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Abstract. When drifting bars or gratings are used as
visual stimuli, information about orientation specificity
(which has a period of 180°) and direction specificity
(which has a period of 360°) is inherently confounded in
the response of visual cortical neurons, which have long
been known to be selective for both the orientation of
the stimulus and the direction of its movement. It is
essential to “‘unconfound” or separate these two compo-
nents of the response as they may respectively contribute
to form and motion perception, two of the main streams
of information processing in the mammalian brain.
Worgétter and Eysel (1987) recently proposed the
Fourier transform technique as a method of uncon-
founding the two components, but their analysis was
incomplete. Here we formally develop the mathematical
tools for this method to calculate the peak angles,
bandwidths, and relative strengths, the three most im-
portant elements of a tuning curve, of both the orienta-
tional and the directional components, based on the
experimentally-recorded neuron’s response polar-plot. It
will be shown that, in the 1-D Fourier decomposition of
the polar-plot along its angular dimension, 1) the odd
harmonics contain only the directional component,
while the even harmonics are contributed to by both the
orientational and the directional components; 2) the
phases and the amplitudes of all the harmonics are
related, respectively, to the peak angle and the band-
width of the individual component. The basic assump-
tion used here is that the two components are linearly
additive; this in turn is immediately testable by the
method itself.

1 Introduction

Resecarch in the past three decades has shown most
convincingly that neurons in mammalian visual cortex
respond to, among others, visual presentations of prop-
erly oriented stimulus since the pioneering work of
Hubel and Wiesel in cat (Hubel and Wiesel 1959, 1962)

and monkey (Hubel and Wiesel 1968). A common
method of quantifying this orientation selectivity is to
drift the stimulus bar or grating across the receptive
field of the neuron at varying orientations over a full
cycle of 360°. The neuron’s response to each of these
presentations (measurable from the post-stimulus his-
togram) is recorded, and then plotted against the stimu-
lus orientation. In most experiments, drifting stimuli
(rather than stationary ones) are used for two technical
reasons: 1) A stationary stimulus is usually not as
effective in driving the cell as a drifting one; 2) More-
over, it is very difficult to align a stationary bar or
grating exactly at the center of the receptive field,
especially for non-optimal orientations. If, instead, pat-
terns are drifted across the receptive field, no precise
alignment is necessary. However, using moving stimuli
creates a problem: the information on orientational
selectivity and directional selectivity is confounded in
the cell’s overall response, i.¢., the cell would respond to
the directional aspect of the stimuli in addition to the
orientational aspect. As a result, a bar or grating of a
particular orientation moving at opposite directions
might elicit responses of quite different amplitudes. In
Fig. 1 is shown the single cell recording result from a
typical striate cell, where the response amplitude is
plotted radially against the stimulus angle, commonly
known as the response ‘“‘polar-plot”. Indeed, most vi-
sual cortical cells show some degree of directional selec-
tivity, and a number of different “directionality indices”
have been used to quantify this selectivity (e.g. Schiller
et al. 1976; Baker et al. 1981; De Valois et al. 1982;
Maunsell and Van Essen 1983; Albright 1984; Mikami
et al. 1986; Orban et al. 1986; Berman et al. 1987).
However, since the orientational component and the
directional component of the cell’s response are con-
founded (not separated), these efforts can hardly be
successful. In particular, it is generally impossible even
to “read out” from the response polar-plot the optimal
orientation and/or direction that the cell is tuned to,
not to mention the bandwidths and strengths of these
tuning functions.
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Fig. 1. The response polar plot of a typical visual cortical cell. The
cell’s response, in terms of firing rate (here with unspecified unit), is
plotted radially against the polar angle which respresents the moving
(drifting) direction of the visual stimulus (either a bar or 1-D
grating). Note that the response curve is not symmetric about either
the origin or any axis passing the origin, suggesting that the cell is
neither purely direction selective nor purely orientation selective

Recently, Worgétter and Eysel (1987) proposed the
Fourier transform technique to unconfound the direc-
tional and orientational components in the cell’s re-
sponse plot, taking advantage of the fact that they can
be described as functions having periods of 360° and
180° respectively. However, they inaccurately identified
the first harmonic in the Fourier expansion to be the
directional component and the second harmonic to be
the orientational component, and therefore unduly
truncated the higher harmonics which are of equal, if
not greater, importance (as shall be clarified in Meth-
ods and further mentioned in Discussion). Besides, they
did not provide a technique for estimating the band-
width of each component.

