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Distributional Analysis and De Jong, Liang, and Lauber's (1994) 
Dual-Process Model of the Simon Effect 

Jun Zhang and Sylvan Kornblum 
University of Michigan 

R. De Jong, C.-C. Liang, and E. Lauber (1994) proposed a dual-process model to account for 
the Simon effect and its reversal. Their proposal included a distributional analysis whose 
results, they claimed, support the time-course assumptions they make for the 2 processes of the 
model. It is shown that the 2 functional components of the dual-process model, the 
unconditional and conditional automaticity, are equivalent to earlier accounts of the Simon 
effect and its reversal, namely automatic response activation of the dimensional overlap model 
(S. Kornblum, T. Hasbroueq, & A. Osman, 1990) and logical recoding (A. Hedge & N, W. A. 
Marsh, 1975), respectively. It is also shown that the distributional analysis is a simple 
computational procedure that reflects fundamental statistical properties of the underlying 
reaction time distributions and their interrelationships and that De Jong et al.'s time-course 
assumptions precluded at least half of these interrelationships. Indeed, experimental results 
from tasks in which the Simon effect is obtained often violate these assumptions, as is 
demonstrated in this article. Finally, it is also shown that De Jong et al.'s d,ta_ are consistent 
with the hypothesis that the Simon effect and its reversal, irrespective of the task type in which 
it is obtained, can be accounted for by a common mechanism with 2 independent functional 
components. 

During the past 5 years there has been a significant 
increase in the number of articles published on stimulus- 
response compatibility (SRC). This is due in part to the fact 
that SRC is beginning to be seen as encompassing a broad 
spectrum of performance complexity, ranging from the 
relatively simple perceptual-motor tasks first studied by 
Fitts (Fitts & Deininger, 1954; Fitts & Seeger, 1953) to the 
eognitively more complex Stroop tasks that have defied 
explanation from the day the original one was first described 
(Stroop, 1935). Among the SRC phenomena that have 
recently atwacted a great deal of  attention is the Simon effect 
(e.g., De Jong, Liang, & Lauber, 1994; Hommel, 1993; Lu & 
Proctor, 1995; Umilta, 1994). 

The Simon effect, narrowly defined, refers to the finding 
that in two-choice reaction time (RT) tasks in which the 
spatial position of the stimuli is irrelevant and the responses 
are made at the same relative spatial positions as the stimuli, 
the RT on trials on which the stimulus and response 
locations correspond is usually faster than on trials in which 
they do not correspond (see Simon, 1990, for a summary). 
Under some conditions, however, this effect is reversed. 
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That is, the RT on trials in which the stimulus and response 
locations correspond, instead of being faster, is slower than 
on trials in which they do not correspond. This has been a 
puzzle and has challenged a number of models in the 
literature that have attempted to account for the Simon effect 
(see Lu & Proctor, 1995, for a summary). Hedge and Marsh 
(1975), who first reported this reversal, accounted for it in 
terms of the logical recoding hypothesis. In their task, the 
stimuli consisted of  the colors red and green, presented to 
the left and fight of a central fixation point; the responses 
consisted of left and right keypresses, and the keys them- 
selves were colored red and green. The stimuli and the 
responses thus had two attributes each: color and position. 
Hedge and Marsh argued that 

the logical character of the recoding which would relate either 
of these (stimulus) attributes to the attributes of the response 
might be either "identity" (same colour or same position) or 
"reversal" (alternate colour or alternate position) . . . .  For a 
given logical recoding (identity or reversal) of the relevant 
attribute (color) responding was faster for trials in which the 
recoding of the irrelevant attribute (position) was of the same 
logical type as that of the relevant attribute, than for trials in 
which the logical re.coding of the irrelevant attribute was 
opposite in type. (Hedge & Marsh, 1975, p. 435) 

In one of the recent articles to address this issue, De Jong 
et al. (1994) proposed a dual-process model in which they 
postulated two functional components together with specific 
assumptions concerning the relative time course of these 
components. They also presented results of a distributional 
analysis of their data in support of  these assumptions. The 
model is presented as an all inclusive account of  the Simon 
effect and its reversal. The purpose of the present article is to 
examine De Jong et al.'s model and distributional analysis 
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technique in detail. We shall argue the following points. (a) 
The dual-process model does not explain or clarify the 
reversal of the Simon effect beyond the logical recoding 
hypothesis account originally proposed by Hedge and Marsh 
(1975); the core of De Jong et al.'s new proposal lies in the 
time-course assumptions of these two functional processes. 
(b) Whereas the distributional analysis proposed by De Jong 
et al. uncovers interesting patterns in their data, we show that 
these patterns are mathematically derivable from the statisti- 
cal properties of the RT distributions and are not necessarily 
related to the time-course assumptions of the dual-process 
model. (c) We present the results of experiments in  which 
robust Simon effects were obtained and for which the results 
of the distributional analysis violate De Jong et al.'s 
time-course assumptions. (d) We show that De Jong et al.'s 
data strongly suggest that a common mechanism is generat- 
ing the Simon effect across different types of tasks. This 
mechanism is most likely made up of two independent 
components; however, the details of how it produces the 
observed properties of the RT distribution remain to be 
identified. We take up these points in the order in which they 
are listed. 

