular minimality and
nonconstant self-similarity to Dzhafarov and Colonius’
model would rule out certain functional forms of Cðx; yÞ
(Dzhafarov, 2003a,b) and also restrict the psychometric
order associated with Cðx; yÞ to be less than or equal to
1 (Dzhafarov, 2002d). Applying the condition of regular
cross-minimality to the two psychometric functions
CxðyÞ and FyðxÞ here results in one and the same
psychometric differential that can be cast in dualistic
forms, while the condition of nonconstant self-similarity
is satisfied by construction. So mathematically the two
frameworks should be viewed as special cases of the
most general situation where CxðyÞ and FyðxÞ are
arbitrary and nonidentical, with Dzhafarov and Colo-
nius’ framework assuming an identical psychometric

function

CxðyÞ ¼ FyðxÞ (17)

and the current framework resulting in an identical
psychometric differential

CxðyÞ �min
y

CxðyÞ ¼ FyðxÞ �min
x

FyðxÞ: (18)

That these two frameworks are nonintersecting can be
appreciated when one tries to force the pair of
psychometric functions studied here (i.e. satisfying
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(18)) to be identical (i.e. satisfying (17))—it turns out
that requiring both (17) and (18) leaves no other choice
but minyCxðyÞ ¼ minxFyðxÞ ¼ const: In other words,
nonconstant self-similarity must be violated in this
situation (this fact was first pointed out to the author
by Dzhafarov in his review of an earlier draft of this
paper). From the perspective of Dzhafarov and Colo-
nius’ framework, imposing (17) on the pair of psycho-
metric functions requires the psychometric procedure to
be such that stimulus x 2 X is always presented in the
first observation area and stimulus y 2 Y in the second
observation area. In this case, the regular cross-
minimality condition across the two functions CxðyÞ

and FyðxÞ is enforced as the regular minimality
condition across the two variables of a single function
Cðx; yÞ ¼ CxðyÞ ¼ FyðxÞ: The forms of the psychometric
functions studied in this paper, which allow for a
dualistic form of psychometric differential, are simply
too specially chosen and would have constant self-
similarity. (Note: the reader should not be confused that
nonconstant self-similarity is always satisfied and in fact
comes for free so long as CxðyÞ and FyðxÞ are not
required to be the one and the same.) This analysis
shows that the Dzhafarov and Colonius’ framework
and the current framework cannot reduce to one
another; hence there is no mathematical inconsistency
in the respective conclusions regarding the psychometric
order.5

While the two mathematical approaches differ, both
have extended the Riemannian geometrical models of
the stimulus space, a tradition that dates back to as early
as Schrödinger(1920a,b) and later Stiles (1946) on color
perception. The Finsler geometric approach (Dzhafarov
& Colonius, 1999, 2001) allowed for locally non-
Riemannian metric function, and defined distance
through integration-and-minimization (‘‘path-integral’’)
procedure; this is based on the basic mathematical fact
that there exists a correspondence between the Finsler-
ian distance in the large and the Finslerian metric
function in the small provided that the distance function
is internal or internalizable. The present approach, on
the other hand, is rooted in dually affine Riemannian
geometry—the latter still uses a locally (symmetric)
Riemannian metric function, but allows for nonmetrical
affine connections for parallel transport of vectors. This
approach is based on the basic mathematical fact that
there exists a pair of global, biorthogonal coordinates,
connected through the Legendre transform, that serve as
geodesics of the Riemannian manifold with a pair of
conjugate connections. So long as the pair of conjugated
5Dzhafarov’s conclusion of psychometric order being not more than

1 is based on the psychometric function satisfying both regular

minimality and nonconstant self-similarity (Dzhafarov, 2002d).

Psychometric order is no longer constrained if nonconstant self-

similarity condition is removed.
affine connections are dually flat, two dually symmetric
divergence functions can be constructed in the large.
Both approaches extended classical Riemannian geome-
try in different directions. Further research is needed to
understand the relationship between these two mathe-
matical approaches in order to derive a unified and
coherent geometric theory of the psychological space
within which a pair of stimuli are comparable for
similarity and for difference.
Appendix A

A.1. Convex sets, convex functions, and convex

conjugacy

A point set S � Rn is called convex if for any two
points x;x0 2S and any real number l 2 ð0; 1Þ;

lxþ ð1� lÞx0 2S;

this is to say, the line segment connecting any two points
x and x0 belongs to the set S: In general, a multivariate
function C : S 7!R is strictly convex (or simply convex)
if for all x;x0 2S and l 2 ð0; 1Þ

Cðlxþ ð1� lÞx0ÞplCðxÞ þ ð1� lÞCðx0Þ;

where the equality holds only when x ¼ x0: The Hessian
matrix of a smooth, strictly convex function CðxÞ is
positive semi-definite, i.e., for all u 2 Rn;

uT � ðHCÞðxÞ � uX0:

For a general introduction to convex analysis, see
Rockafellar (1970) or Hiriart-Urruty and Lemaréchal
(1993). In particular, for a convex function Cð�Þ; the
gradient map x 7! ðrCÞðxÞ ¼ y establishes a diffeo-
morphism between S and its dual gradient space S� 3
y:
The function C�ð�Þ constructed according to