Here we formally develop the Fourier analysis tech-
nique to unconfound the orientation and direction com-
ponents under one (but a major) assumption: that the
two components are linearly additive. We shall see that,
under this assumption, we are able to obtain from the
response polar-plot the peak angles, bandwidths, and
relative strengths of each of these components. We shall
further demonstrate that the assumption of linear addi-
tivity of the orientational and directional components
can be tested by the method itself in an extremely
simple way, a unique feature of this method.

2 Method

We know that the response of a visual cortical neuron
to oriented bars or gratings is a function of the stimulus
angle, 8. More specifically, it is a function of § through
an orientational component O(f) and a directional
component D(6), i.e.,

R(6) = R(O9), D(9)), ey

where the orientation term and the direction term are
defined respectively as

o) =00 +n),
D(0) = D(6 +2n) .

We first deal with D(6). Since it is a periodic function
(with period 2n), we can expand it into Fourier series
with fundamental frequency f, = 1/2n):

(2)

D) =ay+ Y a coskf +d, sinkf,
K=

where the expansion coefficients are given by
1 2n
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%=3. ] DO do.
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& =% | D(6)cos k0 6, (3)
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Now let us take a closer look at a, and d,. Without loss
of generality, we temporarily assume the peak angle
of the directional tuning to be zero (by choosing the
appropriate polar axis in the polar-plot). Further,
we assume that the tuning function is symmetric
about its peak, an intuitive consideration of parity
equivalency:

D) = D(—9). &)

In cases of arbitrary tuning functions, the above as-
sumption implies that we are considering the even-sym-
metric part of the tuning function only, and ignoring
the odd-symmetric part to avoid unnecessary complica-
tions. From (2), (4) and (5)

1 2n
d, == [ D(6)sin k6 do
o

121:

== [ D(—6)sin k6 do
o
2n
=~ [ D(2r — 6)sin k6 dO
o
1 2n
=~ — [ D(2n — O)sin k(2x — 6) d9
0

2n

_1 { D(6)sin k9 do
o

= —dy,
or
d. =0. (6)
So (3) becomes

D(9) = i a, cos k@ . @)
k=0

In general, if the directional tuning D(0) has a peak at
0,, instead of zero, the expansion takes the form

D@ —6,,) = i a, cos k(0 —6,,) . (8)
k=0

With the same mathematical operations, we can
expand the orientational component O(f) into its

]



Fourier series

0 —6,)=> b cosk(@— 0,,) s 9
k=0
where 6, is the peak of orientation tuning and
1 2n
bp=— 1| O
0=73- g (0) do,

s (10)
by == | O(B)cos k6 db .
Ty

Note that O(6) has a period of =, as in (2),

1 n 2n
b=~ [ O(8)cos kO 0 + | O(B)cos k0 df
0 n
1 b4
== § O(B)(cos kO + cos k(6 — )) d@
0

=%}0(9)(1 + (—1)*)cos k0 d6 . (11)

Before going further, let us consider some general

issues. We know that the cell’s response R(f) is a
function of @ through some function O(f) and D(0),
and R(0) is all we measure experimentally as the re-
sponse polar-plot. Yet we do not know a priori:
1) the functional dependence of R(O, D) on O and D;
2) the parametric dependence of O(6) and D(6) on 6.
Without specifying either of the two, the other can
never be uniquely determined from only R(6). There-
fore, the issue of unconfounding the two components
is, in general, an ill-posed problem that would yield
infinite solutions. However, we can make some assump-
tions about either 1) or 2) to solve this problem,
and then test the validity of our assumption with the
neurophysiological data. This is what we are going to
do next.