The Dual-Process Model 

According to De Jong et al. (1994), the mechanism 
underlying the effects of an irrelevant stimulus position on 
performance has two components: (a) the unconditional 
priming component, "abrupt stimulus onset results in the 
strictly automatic priming of the spatially corresponding 
response" (p. 732); and Co) the conditional component, 
"when the task-defined S-R transformation (identity or 
reversal) is applied to the relevant stimulus attribute, it will 
tend to generalize to the spatial stimulus code resulting in the 
priming Of the spatially corresponding or noncorresponding 
response, respectively" (p. 732). These two components are 
assumed to have different time courses. The first, the 
unconditional component, is assumed to become effective 
soon after stimulus onset, and to dissipate rapidly. The 
second, the conditional component, is assumed "not to be 
time-locked to stimulus onset, but to arise at the point in time 
when the transf~mation rule (identity or reversal) is applied 
to the relevant stimulus attribute and also, unintentionally, to 
the spatial stimulus code" (De Jong et al., 1994, pp. 732-733). 

Functionally, the unconditional component is indistinguish- 
able from the automatic response activation process of the 
dimensional overlap (DO) model (Kornblum et al., 1990; 
Kornblum & Lee, 1995)--including its underlying priming 
mechanism. As for the conditional component, De Jong et al. 
(1994) took as a given that the task-defined transformations 
consist of applications of the identity-reversal rule---which 
Hedge and Marsh (1975) had postulated (logical recoding 
hypothesis) in their original proposal. De Jong et al.'s idea of 
conditional automaticity suggesting the automatic applica- 
tion of the identity (or reversal) rule from the relevant to the 
irrelevant dimension is embodied in Hedge and Marsh's 

hypothesis that the logical recoding of the same type is faster 
than if the recoding is of the opposite type. ~ 

De Jong et al.'s (1994)dual-process model thus appears to 
be a hybrid consisting in one part of the DO model's 
automatic response activation process, and in the other part 
Hedge and Marsh's (1975) logical recoding hypothesis. The 
core of De Jong et al.'s new proposal lies in their time-course 
assumptions and their novel distributional analyses. We turn 
to these next. 

The Distributional Analysis 

Background 

The distributional analysis of RT data is a computational 
procedure that De Jong et al. (1994) proposed for getting at 
the temporal dynamics of their two hypothesized processing 
components. First they calculated the RT distributions for 
spatially consistent (corresponding, in their term) and spa- 
tially inconsistent (noncorresponding) trials for each sub- 
ject. The cumulative probability distributions are denoted as 
Pc(t) and P,(t), respectively. Then, they divided each of these 
distributions into N quantiles or proportional bins, such that 
each bin contained the same proportion (l/N) of trials 
(depending on the experiments, N was either 5 or 10). 2 All 
individual bin is identified by j, its quantile ID. The mean RT 
of those trials contributing to a particular bin (j) in the 
consistent distribution [Pc(t)] is denoted as tt~ ), and in the 
inconsistent distribution [P,(t)], 3 .  The difference between 
these corresponding mean RTs, F/) - ~), is a bin-by-bin 
measure of the Simon effect, and when plotted as a function 
of the averages of these means, (t 0) + Fc ) )/2, it provides a 
measure of the changes over time in the magnitude of the 
Simon effectmwe call this the distributional plot (see 
Figure 1). De Jong et al. (1994) found that for their data this 
function was roughly linear, with a negative slope that had 
roughly the same value across different S--R mapping 
conditions and experiments. That is, the magnitude of the 
Simon effect appeared to be greatest at fast responses and to 
decrease as responses slowed. S-R mapping instructions, on 
the other hand, appeared to change the intercept of this 
function (i.e., its vertical position in the distributional plot) 
without affecting the slope. De Jong et al. interpreted the 
slope of the distributional function as a measure of the time 
course for the unconditional component and the intercept as 
a measure of the conditional component and concluded that 
these effects were additive. The conclusion about the data 
showing additivity of factor effects is probably correct and, 
if so, important. However, whether these results necessarily 

t Until now, the DO model has not specified any mechanism for 
generalizing such rules to the outcome of the automatic process 
(but see Zhang, 1994). However, it does not seem that De Jong et 
al.'s (1994) dual-process model has articulated such a mechanism 
either. The sketch of a connectionist model in De Jong et al.'s 
Figure 11 does little to make this process explicit. 