C�ðxÞ ¼ x � ðrCÞ�1ðxÞ �CððrCÞ�1ðxÞÞ; (19)

is known as the conjugate function of Cð�Þ: It enjoys
many interesting properties. In particular, C� is also a
convex function. Calculating its first derivative, and
introducing the vector-valued function

fðxÞ � ðrCÞ�1ðxÞ;

we have

rC�ðxÞ ¼ rfx � fðxÞ �CðfðxÞÞg

¼ fðxÞ þ x � rfðxÞ � ðrCÞðfðxÞÞ � rfðxÞ

¼ fðxÞ ¼ ðrCÞ�1ðxÞ;

where the identity

rCðfðxÞÞ ¼ ðrCÞððrCÞ�1ðxÞÞ � x

has been used. This shows that the mappings y 7!x ¼

rCðyÞ and x 7! y ¼ rC�ðxÞ are inverse functions of
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each other:

rC� ¼ ðrCÞ�1 !rC ¼ ðrC�Þ�1: (20)

So the convex function Cð�Þ and its conjugate C�ð�Þ as
defined by (19) form a pair. It can be verified that the
convex conjugate of C�ð�Þ is in turn Cð�Þ:

ðC�Þ� ¼ C: (21)

As examples, the functions 1
p
ð
P

i ðjxj
iÞ

p
Þ
1
p; p41 and the

functions 1
q
ð
P

iðjxj
iÞ

q
Þ
1
q; q41 are conjugate convex

functions when 1
p
þ 1

q
¼ 1: Quadratic functions ðp ¼ q ¼

2Þ are self-conjugated.
A rearrangement of (19) or a replacement of x in (19)

by rCðyÞ yields, respectively, the following identity:

C�ðxÞ þCðrC�ðxÞÞ ¼ x � rC�ðxÞ; ð22aÞ

CðyÞ þC�ðrCðyÞÞ ¼ y � rCðyÞ: ð22bÞ

These equalities between a convex function Cð�Þ and its
convex conjugate C�ð�Þ are called Legendre–Fenchel

duality in convex analysis (see, e.g., Rockafellar, 1970).
They represent the fundamental duality between the
vector space where x is defined, and the conjugate
gradient space where y ¼ ðrC�ÞðxÞ is defined.

A.2. Proof of properties of the psychological divergence

function (Section 2.3)

Proof of conjugacy:

DðCÞðx; x0Þ ¼ Cðx0Þ �CðxÞ � ðx0 � xÞ � rCðxÞ

¼ ðx0 � rCðx0Þ �C�ðrCðx0ÞÞÞ

� ðx � rCðxÞ �C�ðrCðxÞÞÞ � ðx0 � xÞ � rCðxÞ

¼ C�ðrCðxÞÞ �C�ðrCðx0ÞÞ

� x0 � ðrCðxÞ � rCðx0ÞÞ

¼ C�ðrCðxÞÞ �C�ðrCðx0ÞÞ

� rC�ðrCðx0ÞÞ � ðrCðxÞ � rCðx0ÞÞ

¼ DðC
�ÞðrCðx0Þ;rCðxÞÞ:

Proof of triangle and quadrilateral relations:
From

DðCÞðx;x0Þ ¼ Cðx0Þ �CðxÞ � ðx0 � xÞ � rCðxÞ;

DðCÞðx0; x00Þ ¼ Cðx00Þ �Cðx0Þ � ðx00 � x0Þ � rCðx0Þ;

DðCÞðx;x00Þ ¼ Cðx0Þ �CðxÞ � ðx00 � xÞ � rCðxÞ;

we easily derive the triangular (generalized cosine)
relation by adding the first two equations and subtract-
ing the third. To prove the quadrilateral relation, we
write out

DðCÞðx; x00Þ ¼ DðCÞðx; x0Þ þDðCÞðx0;x00Þ

� ðx00 � x0Þ � ðrCðxÞ � rCðx0ÞÞ;

which holds for all x0 (therefore the right-hand side
is independent of x0). Replacing x with another
variable x000:

DðCÞðx000;x00Þ ¼ DðCÞðx000;x0Þ þDðCÞðx0;x00Þ

� ðx00 � x0Þ � ðrCðx000Þ � rCðx0ÞÞ:

Subtracting these two equations and rearranging yields
the quadrilateral relation.

Proof of dualistic representability:

DðCÞðx;x0Þ ¼ Cðx0Þ �CðxÞ � ðx0 � xÞ � rCðxÞ

¼ Cðx0Þ � x0 � rCðxÞ þ ðx � rCðxÞ �CðxÞÞ

¼ Cðx0Þ � x0 � rCðxÞ þC�ðrCðxÞÞ

¼AðCÞðrCðxÞ;x0Þ

¼AðC
�Þðx0;rCðxÞÞ

¼AðC
�Þðx0; ðrC�Þ�1ðxÞÞ:
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