We assume that the functional dependence of
R(O,D) on D) and O() is such that these two
components are linearly additive to give rise to the
overall response R(0):

R(D(8), O(8)) = D(6) + O(6) . (12)

Again we stress that there is no a priori reason for
making this assumption, except that it is the simplest
well-defined and testable (either verifiable or falsifiable)
assumption. Under this condition and referring to (8)
and (9),

R(O) = ) a, cosk(0 —86,,) + b, cos k(f — 6,,)
k=0

=(a+bo) + 3. (ay cos k,, + by cos kb,,)cos k0
k=1

+ (a, sin k0, + by sin k6,,)sin k6 . (13)

On the other hand, if we expand R(8) directly (remem-
bering R(0) itself is a periodic function of period 2n),

R(O) =no+ Y nicoskb +, sinkb, (14)

k=1

where
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1

M=~ [ R(B)cos k6 do, (15)
0

1 2n
{x == | R(9)sin kO d9 .

T o
Comparing (13) with (14), we immediately have
Mo=ao+ by,
N = a cos kO, + by cos k6, , (16)
{ = ar sinkf,, + b, sin k9, .

Because of the factor 1+ (—1)* in (11), b, is zero for
odd k. Therefore, in the response polar-plot expansion,
the odd harmonics contain only the directional contri-
bution while the even harmonics contain both direc-
tional and orientational contributions (not just the
orientation component, as Worgétter and Eysel (1987)
concluded).

2.1 Peak Angle
For odd harmonic terms, we have, according to (16):

ﬂk = ak COoS kedp s

. (17)
Ck = ak sin kgdp N
or equivalently
tan k6, = & ,
Mk (18)

a=+./n2+2, k=1,3,5...).

Therefore, the peak angle of the directional component
is related to, or computable from, the phases of the odd
harmonics. Notice that the peak angle of the orienta-
tional component is not directly computable from the
even harmonics; one needs first to subtract out the
contamination from the directional component. We
shall provide a method later.

2.2 Test of Linear Assumption

Equation (18) holds true for all odd integer numbers; we
can calculate the peak angle 6, from any odd k.
Realizing that this is a direct consequence of (12), our
linear assumption, we may actually calculate 6, from all
of these odd harmonics and examine their mutual
compatibility to test the validity of our hypothesis. We
know from the deduction that (18) is a necessary
condition of (12); we further argue that it is also a
sufficient condition, since any other combination of O(6)
and D(6) would practically prevent the odd harmonics
from being the sole contribution to D(6). Therefore, by
testing against this necessary and sufficient condition
(18), we are establishing the validity of linear assump-
tion (12). To relate this to the neurophysiological data,
we actually examined 38 cells in monkey primary visual
cortex (V1) which were recorded during early experi-
ments (De Valois et al. 1982) and found that more than
half of the cells follow the linearity assumption strikingly
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well. The details of this work are only in preliminary
form (Zhang and De Valois 1988) and shall be pre-
sented elsewhere (Zhang and De Valois, in prepara-
tion).

2.3 Bandwidth of the Tuning

Intuitively, we expect that the bandwidth of the tuning
curve in the spatial domain would be inversely related
to the “bandwidth” in the conjugate frequency domain,
as a consequence of the well-established “uncertainty
principle”, i.e. the narrower the tuning function is in the
spatial domain, the more harmonics in the frequency
domain that would contribute towards its composition,
and vice versa. (The careful reader should not confuse
this with the relationship between the orientation
bandwidth and the 2-D spatial frequency bandwidth
as given, say, by Daugman (1985)). We want to estab-
lish this relationship explicitly under certain approx-
imations. The study of a, is important not only
because we want to get the bandwidth of the directional
tuning, but also because we must subtract out the
directional contamination in the case of even harmonics
for our computation to proceed to the orientation term
in (16).

Before going on, we first ask ourselves what is the
operational definition of ‘“bandwidth? Researchers
have used the distance (in angles) between the points
where the response is 71% of the peak response (e.g.
Schiller et al. 1976), or 50% of the peak response (e.g.
Henry et al. 1973; Rose and Blakemore 1974; De Valois
et al. 1982). This is quite arbitrary. We suggest here a
more objective way, namely to use the distance between
the points having the steepest slope in the cell’s tuning
curve. At these points, the cell is most sensitive to
differential stimuli, i.e. a slight change in the stimulus
angle will result in a dramatic change in the cell’s
response. These points reflect more appropriately the
transition of the neuron from one state to another and
can be regarded in this sense as “turning points” of the
cell’s tuning curve. It turns out that this operational
definition of “bandwidth™ is also very convenient for
mathematical manipulations.