2 In fact, the cumulative probability distributions had been 
horizontally averaged (Vincentized curve; see Ratcliff, 1979) 
across subjects before the quantization procedure to represent 
group data. 
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We note that when N ---. oo, bins becomes increasingly 
smaller, so that the mean RT of  a bin is closer to the 
boundary RT values defining the bin. The above procedure 
for determining the mean RT (averaged within each bin) 
then becomes finding corresponding tc and t i in the pair of  
RT distributions such that the cumulative probabilities (P) 
up to that bin, as indexed by tc and t~, respectively (we drop 
the bin I D j  for simplicity), are equal (see Figure 1): 

Pc(~)=Pi(~). (1) 

Now, given that the difference ( t~ -  tc) and the average 
(ti + to)~2 of  all corresponding bins obey a linear relation- 
ship with slope K and ordinate intercept 8, 

t i -  t c= 1 ¢ , . ( ~ ) + 8 ,  (2) 

b) 

¢0 

! 
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Figure I. Distributional analysis of reaction time (RT) data. (a) A 
cumulative RT distribution P(t), over many trials of a certain 
condition, is divided into N quantiles, that is, bins of equal 
proportion (here N = 5, indicating that each bin contains 20% of 
the total number of trials). The mean RT for thej-th quantile (bin) is 
calculated and denoted as toY. (b) The above procedure is applied 
separately to the RT distribution for spatially consistent (i.e., 
corresponding) trials, Pc(t), and to the RT distribution for spatially 
inconsistent (i.e., noncorresponding) trials, Pi(t), so as to calculate 
the bin-averaged mean RTs, t(J ) and ~/J), respectively. The differ- 
ence, ~)  - t(J ), and the average, (d J) +~J))/2, of the two means are 
plotted against each other to form the distributional plot (which 
appears linear from the data of De Jong et al., 1994). 

and a linear relationship between tc and ti is inferred: 

t / - - '~  
m ,  t i=  ktc + X,t  c =  h (3) 

with 

1 + ~ d 2  8 

h = 1 - K/2 a" 1 -- K/2 (4) 

Substituting Equat ion 3 into Equation 1, we have (because 
these equations hold for all corresponding pairs of  tc and t~, 
we simply use t to denote this running variable) 

t - ' r  
Pc(t) = Pi(kt + "r), Pi(t) = Pc ( - - - ~ ) "  (5) 

This is to say, the two distributions are related to each other 
through an affine transformation on the time variable, that is, 
a shift x plus a sealing k. The forms of  the two RT 
distributions are identical apart f rom an affine mapping A: 
t ---* kt  + a-. The grand means (mean RT) of  the original 
distributions and their variances are, respectively, 

. .  = = f ? = ( , -  

and 

. ,  = f ? . ( , -  

reflect the effects o f  a differential time course for the two 
functional components is questionable, for there is an 
alternative interpretation. We shall prove that the distribu- 
tional analysis procedure per se reflects statistical properties 
of  the underlying RT distributions, rather than being based 
on De Jong et al. 's time-course assumptions. 

We can easily derive, on the basis of  Equation 4, 

lai =k t t c  + r, ~i = X~c. (6) 

Thus, the grand means and variances o f  the pair of  RT 
distributions are related to each other through h and -r or, 
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because of Equation 3, through g and 8, the slope and a) 
intercept in the distributional plot. To work out the exact 
relationship, denote ~i < °c  

A~.l = ~1 i - [ac, A o r  = or  i - -  o"  c 

as the difference and 

~.l c "~- ~l/ O" c + O" i 

0 =  2 ' e =  2 

as the average, respectively, of the grand mean and the 
variance for the pair of RT distributions Pc(t) and Pi(t). 
Equation 6 can be recast as 

Ap = K0 + 8, Air = K~. (7) 

Because 8' - Kft + 8 is simply the vertical intercept 
calculated at the RT mean (this is actually how De Jong et 
al., 1994, defined intercept; see their footnote 2), we have the 
following conclusions: (a) The difference in mean for the 
pair of RT distributions, Ala, is only related to the vertical 
intercept at the mean 8' (and not to the slope K), and Co) the 
difference in variance for the pair of RT distributions, Act, is 
related only to the slope K (and not the vertical intercept 8'); 
its magnitude is proportional to K as well as to the average 
variance (of the two distributions) 8. 