From (4)

1 2n
4= { D(B)cos k8 d6
0

1 2n .
= (_!' D(6) d(sin k6)

2n

1 . dD

If the cell’s response with respect to the stimulus angle
is smooth and bell-shaped, namely, when the stimulus
angle deviates from the cell’s optimal tuning, it changes
very slowly at first and then decreases abruptly to reach
the ground level, then the derivative of D(f) can be
approximated by the delta impulse function (Fig. 2)
dD

g =400 +04) — 56 — 6,)). (20)

(a)
b—284, —
(b)
“Bab 0 \Geb
(e)
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Fig. 2.a The tuning function of the directional component D(f). Note
that we made no assumption regarding what specific type of function
D(6) may be (e.g. Gaussian). Only the general shape is relevant in our
computation, which is assumed to be symmetric about its peak.
(assumed to be 0 here for convenience), and decreasing first slowly
and then abruptly at a distance 6, from the peak, defined as the
“half-bandwidth” of the tuning. b The derivative of D(6) with respect
to 6. Note the two peaks at —8, and 6,, corresponding to the
half-bandwidth in a. ¢ The delta function &0 +8,) — (6 —6,),
which can be viewed as an approximation to the derivative of D(f) in
b. Since the derivative of D(f) only appeared inside an integral (19),
this is indeed a good approximation

in which 8, is the effective half-bandwidth, 1, the peak
response of the directional tuning and the delta impulse
function is defined as

0, if x=0,
0, otherwise,

o(x) = {
and that

[ omdr=1, [ 6(x—x)/()dx =f(x0).
Therefore (19) becomes

2n
a = —é [ 2 sin kB0 + 6,4) — 58 — 0,4,)) dO
0

_ 24, sin kb,

R (k=1,3,5...,). (21)
i k



Combining (18) with (21), we have now related the peak
response 4, and the half-bandwidth 6, of the directional
component to the amplitudes of the odd expansion terms
/1i + (i for immediate calculation. Note again that (21)
holds for all odd £, so there are obviously more equations
than unknowns. Strictly speaking, this can also serve as
the test for our previous linear assumption (12), though
practically it is less convenient than using 8,,,. In any case,
we may solve for 8, and A, (say, using a conventional
regression method). Then we may want to substitute these
values back into (16) for the expression of a, for even k,
so that they can be used in the future:

22
aoz_dedb’
" (22)
21 si
ak=i‘%’ (k=24,6,...,).
i3 k

2.4. Calculating the Orientational Component

Once we get the directional component, we can deal
with the orientational component. From (16) and (22)
we have

27, sin k6
by cos kB, =, — Z2a SN oo k6, , (23)
v k
22, sin ki
by sin k0, = £, — 24 S0 K0 ko, ,
n k
(k=2,4,6,...)). (24)

The subsequent calculation for the orientation compo-
nent is essentially the same as that for the directional
component, only to note that in the case of the orienta-
tional peak response 1, and half-bandwidth @,

44, sin k0,
T k

So far, we have obtained all of the six parameters that
completely characterize a cell’s tuning, namely, the
directional peak angle, the directional bandwidth, the
directional peak response, the orientational peak angle,
the orientational bandwidth, and the orientational peak
response. The flow chart for the above procedure is
outlined in Fig. 3, and the result of unconfounding the
orientational and directional components of a typical cell
using this method is schematically illustrated in Fig. 4.

b (25)

2.5 Some Technical Considerations

There are several noteworthy technical points which,
though not conceptually important, may become appreci-
ated in order to apply this method successfully.

First, from (17) or (18), we know that a, and 0, are
calculable from 5, and {,. There are two things to take
care about:

1) There is a potential problem in specifying 0, by
taking the arctangent, due to the periodic nature of
trigonometric functions. To avoid this +n ambiguity,
the following method is highly recommended: a) First,
calculate the %) using only the first harmonic (k = 1);

Calculate Z @

according to (35)
for linearity test

Obtain 8,
according to (18) de
for odd k

@ l@

measured R(8) according to (15) for even k

@ Obtain Ag, 04 Ad
according to (18) and (21)
Jor odd k O

Fig. 3. Flow chart outlining the procedures for separating the orien-
tational component and directional component using the present
method. Step I. Experimentally measured response curve R(f) is
converted, via Fourier transform, into its frequency composition of
all harmonics. Step 2. Odd harmonics are used to calculate the
directional component D(f): its peak tuning 8,,, peak strength i, and
half-bandwidth 8. Step 3. Subtract out the directional contamina-
tion and then use the even harmonics to calculate the orientational
component O(6): its peak angle 6,,, peak strength 4, and half-band-
width 8,,. Step 4. Calculate Z, the linearity index

. Fourier transform Calculate X, 804,05 o
Experimentally _CD, yielding 7o , 7 , Gi —@, according to (23) and (24) Bob

since A4, is always positive as indicated by (21), there
should be no problem of specifying 64 within the range
of 360° b) Then, rotate the polar axis to 8¢) and
recalculate #, and (,, according to (15); ¢) Use the new
N and {; to do the linearity test and regression. Hope-
fully, the actual values of kf,, should be around zero
now and should pose no serious problem in taking the
arctangent.
2) The sign of q, is also difficult to decide solely based
on (17), since the unknown angle k0 can differ by
multiples of = and hence flip the sign of a,. However,
with the new 7, and {, obtained as described above, it
is very easy to determine the sign of a,. Since cos kf,,
is constantly positive for §,, in the vicinity of zero (no
matter slightly greater or smaller), a, is always positive
(negative) if the new n, is positive (negative).
Secondly, to get 8, and A, from g, , the conventional
regression method is always possible. Here, however, we
refer to (21) and present another quick and simple way
of getting these two parameters. The following equalities
are employed (see standard references on the subject of
trigonometric Fourier series, such as Gradshteyn and
Ryzhik 1980):

sinkx =w
k:lz,a,___ kK 4 (26)
k=;3,..< (—1)(’(_')/2% =1ln tan(%-}-g), Q27
(=T (—1)“_1)/2% (%)%x (28)
k=13... /% <$> - % X —x), (29)
k=Th.. (Sinkkx>2 -5 (30)

1 (sinkx\> © (n x
—EEY T of T X)) 31
k=1,3,”_k2< k ) 2x<4 3> S
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Fig 4. The directional component (a) and the orientational component (b) of the cell shown in Fig. 1, as separated by this method. These two
components add up to become the overall response shown as dotted curve there

The above identities are true for 0 < x < /2. It suffices
to solve 0, and 1, by any two of the equations. For
instance, (26) and (30) yield:

=32 (3 a))

Obviously 1/k? converges faster than 1/k, 1/k3 faster
than 1/k?, and so forth. In order to approximate the
infinite summation over k with finite terms, it is neces-
sary to determine which equations to use. The choice
depends mainly on how many non-identical Fourier
expansion terms are available in the response polar-
plot, which in turn is dependent upon how small an
increment of stimulus angle is used during the experi-
ment. On the other hand, the chosen series should not
converge so fast as only to admit contributions from
the first few harmonics because they may, due to the
experimental noise, be inappropriately over repre-
sented. In general, identities (26) through (31) work
fairly well when approximations for infinite summation
include terms up to as small as k = 9 (corresponding to
the experimental condition of 20° step increment in
angles of the stimulus presentations).

The same technique may be applied to the calcula-
tion of orientational component. The following corre-
sponding formulas are given only to complete the entire
list of prescription:

sin kx _ 1 n "
w5a. kT 2\2 * ) (32)
1 [sin kx x p
k=2,4,4_,P< k >—T2-(7T—x)<§—x>, (33)
sinkx\*> x/=m
k=§,:4,_,, k > _§(§_x> ’ (34)

L sin kx 2_x2 n 2 35
e Uk ) Te\27 ) (35)

Lastly, we would like to say a word or two about

the test of linear assumption. Suppose we have obtained
a collection of 8,, values from (18). Denoting 8% to be
the peak angle calculated from the k-th harmonic, we
construct the following expression:

z2= ¥ 04 - 05
J
= (0D —0D) + (0 —05)2 + (09 —09) 2+ -+ .
(36)

If the linear assumption does not hold, then the angles
calculated from (18) would not follow any obvious
rules and would practically be random. Therefore Z
would be much larger than when the linear assumption
holds. Elaborated statistical tests can be performed to
distinguish reliably the two situations.