The Slope (K) and De Jong et aL 's (1994) 
Time-Course Assumptions 

Clearly, if the slope of the distributional plot is negative, 
that is, if K < 0, then the variance of the inconsistent 
distribution must be smaller than that of the consistent 
distribution (tr i < ¢rc), which is exactly what De Jong et al. 
(1994, Figure 4) found in their data. However, if the slope of 
the distributional plot is positive, then the variance ordering 
is reversed, that is, the variance of the inconsistent distribu- 
tion is larger than that of the consistent distribution (Gr i > trc). 
This is summarized in Figure 2. If such a function were to be 
obtained for a set of data that also displayed the Simon 
effect, it would constitute a direct violation of De Jong et 
al.'s time-course assumption. We illustrate such a case in 
Figure 3, which is a distributional plot calculated for 
previously published data (Komblum, 1994). 

In Kornblum's experiment, the relevant stimuli consisted 
of the colors green and blue, presented in the left, right 
upper, or lower half of a rectangle (3.2 × 1.2 cm) and 
viewed on a CRT screen from a distance of 75 cm. The 
spatial position of the color patches was irrelevant, as was a 
letter string presented in the center of the rectangle. The 
responses consisted of left-right keypresses. Each trial 
began with a warning signal consisting of the four comers of 
the stimulus rectangle. The stimulus was presented follow- 
ing a randomly selected interval of between 400 and 600 ms 
and was terminated by the subject's response. At a randomly 
selected interval of between 600 and 1,200 ms after the end 
of the posttrial feedback, the warning signal for the next trial 
was presented. In one third of the trials of a "pure" block, 

I 

÷ I 

.,:r pi > p c 

I ~ < P c  
A 
Po 

(ti + t c ) 1 2  

a i>o c 

+ I p i lp c 

Pi Pc 

A Po 

~i + t c ) / 2  

Figure 2. Possible relationships between the respective means ~, 
lal and variances crc, crl of the two reaction time distributions for 
spatially consistent (corresponding) and spatially inconsistent 
(noncorresponding) trials. (a) When the slope is negative (K < 0), 
~i < crc is inferred. The line at the top (with a positive vertical 
intercept 8') implies ~ > Po whereas the line at the bottom (with a 
negative 8') implies la~ < I~- (b) When the slope is positive (K > 0), 
crl > cr~ is inferred. The line at the top (with a positive 8') implies 
la~ > ~, whereas the line at the bottom (with a negative 8') implies 

the colors appeared in either the upper or lower half of the 
rectangle (neutral condition), in another third of the trials 
they appeared in either the left or right half of the rectangle 
that corresponded to the spatial position of the response 
(S-R-consistent condition), and in another third they ap- 
peared in either the left or right half of the rectangle that 
corresponded to the opposite spatial position of the response 
(S-R-inconsistent condition). In the "mixed" blocks, half of 
the trials were identical to those we have just described, and 
in the same proportion, and the other half were slightly 
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different (see Kornblum, 1994, for details---there was no 
significant interaction between conditions in the mixed 
blocks). 

The results, which have been reported previously (Korn- 
blum, 1994), are quite straightforward: There was a statisti- 
cally significant Simon effect in both pure (44 ms) and 
mixed (36 ms) blocks. Of particular interest, however, are 
the variances: For pure blocks, S-R-consistent trials had a 
standard deviation of 57 ms, as against 78 ms for the 
S-R-inconsistent trials; for mixed blocks, S-R-consistent 
trials had a standard deviation of 58 ms, as against 77 ms for 
the S-R inconsistent trials. According to our analysis, this 
particular ordering of the variances should produce distribu- 
tional plots with a positive slope which, according to De 
Jong et al.'s (1994) time-course assumption, would preclude 
the occurrence of a Simon effect. The distributional plots for 
these data are shown in Figure 3. As can be seen, the slopes 
are positive. The fact that they were obtained from a set  of 
data that also display the Simon effect constitutes a clear 
violation of De Jong et al.'s time-course assumption. 

Additional evidence is presented in Table 1 (which should 
not be considered exhaustive3), where we show that for a 
number of studies in the literature that reported robust 
Simon effects, the order of the variances (or standard errors) 
for the S-R-consistent and S-R-inconsistent conditions in 
some cases conforms, and in other cases is opposite, to the 
order called for by De Jong et al. (1994). A smaller standard 
deviation or standard error for the S-R-consistent than for 
the S-R-inconsistent condition would imply a positive 
slope, K, which of course would be a violation of De Jong et 
al.'s time-course assumptions. From Table 1, it is clear that 
there is not a consistent trend of the ordering of standard 
errors and, hence, the sign of the slope, as required by De 
Jong et al.'s time-course assumption. 
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Table 1 
Simon Effect: Stimulus-Response Consistent and 
Inconsistent Mean RTs and Variances 

Article 

Consistent Inconsistent 

Condition M SE M SE 

Simon, Hinrich, & Left 385 13.6 445 13.2 
Craft (1970) Right 386 12.0 457 13.7 

Craft & Simon (1970) Left 438 10.0 479 9.9 
Right 439 9.6 493 10.4 

Simon & Craft (1970) Left 530 12.7 511 10.3 
Right 485 11.3 577 11.2 

Simon, Sly, & Vilapak- Compatible 633 103 746 113 
kam'(1981) Incompatible 868 204 804 174 

Kornbinm & Lee b Experiment 2 596 72.8 646 66.4 
(1995) Experiment3 553 148.2 608 153.4 

qn this experiment stimulus location, instead of being irrelevant 
(i.e., random with respect to the response), is redundant with the 
relevant stimulus, which is color. Standard deviations are reported 
here instead of standard errors, bBoth e ~ n t s  used Type 3 
ensembles (see taxonomy in the section The Simon Effect). 
However, the irrelevant stimulus dimensions and the responses 
were spatial as well as nonspatial. Standard deviations are reported 
here instead of standard errors. 

De Jong et al. 's (1994) Numerical Simulation 

The appendix of De Jong et al.'s (1994) article contains a 
numerical simulation that is intended to rule out an alterna- 
tive interpretation of linear distribution plots, one that 
attributes the observed negative slope to random trial-to-trial 
variability in the size of the Simon effect, that is, the 
statistical properties of RT distribution, as we propose here. 
By performing the simulation (which is described below), 
De Jong et al. claimed to have established conditions under 
which a negative (or a positive) slope will occur--the 
conditions have to do with the ratio of standard deviation 
and mean of the Simon effect. This conclusion is false. In 
this section, we show that all simulation results in Table A1 
(p. 749) of De Jong et al. can be parsimoniously explained 
by the difference in variance between the relevant RT 
distributions, and may have nothing to do with the condi- 
tions under which a distributional plot reveals actual tempo- 
ral dynamics, as claimed by De Jong et al. 

The simulation used two RT distributions (both skewed 
Gaussians), one as a standard, reference distribution, called 
X, with M = 400 ms and SD = 100 ms; the other, a 
distribution representing the Simon effect, called Y (M = 20 
ms, SD = 10, 20, and 50 ms for the low, medium, and high 
variance conditions, respectively). Random samples of x E 
X and y E Y were generated and were combined to generate 
RT of a simulated trial. Three different hypotheses or rules 
for generating RT dislributions of corresponding-noncorre- 
sponding locations (denoted here as RTc and RTI) are 
simulated: for the "advantage only" rule, RTc is generated 
by x - y, and RTi by x; for the "disadvantage only" rule, RTc 
is generated by x, andRTi by x + y; for the "both" rule, RTc 

Figure 3. Distributional plots for some of the data of Kornblum 3 Unfortunately, very few studies on the Simon effect have 
(1994), in which the slopes are positive, reported standard deviations or standard errors. 
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is generated by x - y/2, and RTi by x + y12. (The plus or 
minus signs imply addition or subtraction of RTs drawn from 
the respective distributions, as in additive stage models.) 
Distributional analysis performed on the pair of distributions 
RT~ and RT, reveal the following pattern of simulation 
results presented in their Table AI: (a) For the "advantage 
only" rule, the slope is negative; Co) for the "disadvantage 
only" rule, the slope is positive; (c) for both of the above 
rules, the absolute magnitude of the slope (regardless of 
sign) increases as the variance of Y increases; and (d) for the 
"both" condition, the slope is essentially zero (flat). 

This pattern of data is easily understood in terms of the 
simple relationship derived in Equation 7: The slope K is 
directly proportional to the difference of variance between 
RTi and RTc. A basic background observation is that the 
distribution of the addition (x + y) or subtraction (x - y) of 
two independent, random variables x E X and y E Y is 
simply the convolution of X with Y or with - Y .  Because 
their variances are additive and because var(-Y) = vat(Y), 
the variance (of both the additive and subtractive combina- 
tion) equals tl',e variance of X plus the variance of Y. 
Therefore, for the "advantage-only" condition, a negative 
slope is predicted: 

var(Rr i )  - var(Rrc)  = v a t ( X )  

- [var(X) + var(Y)]  = - v a r ( Y ) .  