3 Discussion

Without first separating the orientational component
from the directional component, it is impossible to
specify the cell’s peak tuning for either component. The
conventional way of identifying the maximum response
angle as the peak angle of orientational tuning and/or
directional tuning is in most cases problematic. Wogot-
ter and Eysel (1987), in their original study, correctly
identified the directional and orientational components
as being periodic functions of 2n and = respectively,
and with genuine intuition, proposed the use of the
Fourier transform technique to unconfound the two
components. Unfortunately, they misinterpreted “the
first order component - - - as the strength of the direc-
tional selectivity and the second order component as
the strength of the orientational component”. It is clear
from our mathematical analysis that the second har-
monic (“the second order component” in their termi-
nology) receives contributions from both orientational
and directional components, and that one needs to
subtract out the directional contamination in order to
calculate orientation selectivity. Also, Worgétter and
Eysel truncated the Fourier expansion series at the



second harmonic. This truncation is valid only when
both the orientational and directional tuning curves
are sinusoidally varying, which we know cannot be
true. In fact, the higher harmonics are essential in
verifying the linearity assumption about the cell’s de-
pendence on the two components, in subtracting out
the directional contamination for calculation of the
orientational component, and in estimating the band-
widths and relative strengtks of both components.

We wish to stress once more that whether this
method is successful or not depends on whether a cell
responds to the orientational and directional aspects of
a visual stimulus in a linearly separable fashion. We
cannot assume this a priori. It is only after the linear-
ity test as prescribed in Sect. 2.2 can we reach any
conclusion. In fact, most of the cells in macaque stri-
ate cortex that we tested seem to pass this linearity test
to various degrees, which is statistically significant
(Zhang and De Valois, in preparation). If this is ture
for data collected in other laboratories and in other
species, then a number of interesting questions emerge:
1) What is the origin of the orientation selectivity and
direction selectivity? Do they have the same generating
mechanism, or perhaps different mechanisms, one in-
volving the LGN and the other involving the cortex?
Do cells have the same peak angle for directional
tuning and orientational tuning? Are there morpholog-
ical differences between cells which are primarily orien-
tation tuned and those which are primarily direction
tuned? Are there functional differences in this respect
between simple and complex cell types? 2) Are there
laminar differences in cells’ responses to either of the
two components? Do “orientation columns” in V1
reflect the columnar organization of the orientational
component or the directional component, or both?
How about the fine structure of this columnar struc-
ture (“minicolumn™)? All these interesting questions
that result from a successful separation of the orienta-
tional and directional components await to be an-
swered.

Also, this method provides a more sensible way of
defining the “bandwidth” of a tuning function as being
the distance between the points of the steepest slope
(fastest change). This operational definition is both
intuitive and directly calculable from the Fourier ex-
pansion coefficients of the response polar-plot. There-
fore we believe that it is a good definition. Finally, our
method gives a quantitative assessment of the relative
strengths of the orientational component and direc-
tional component, and could answer questions like
“whether the cell is mainly directional or orienta-
tional” in a non-ambiguous way.

List of Symbeols and Notations

notation is defined as

in Eq.
4(x) delta impulse function (20)
Nos Nk coeflicients of Fourier expansion

of response polar-plot (15)
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Ce coefficients of Fourier expansion

of response polar-plot (15)
Ag peak strength of the directional

component (20)
A, peak strength of the orientational

component (29)
04 half-bandwidth of the directional

component (20)
0,4, peak angle of the directional

component (8)
0% value of 6,, computed from the k-th

harmonic (36)
0., half-bandwidth of the orientational

component (25)
0, peak angle of the orientational

component 9
ay, a,  coefficients of Fourier expansion of

directional component (4)
dy coefficients of Fourier expansion of

directional component 4
by, b coefficients of Fourier expansion of

orientational component (10)
D(6) directional component of the cell’s

response (2)
o) orientational component of the cell’s

response 2)
R(6) the cell’s overall visual response (1)

R(O, D) same as R(0), merely denoting the
fact that R(6) is composed of O(6)

and D(6) (1
VA index of linear additivity of the two
components (35)
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