For the "disadvantage only" condition, a positive slope is 
predicted: 

var(RTi) - var(RTc) = [vat(X) + var(Y)/4] 

slope of the distributional plot rather than the time-course 
interpretation (De Jong et al.'s position). 

Discussion 

The distributional analysis proposed by De Jong et al. 
(1994), when separated from their constraining and unwar- 
ranted time-course assumptions, has advantages as well as 
limitations. We have shown that the slope and intercept of a 
distributional plot are generated by the differences between 
the means and variances of the two underlying RT distribu- 
tions and that these slopes can be:~positive or negative in 
principle as well as in fact. When the differences between the 
means and the variances are small and theoretically interest- 
ing, distributional analyses are especially valuable because 
they ma£mlfy such differences. However, we have also 
shown that if the distributional plots depart from linearity, as 
is evident from some of De Jong et al.'s data, it implies that 
the two underlying RT distributions differ in functional 
form. Such differences may be small, as, for example, when 
the two distributions dilfer in skewness, or large. In case of 
the latter, such differences may give rise to noumonotonicity 
in the distributional plots, so that piecewise linear approxi- 
mations might be adopted. Strictly speaking, when the two 
underlying distributions are not affme-related, Equation 7 is 
meaningless. Nevertheless, in practice, when N is small (as 
in the case of De Jong et al.), linear regression may be used 
to derive an equivalent slope and intercept so that Equation 7 
holds approximately. In fact, it can be further shown that the 
distributional plot is intimately related to the so-called Q-Q 
plot that has been used extensively to study a family of 
probability distribution functions (see Appendix). 

- var(X)  = var(Y).  

For the "both" condition, an overall zero slope is predicted: 

v a r ( R T i )  - var(RTc) = [var(X) + ear (Y)4]  

- [var(X) + var(Y)/4]  = O. 

This is exactly the pattern of results in their Table AI! 
Another way of looking at this is that for the "advantage 
only" rule, RTc is generated from a compound distribution 
(X convolving with - I0 and RTi from a simple distribution 
(X), whereas for the "disadvantage only" rule, RTc is 
generated from a simple distribution (X) and RT~ from a 
compound one (X convolving with Y). Because the variance 
of the compound distribution exceeds that of either simple 
distribution, the ordering of variances between RTi and RTc 
is just reversed for these two rules, This causes an apparent 
difference in the sign of the slope. The variance-based 
analysis above also explains why the magnitude of the slope 
(for both the "advantage only" condition and the "disadvan- 
tage only" condition) increases with an increase of the 
variance of Y, as is observed when one moves from low to 
medium to high in that table. To conclude, the simulation 
results in the appendix of De Jong et al.'s (1994) article in 
fact support the variance interpretation (our position) of the 

The Simon Effect 

Thus far, we have shown that De Jong et ai.'s (1994) 
time-course assumptions are theoretically unwarranted as 
well as unsupported by data in the literature. This brings into 
question De Jong et al.'s version of the dual-process account 
of the Simon effect. However, we have also shown that the 
distributional analysis per se is a potentially useful analytical 
tool. In this section, we show that De Jong et al.'s orderly 
data may also be a source of useful empirical information 
concerning the Simon effect. In particular, the strong 
similarities that emerge between characteristics of the Simon 
effect when obtained under different experimental para- 
digms strongly suggests that a common mechanism may be 
operating across all these paradigras that, as classified by the 
DO (dimensional overlap) taxonomy, all contain overlaps 
between an irrelevant stimulus and the response dimensions. 

The Simon effect, as the term is used in the literature, 
requires that a consistency-inconsistency relationship exist 
between the irrelevant, spatial aspect of a stimulus and the 
spatial aspect of a response. This relationship may occur in a 
number of different experimental paradigms in which the 
responses are spatially defined or have a spatial attribute. 
These have been classified in the DO taxonomy (e.g., 
Kornblum, 1992) on the basis of whether there is DO 
between three different aspects of the task: the response, the 
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relevant stimulus, and the irrelevant stimulus. The resulting 
eight-class taxonomy is as follows. (1) Cases in which the 
relevant stimuli are neutral (i.e., have no DO) with respect to 
both the irrelevant stimuli and the responses. For example, 
tasks in which the relevant stimuli are, say, colors presented 
to the left or right of a central fixation pOint (with spatial 
position irrelevant, of course), and the responses consist of 
left-right keypresses. These are called Type 3 ensembles in 
the taxonomy. (2) Cases in which the stimuli and the 
responses are both two-dimensional (i.e., with two at- 
tributes), but the two dimensions are dissimilar. For ex- 
ample, tasks in which the relevant stimuli are colors, 
presented to the left or right of a central fixation point (with 
spatial position irrelevant, of course, as before), and the 
responses are left-right keypresses. Thus far, these condi- 
tions are identical to those in Type 3 above. However, in 
these new tasks the keys themselves are also colored. Thus, 
the two dimensions of the stimuli (color and position) 
overlap with the two dimensions of the responses (color and 
position) but not with each other. Either of the stimulus 
dimensions may be mapped onto either of the response 
dimensions, making the dimensions not included in the 
mapping irrelevant. These are called Type 5 ensembles in the 
taxonomy. (3) Cases in which the stimulus is three- 
dimensional and there is overlap between the relevant and 
one of the irrelevant stimulus dimensions, as well as 
between the other irrelevant stimulus dimension and the 
response. These are called Type 7 ensembles in the tax- 
onomy (examples may be found in Kornblum, 1994). 
(4) Cases with two-dimensional stimuli and one-dimen- 
sional responses, in which the relevant stimulus dimensions 
overlap with the response and with each other. These, of 
course, are Stroop or Stroop-like tasks where, for example, 
the relevant stimuli are the words left or right, presented left 
or right of a central fixation point (with spatial position 
irrelevant), and the responses consist of left-right key- 
presses. These are called Type 8 ensembles in the taxonomy. 
Hedge and Marsh (1975) used Type 5 ensembles in their 
study. De Jong et al. (1994) used Type 5 ensembles in 
Experiments 1 and 4 of their study; Type 3 ensembles in 
Experiment 2, as well as in the control condition of 
Experiment 3; and a Type 7 ensemble in Experiment 3 (even 
though De Jong et al. called it a Stroop taskmpresumably 
because they thought it was a Type 8 ensemble). 4 

Regardless of the details, all theories of the Simon effect 
assume, implicitly or explicitly, that when two stimulus 
attributes, or a stimulus and a response attribute, have DO, 
some sort of automatic associative, attentional, or activation 
process occurs that may interfere with, or facilitate, perfor- 
mance. In Type 3 ensembles (which produce the pure Simon 
effect), the only viable candidate relationship is that between 
the irrelevant spatial aspect of the stimulus and the re- 
sponse. 5 The occurrence and origin of the Simon effect (as 
previously defined) in those ensembles is, therefore, clear 
and unambiguous. In Type 5 ensembles with incongruent 
S-R mapping instructions, there are, in principle, at least 
two potential sources of conflict--one for each of the S-R 
overlapping dimensions. The origin of the Simon effect in 
these ensembles is, therefore, less clear. Because these 

dimensions are themselves dissimilar, Type 5 may in fact be 
a dual task in ,which the same effector is used to execute the 
two responses--thus complicating matters considerably (e.g., 
see Structural Interference in Kalmeman, 1973, p. 196). 
Type 7 ensembles, which combine Type 3 with Type 4 
ensembles (Type 4 ensembles are those in which the relevant 
and irrelevant stimulus dimensions overlap with each other, 
but neither overlaps with the response---these are sometimes 
called Stroop-like stimuli) have been studied by Komblum 
(1994), who has shown that the effects of these two 
ensemble types seem to be additive. The occurrence of the 
Simon effect in these ensembles is, therefore, clearly identi- 
fiable and similar to those in Type 3. In Type 8 ensembles, 
because of the overlap (i.e., similarity) between the stimulus 
and the response dimensions, and between the stimulus 
dimensions themselves, the situation is much less clear than 
in Type 3. Here, there are three potential sources of conflict: 
two between the response and each of the two stimulus 
attributes (relevant and irrelevant), and one between the two 
stimulus attributes themselves. These attributes could all be 
having an effect, either simultaneously, selectively, addi- 
tively, or interactively. The origin and identification of a 
Simon effect in Type 8 ensembles are, therefore, much more 
ambiguous than in Type 3. These taxonomic distinctions and 
their potential functional consequences raise the question of 
whether the Simon effect, when obtained in all these 
different experimental paradigms, can be accounted for by a 
common mechanism. 

De Jong et al.'s (1994) data may help shed some light on 
this question. For, regardless of the ensemble type (3, 5, or 
7), De Jong et al. obtained a Simon effect and their data had 
two consistent trends: Ca) negative slopes with constant 
magnitude (K between -0 .09  and -0.12)  and Co) vertical 
intercepts that vary systematically depending on the S-R 
mapping conditions (when applicable). The intercepts val- 
ues were positive for identity, or congruent, mapping and 
negative for reverse, or incongruent, mapping. This pattern 
strongly suggests the influence of two independent factors 
on RT: Ca) an automatic response activation process that is 
associated with the presence of DO between the irrelevant 
stimulus dimension and the response and affects the vari- 
ances of the S-R-consistent and S-R-inconsistent RT distri- 
butions (this is equivalent to De Jong et al.'s unconditional 
automaticity) and Co) a controlled process associated with 
the S-R mapping of the relevant stimulus that affects the 
means of the RT distributions; note that this factor is 
different from De Jong et al.'s conditional automaticity. The 

4 The tasks themselves all had a slight twist in trial blocking that 
made them different from the standard tasks ordinarily run with 
these ensembles. In particular, either the irrelevant dimension was 
made relevant on a certain proportion of the trials, that is, the 
required response was made contingent on it, or the required 
response changed on a certain proportion of trials (e.g., keypress to 
verbal); or variables that are usually blocked, like response labels, 
or S-R mapping, were randomized within blocks. 

5 Note that in the taxonomy of the DO model, this irrelevant 
dimension could be anything--color, number, letter, and so on. It is 
only when the Simon effect is narrowly defined that this dimension 
is spatial. 
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fact that this pattern of  results was observed for a series of  
experiments that obtained the Simon effect with Ensemble 3, 
5, and 7, all of which include ~ irrelevant stimulus dimension 
that overlaps with the response, strongly suggests that the 
mechanism underlying the Simon effect in these different 
tasks is probably the same. Of course, the precise opera- 
tional details of this mechanism remain to be identified. 

Conclusion 

We have shown that De Jong et al.'s (1994) conditional 
and unconditional automatic processes are intimately related 
to the logical recoding hypothesis of  Hedge and Marsh 
(1975) and to the automatic response activation process of 
Kornblum's (Komblum et al., [990) dimensional overlap 
model, respectively. We have also shown that De Jong et 
al.'s data and distributional analyses do not necessarily 
suppon their time-course assumptions and that these assump- 
tions need not be satisfied in order to obtain the Simon effect. 
However, De Jong et al.'s data do seem to reflect indepen- 
dent influences of  an automatic and a controlled process on 
the statistical characteristics of  the underlying RT distribu- 
tions. De Jong et al.'s empirical findings are intriguing, and 
our reanalysis of them redefines some of the questions in the 
area and, we hope, provides a new framework that may 
make them more tractable. 
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The distributional plot proposed by De Jong et al. (1994) is 
intimately associated with the so-called Q-Q plot that has been 
used extensively to study a family of probability distribution 
functions (see, e.g., Thomas & Ross, 1980; W'flk & Gnanadesikan, 
1968). The Q-Q plot, or quantile-quantile plot, is a means by 
which the running parameters generating corresponding quantiles 
of the two distributions are plotted against each other. In terms of 
our earlier notations, it is a plot of ~ against F/), as j  varies for the 
two cumulative distributions Pc(t) and P,(t). Thomas and Ross 
(1980) have shown that the necessary and sufficient condition for 
the two probability distributions to be related by an affine transform 

A--0tis is when the commonly adopted Vmomtizing procedure for 
across-subject aventging is valid--is that the Q-Q plot of these 
disuibutions is linear. The disuibutional analysis proposed by De Jong et 
al., on the other hand, plots (t~ - to) against (t~ + to)/2. Obviously, the 
distributional plot is a 45°-rotated venion of the Q-Q plot. Therefore, it 
is not surprising that a linear relationship in the disuibufional plot merely 
dernonsWates that the two ~Y~tribufion~ Pc(t) and P~(t), are related 
through Equation 4 and have the same form (i.e., belong to the same 
"family"). Linearity in a disttitmfioml plot reflects the 
properties of the l~¢ir of RT dimibutions md not necessarily functional 
hypotheses concerning processing ~ (see Figure A 1). 
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Figure A1. Relationship between distributional plot and Q-Q plot. (a) The Q-Q plot (quantile- 
quantile plot) is generated by directly plotting the bin-averaged mean reaction times for consistent 
and inconsistent trials, that is, F¢ ) and F/), against each other (c.f. Figure 1). A linear function in the 
Q-Q plot implies that the two reaction time distributions are affine related, that is, they differ only by 
a scale and a shift factor (see Equation 4). Co) The distributional plot is merely a 45°-rotatod Q-Q 
plot, so the linearity relationship is preserved. The slope and intercept in the Q-Q plot are k and x, as 
in Equation 3. In the discibutional plot, they me K and 8, as in Equation 2. The two sets of parameters are 
linked through Equation 4. 
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